1
|
Schröder R, Reuter M, Faßbender K, Plieger T, Poulsen J, Lui SSY, Chan RCK, Ettinger U. The role of the SLC6A3 3' UTR VNTR in nicotine effects on cognitive, affective, and motor function. Psychopharmacology (Berl) 2022; 239:489-507. [PMID: 34854936 PMCID: PMC8638222 DOI: 10.1007/s00213-021-06028-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 01/21/2023]
Abstract
RATIONALE Nicotine has been widely studied for its pro-dopaminergic effects. However, at the behavioural level, past investigations have yielded heterogeneous results concerning effects on cognitive, affective, and motor outcomes, possibly linked to individual differences at the level of genetics. A candidate polymorphism is the 40-base-pair variable number of tandem repeats polymorphism (rs28363170) in the SLC6A3 gene coding for the dopamine transporter (DAT). The polymorphism has been associated with striatal DAT availability (9R-carriers > 10R-homozygotes), and 9R-carriers have been shown to react more strongly to dopamine agonistic pharmacological challenges than 10R-homozygotes. OBJECTIVES In this preregistered study, we hypothesized that 9R-carriers would be more responsive to nicotine due to genotype-related differences in DAT availability and resulting dopamine activity. METHODS N=194 non-smokers were grouped according to their genotype (9R-carriers, 10R-homozygotes) and received either 2-mg nicotine or placebo gum in a between-subject design. Spontaneous blink rate (SBR) was obtained as an indirect measure of striatal dopamine activity and smooth pursuit, stop signal, simple choice and affective processing tasks were carried out in randomized order. RESULTS Reaction times were decreased under nicotine compared to placebo in the simple choice and stop signal tasks, but nicotine and genotype had no effects on any of the other task outcomes. Conditional process analyses testing the mediating effect of SBR on performance and how this is affected by genotype yielded no significant results. CONCLUSIONS Overall, we could not confirm our main hypothesis. Individual differences in nicotine response could not be explained by rs28363170 genotype.
Collapse
Affiliation(s)
| | - Martin Reuter
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Kaja Faßbender
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Thomas Plieger
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Jessie Poulsen
- Nicotine Science Center, Fertin Pharma A/S, Vejle, Denmark
| | - Simon S Y Lui
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience (NACN) Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Schröder R, Faiola E, Fernanda Urquijo M, Bey K, Meyhöfer I, Steffens M, Kasparbauer AM, Ruef A, Högenauer H, Hurlemann R, Kambeitz J, Philipsen A, Wagner M, Koutsouleris N, Ettinger U. Neural Correlates of Smooth Pursuit Eye Movements in Schizotypy and Recent Onset Psychosis: A Multivariate Pattern Classification Approach. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac034. [PMID: 39144773 PMCID: PMC11206064 DOI: 10.1093/schizbullopen/sgac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Schizotypy refers to a set of personality traits that bear resemblance, at subclinical level, to psychosis. Despite evidence of similarity at multiple levels of analysis, direct comparisons of schizotypy and clinical psychotic disorders are rare. Therefore, we used functional magnetic resonance imaging (fMRI) to examine the neural correlates and task-based functional connectivity (psychophysiological interactions; PPI) of smooth pursuit eye movements (SPEM) in patients with recent onset psychosis (ROP; n = 34), participants with high levels of negative (HNS; n = 46) or positive (HPS; n = 41) schizotypal traits, and low-schizotypy control participants (LS; n = 61) using machine-learning. Despite strong previous evidence that SPEM is a highly reliable marker of psychosis, patients and controls could not be significantly distinguished based on SPEM performance or blood oxygen level dependent (BOLD) signal during SPEM. Classification was, however, significant for the right frontal eye field (FEF) seed region in the PPI analyses but not for seed regions in other key areas of the SPEM network. Applying the right FEF classifier to the schizotypal samples yielded decision scores between the LS and ROP groups, suggesting similarities and dissimilarities of the HNS and HPS samples with the LS and ROP groups. The very small difference between groups is inconsistent with previous studies that showed significant differences between patients with ROP and controls in both SPEM performance and underlying neural mechanisms with large effect sizes. As the current study had sufficient power to detect such differences, other reasons are discussed.
Collapse
Affiliation(s)
- Rebekka Schröder
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Eliana Faiola
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Fernanda Urquijo
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | | | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Hanna Högenauer
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, University of Oldenburg Medical Campus, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
- Department of Psychiatry and Division of Medical Psychology, University HospitalBonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50931, Cologne, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University of Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| |
Collapse
|
3
|
Schröder R, Kasparbauer AM, Meyhöfer I, Steffens M, Trautner P, Ettinger U. Functional connectivity during smooth pursuit eye movements. J Neurophysiol 2020; 124:1839-1856. [PMID: 32997563 DOI: 10.1152/jn.00317.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth pursuit eye movements (SPEM) hold the image of a slowly moving stimulus on the fovea. The neural system underlying SPEM primarily includes visual, parietal, and frontal areas. In the present study, we investigated how these areas are functionally coupled and how these couplings are influenced by target motion frequency. To this end, healthy participants (n = 57) were instructed to follow a sinusoidal target stimulus moving horizontally at two different frequencies (0.2 Hz, 0.4 Hz). Eye movements and blood oxygen level-dependent (BOLD) activity were recorded simultaneously. Functional connectivity of the key areas of the SPEM network was investigated with a psychophysiological interaction (PPI) approach. How activity in five eye movement-related seed regions (lateral geniculate nucleus, V1, V5, posterior parietal cortex, frontal eye fields) relates to activity in other parts of the brain during SPEM was analyzed. The behavioral results showed clear deterioration of SPEM performance at higher target frequency. BOLD activity during SPEM versus fixation occurred in a geniculo-occipito-parieto-frontal network, replicating previous findings. PPI analysis yielded widespread, partially overlapping networks. In particular, frontal eye fields and posterior parietal cortex showed task-dependent connectivity to large parts of the entire cortex, whereas other seed regions demonstrated more regionally focused connectivity. Higher target frequency was associated with stronger activations in visual areas but had no effect on functional connectivity. In summary, the results confirm and extend previous knowledge regarding the neural mechanisms underlying SPEM and provide a valuable basis for further investigations such as in patients with SPEM impairments and known alterations in brain connectivity.NEW & NOTEWORTHY This study provides a comprehensive investigation of blood oxygen level-dependent (BOLD) functional connectivity during smooth pursuit eye movements. Results from a large sample of healthy participants suggest that key oculomotor regions interact closely with each other but also with regions not primarily associated with eye movements. Understanding functional connectivity during smooth pursuit is important, given its potential role as an endophenotype of psychoses.
Collapse
Affiliation(s)
| | | | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Maria Steffens
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Peter Trautner
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Core Facility MRI, Bonn Technology Campus, University of Bonn, Bonn, Germany
| | | |
Collapse
|
4
|
Amphetamine-induced alteration to gaze parameters: A novel conceptual pathway and implications for naturalistic behavior. Prog Neurobiol 2020; 199:101929. [PMID: 33091542 DOI: 10.1016/j.pneurobio.2020.101929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/03/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022]
Abstract
Amphetamine produces a multiplicity of well-documented end-order biochemical, pharmacological and biobehavioural effects. Mechanistically, amphetamine downregulates presynaptic and postsynaptic striatal monoamine (primarily dopaminergic) systems, producing alterations to key brain regions which manifest as stereotyped ridged behaviour which occurs under both acute and chronic dosing schedules and persists beyond detoxification. Despite evidence of amphetamine-induced visual attentional dysfunction, no conceptual synthesis has yet captured how characteristic pharmaco-behavioural processes are critically implicated via these pathways, nor described the potential implications for safety-sensitive behaviours. Drawing on known pathomechanisms, we propose a cross-disciplinary, novel conceptual functional system framework for delineating the biobehavioural consequences of amphetamine use on visual attentional capacity and discuss the implications for functional and behavioural outcomes. Specifically, we highlight the manifest implications for behaviours that are conceptually driven and highly dependent on visual information processing for timely execution of visually-guided movements. Following this, we highlight the potential impact on safety-sensitive, but common behaviours, such as driving a motor vehicle. The close pathophysiological relationship between oculomotor control and higher-order cognitive processes further suggests that dynamic measurement of movement related to the motion of the eye (gaze behaviour) may be a simple, effective and direct measure of behavioural performance capabilities in naturalistic settings. Consequently, we discuss the potential efficacy of ocular monitoring for the detection and monitoring of driver states for this drug user group, and potential wider application. Significance statement: We propose a novel biochemical-physiological-behavioural pathway which delineates how amphetamine use critically alters oculomotor function, visual-attentional performance and information processing capabilities. Given the manifest implications for behaviours that are conceptually driven and highly dependent on these processes, we recommend oculography as a novel means of detecting and monitoring gaze behaviours during naturalistic tasks such as driving. Real-word examination of gaze behaviour therefore present as an effective means to detect driver impairment and prevent performance degradation due to these drugs.
Collapse
|
5
|
Kasparbauer AM, Petrovsky N, Schmidt PM, Trautner P, Weber B, Sträter B, Ettinger U. Effects of nicotine and atomoxetine on brain function during response inhibition. Eur Neuropsychopharmacol 2019; 29:235-246. [PMID: 30552041 DOI: 10.1016/j.euroneuro.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) agonist nicotine and the noradrenaline transporter inhibitor atomoxetine are widely studied substances due to their propensity to alleviate cognitive deficits in psychiatric and neurological patients and their beneficial effects on some aspects of cognitive functions in healthy individuals. However, despite growing evidence of acetylcholine-noradrenaline interactions, there are only very few direct comparisons of the two substances. Here, we investigated the effects of nicotine and atomoxetine on response inhibition in the stop-signal task and we characterised the neural correlates of these effects using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T. Nicotine (7 mg dermal patch) and atomoxetine (60 mg per os) were applied to N = 26 young, healthy adults in a double-blind, placebo-controlled, cross-over, within-subjects design. BOLD images were collected during a stop-signal task that controlled for infrequency of stop trials. There were no drug effects on behavioural performance or subjective state measures. However, there was a pronounced upregulation of activation in bilateral prefrontal and left parietal cortex following nicotine during successful compared to unsuccessful stop trials. The effect of nicotine on BOLD during failed stop trials was correlated across individuals with a measure of trait impulsivity. Atomoxetine, however, had no discernible effects on BOLD. We conclude that nicotine effects on brain function during inhibitory control are most pronounced in individuals with higher levels of impulsivity. This finding is compatible with previous evidence of nicotine effects on stop-signal task performance in highly impulsive individuals and implicates the nAChR in the neural basis of impulsivity.
Collapse
Affiliation(s)
| | - Nadine Petrovsky
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Pia-Magdalena Schmidt
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
| | - Peter Trautner
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital of Bonn, Bonn, Germany; Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
| | - Birgitta Sträter
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany.
| |
Collapse
|
6
|
Meyhöfer I, Kasparbauer AM, Steffens M, Ettinger U. Effects of nicotine on smooth pursuit eye movements in healthy non-smokers. Psychopharmacology (Berl) 2019; 236:2259-2271. [PMID: 30874860 DOI: 10.1007/s00213-019-05223-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE The non-selective nicotinic acetylcholine receptor (nAChR) agonist nicotine has been argued to improve attention via enhanced filtering of irrelevant stimuli. Here, we tested this hypothesis in the context of smooth pursuit eye movements (SPEMs), an oculomotor function previously shown to improve with nicotine in some but not all studies. OBJECTIVES In order to test whether nicotine improves performance particularly when the inhibition of distracting stimuli is required, SPEM was elicited in conditions with or without peripheral distractors. Additionally, different target frequencies were employed in order to parametrically vary general processing demands on the SPEM system. METHODS Healthy adult non-smokers (N = 18 females, N = 13 males) completed a horizontal sinusoidal SPEM task at different target frequencies (0.2 Hz, 0.4 Hz, 0.6 Hz) in the presence or absence of peripheral distractors in a double-blind, placebo-controlled, cross-over design using a 2 mg nicotine gum. RESULTS Nicotine increased peak pursuit gain relative to placebo (p < .001), but an interaction with distractor condition (p = .001) indicated that this effect was most pronounced in the presence of distractors. Catch-up saccade frequency was reduced by nicotine (p = .01), particularly at higher target frequencies (two-way interaction, p = .04). However, a three-way interaction (p = .006) indicated that the reduction with nicotine was strongest at the highest target frequency (0.6 Hz) only without distractors, whereas in the presence of distractors, it was strongest at 0.4-Hz target frequency. There were no effects of nicotine on subjective state measures. CONCLUSIONS Together, these findings support a role of both distractor inhibition and general processing load in the effects of nicotine on smooth pursuit.
Collapse
Affiliation(s)
- Inga Meyhöfer
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.,Department of Psychiatry and Psychotherapy, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | | | - Maria Steffens
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111, Bonn, Germany.
| |
Collapse
|