1
|
Woelders T, Allen AE, Lucas RJ. Melanopsin enhances image persistence. Curr Biol 2023; 33:5048-5056.e4. [PMID: 37967553 DOI: 10.1016/j.cub.2023.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Contributions of the inner retinal photopigment melanopsin to human visual perception are incompletely understood. Here, we use a four-primary display to produce stimuli differing in melanopsin versus cone contrast in psychophysical paradigms in eight subjects with normal color vision. We address two predictions from electrophysiological recordings of the melanopsin system in non-human mammals: melanopsin influences color and/or supports image persistence under visual fixation. We first construct chromatic contrast sensitivity contours for stimuli differing in melanopsin excitation presented as a central annulus (10°) or peripheral (22.5°) spot. We find that although including melanopsin contrast produces modest changes in the average chromatic coordinates in both eccentricities, this occurs equally at low (0.5 Hz) and higher (3.75 Hz) temporal frequencies, arguing that it reflects divergence in cone spectral sensitivity in our participants from that captured in standardized cone fundamentals rather than a melanopsin contribution to color. We continue to ask whether the established ability of melanopsin to sustain firing of visual neurons under extended light exposure has a visual correlate, using the optical illusion of Troxler fading in which blurred spots in periphery disappear during visual fixation. We find that introducing additional melanopsin contrast (+28% Michelson contrast) to either bright or dark spots increases fading latency by 35% ± 8.8% and 41% ± 13.6%, respectively. Our data argue that the primary contribution of melanopsin to perception under these conditions is not to provide a color percept but rather to enhance persistence of low spatial frequency patterns during visual fixation.
Collapse
Affiliation(s)
- Tom Woelders
- Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK.
| | - Annette E Allen
- Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK
| | - Robert J Lucas
- Division of Neuroscience and Centre for Biological Timing, School of Biology, Faculty of Biology Medicine and Health, University of Manchester, Upper Brook Street, M13 9PT Manchester, UK.
| |
Collapse
|
2
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
3
|
Yang CC, Tsujimura SI, Yeh SL. Blue-light background impairs visual exogenous attention shift. Sci Rep 2023; 13:3794. [PMID: 36882407 PMCID: PMC9992692 DOI: 10.1038/s41598-022-24862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 03/09/2023] Open
Abstract
Previous research into the effects of blue light on visual-spatial attention has yielded mixed results due to a lack of properly controlling critical factors like S-cone stimulation, ipRGCs stimulation, and color. We adopted the clock paradigm and systematically manipulated these factors to see how blue light impacts the speed of exogenous and endogenous attention shifts. Experiments 1 and 2 revealed that, relative to the control light, exposure to the blue-light background decreased the speed of exogenous (but not endogenous) attention shift to external stimuli. To further clarify the contribution(s) of blue-light sensitive photoreceptors (i.e., S-cone and ipRGCs), we used a multi-primary system that could manipulate the stimulation of a single type of photoreceptor without changing the stimulation of other photoreceptors (i.e., the silent substitution method). Experiments 3 and 4 revealed that stimulation of S-cones and ipRGCs did not contribute to the impairment of exogenous attention shift. Our findings suggest that associations with blue colors, such as the concept of blue light hazard, cause exogenous attention shift impairment. Some of the previously documented blue-light effects on cognitive performances need to be reevaluated and reconsidered in light of our findings.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Sei-Ichi Tsujimura
- Faculty of Design and Architecture, Nagoya City University, Nagoya, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Norton JJS, DiRisio GF, Carp JS, Norton AE, Kochan NS, Wolpaw JR. Brain-computer interface-based assessment of color vision. J Neural Eng 2021; 18. [PMID: 34678801 DOI: 10.1088/1741-2552/ac3264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022]
Abstract
Objective.Present methods for assessing color vision require the person's active participation. Here we describe a brain-computer interface-based method for assessing color vision that does not require the person's participation.Approach.This method uses steady-state visual evoked potentials to identify metamers-two light sources that have different spectral distributions but appear to the person to be the same color.Main results.We demonstrate that: minimization of the visual evoked potential elicited by two flickering light sources identifies the metamer; this approach can distinguish people with color-vision deficits from those with normal color vision; and this metamer-identification process can be automated.Significance.This new method has numerous potential clinical, scientific, and industrial applications.
Collapse
Affiliation(s)
- James J S Norton
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208, United States of America.,Department of Electrical and Computer Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Grace F DiRisio
- Neuroscience Program, Colgate University, 13 Oak Drive, Hamilton, NY 13346, United States of America
| | - Jonathan S Carp
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208, United States of America.,Department of Biomedical Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Amanda E Norton
- Department of Epidemiology, Boston University, 715 Albany Street, Boston, MA 02118, United States of America
| | - Nicholas S Kochan
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, United States of America
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208, United States of America.,Department of Electrical and Computer Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| |
Collapse
|
5
|
Evangelisti S, La Morgia C, Testa C, Manners DN, Brizi L, Bianchini C, Carbonelli M, Barboni P, Sadun AA, Tonon C, Carelli V, Vandewalle G, Lodi R. Brain functional MRI responses to blue light stimulation in Leber’s hereditary optic neuropathy. Biochem Pharmacol 2021; 191:114488. [DOI: 10.1016/j.bcp.2021.114488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
|
6
|
Abstract
People are constantly exposed to blue light while engaging in work. It is thus crucial to understand if vast exposure to blue light influences cognitive control, which is essential for working efficiently. Previous studies proposed that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs), a newly discovered photoreceptor that is highly sensitive to blue light, could modulate non-image forming functions. Despite studies that showed blue light (or ipRGCs) enhances brain activations in regions related to cognitive control, how exposure to blue light changes our cognitive control behaviorally remains elusive. We examined whether blue light influences cognitive control through three behavioral tasks in three studies: the sustained attention to response task (SART), the task-switching paradigm, and the Stroop task. Classic effects of the SART, switch cost, and the Stroop effect were found, but no differences were observed in results of different background lights across the six experiments. Together, we conclude that these domains of cognitive control are not influenced by blue light and ipRGCs, and whether the enhancement of blue light on brain activities extends to the behavioral level should be carefully re-examined.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yun-Chen Tu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light Promotes Neural Correlates of Fear Memory via Enhancing Brain-Derived Neurotrophic Factor (BDNF) Expression in the Prelimbic Cortex. ACS Chem Neurosci 2021; 12:1802-1810. [PMID: 33961393 DOI: 10.1021/acschemneuro.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to light has been shown to enhance vigilance and improve working memory, possibly due to changes in prefrontal function. Ample evidence supports the critical role of prefrontal cortex (PFC) in fear memory performance. However, the effects of light on memory processing and its potential mechanisms remain unclear. Here, through rats exposure conditioned to light at different memory phases, we sought evidence for the influences by employing behavioral tests, pharmacological infusions, immunoblotting, and electrophysiological recording. Exposure to light immediately following conditioning of 30 min or longer could effectively improve consolidation of fear memory without altering short-term memory or upgrading the original fear. The absence of significant freezing during baseline and intertrial interval periods ruled out the possibility of a general induction of freezing by light. Meanwhile, rats exposed to light in homecages or conditioning chambers exhibited a similar memory phenotype, indicating that light specifically enhanced the fear stimulus rather than the contextual environment. Furthermore, light exposure elevated the training-induced brain-derived neurotrophic factor (BDNF) expression in the prelimbic, but not infralimbic, subregion of the PFC. Moreover, the BDNF-TrkB pathway, but not the BDNF-p75NTR pathway, was involved in light-mediated fear memory. The enhancement in BDNF activity effectively facilitated firing correlates of prelimbic pyramidal neurons but not fast-spiking interneurons. Blocking the training-induced BDNF by its antibody abolished the effects of light on neural function and fear memory. Therefore, our findings indicate that light enhances training-induced BDNF expression that promotes the neural correlate of memory function.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yan Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaolian Li
- Department of Neurology, Jinan Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Physiology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
8
|
Blue-light effects on saccadic eye movements and attentional disengagement. Atten Percept Psychophys 2021; 83:1713-1728. [PMID: 33751450 DOI: 10.3758/s13414-021-02250-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
People are constantly exposed to high-energy blue light as they spend considerable amounts of time reading and browsing materials on electronic products like computers and cellphones. Recent studies suggest that the stimulation of intrinsically photosensitive retinal ganglion cells (ipRGCs)-a newly discovered type of photoreceptor shown to be particularly sensitive to blue light-activates brain regions related to eye movements and attentional orienting (e.g., frontal eye fields). It remains unclear, however, whether and how blue light affects eye movements and attention behaviorally. We examined this by adopting the gap paradigm in which participants made saccades to a peripheral target as quickly and accurately as possible while the fixation sign vanished (i.e., the gap condition) or remained visible. Participants were exposed to blue and orange light on two separate days. Faster saccade latency under blue light was found across two experiments, and the results indicate that blue light shortened saccade latency when attention and eye movements operate simultaneously. Our findings provide evidence for the blue-light facilitatory effect on eye movements and attentional disengagement, and suggest that blue light can enhance the speed of saccadic eye movements.
Collapse
|
9
|
Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. ENERGIES 2021. [DOI: 10.3390/en14030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modern indoor lighting faces the challenge of finding an appropriate balance between energy consumption, legal requirements, visual performance, and the circadian effectiveness of a spectrum. Multi-channel LED luminaires have the option of keeping image-forming metrics steady while varying the melanopic radiance through metamer spectra for non-visual purposes. Here, we propose the theoretical concept of an automated smart lighting system that is designed to satisfy the user’s visual preference through neural networks while triggering the non-visual pathway via metamers. To quantify the melanopic limits of metamers at a steady chromaticity point, we have used 561 chromaticity coordinates along the Planckian locus (2700 K to 7443 K, ±Duv 0 to 0.048) as optimisation targets and generated the spectra by using a 6-channel, 8-channel, and 11-channel LED combination at three different luminance levels. We have found that in a best-case scenario, the melanopic radiance can be varied up to 65% while keeping the chromaticity coordinates constant (Δu′v′≤7.05×10−5) by using metamer spectra. The highest melanopic metamer contrast can be reached near the Planckian locus between 3292 and 4717 K within a Duv range of −0.009 to 0.006. Additionally, we publish over 1.2 million optimised spectra generated by multichannel LED luminaires as an open-source dataset along with this work.
Collapse
|
10
|
Domagalik A, Oginska H, Beldzik E, Fafrowicz M, Pokrywka M, Chaniecki P, Rekas M, Marek T. Long-Term Reduction of Short-Wavelength Light Affects Sustained Attention and Visuospatial Working Memory With No Evidence for a Change in Circadian Rhythmicity. Front Neurosci 2020; 14:654. [PMID: 32719581 PMCID: PMC7348134 DOI: 10.3389/fnins.2020.00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
The short wavelength, i.e., blue light, is crucial for non-image forming effects such as entrainment of the circadian system in humans. Moreover, many studies showed that blue light enhances alertness and performance in cognitive tasks. However, most scientific reports in this topic are based on experiments using short exposure to blue or blue-enriched light, and only a few focused on the effects of its reduced transmittance, especially in longer periods. The latter could potentially give insight into understanding if age-related sleep problems and cognitive decline are related to less amount of blue light reaching the retina, as the eyes' lenses yellow with age. In this study, we investigated the effects of prolonged blocking of blue light on cognitive functioning, in particular-sustained attention and visuospatial working memory, as well as on sleep, and melatonin and cortisol levels. A group of young, healthy participants was randomly allocated to either blue light blocking or control group. Depending on the group, participants wore amber contact lenses, reducing the transmittance of blue light by ∼90% or regular contact lenses for a period of 4 weeks. No changes were observed for measurements related to sleep and sleep-wake rhythm. Dim light melatonin onset, evening levels of melatonin, and morning cortisol answer did not show any significant alterations during blue light (BL) blockade. The significant effects were revealed both for sustained attention and visuospatial memory, i.e., the longer blocking the blue light lasted, the greater decrease in performance observed. Additionally, the follow-up session conducted ∼1 week after taking off the blue-blocking lenses revealed that in case of sustained attention, this detrimental effect of blocking BL is fully reversible. Our findings provide evidence that prolonged reduction of BL exposure directly affects human cognitive functioning regardless of circadian rhythmicity.
Collapse
Affiliation(s)
- Aleksandra Domagalik
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Halszka Oginska
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Ewa Beldzik
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Malgorzata Pokrywka
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Marek Rekas
- Ophthalmology Department, Military Institute of Medicine, Warsaw, Poland
| | - Tadeusz Marek
- Brain Imaging Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Duda M, Domagalik A, Orlowska-Feuer P, Krzysztynska-Kuleta O, Beldzik E, Smyk MK, Stachurska A, Oginska H, Jeczmien-Lazur JS, Fafrowicz M, Marek T, Lewandowski MH, Sarna T. Melanopsin: From a small molecule to brain functions. Neurosci Biobehav Rev 2020; 113:190-203. [DOI: 10.1016/j.neubiorev.2020.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
12
|
Panorgias A, Lee D, Silva KE, Borsook D, Moulton EA. Blue light activates pulvinar nuclei in longstanding idiopathic photophobia: A case report. NEUROIMAGE-CLINICAL 2019; 24:102096. [PMID: 31795037 PMCID: PMC6879998 DOI: 10.1016/j.nicl.2019.102096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
Abstract
Increased fMRI activation of bilateral pulvinar nuclei with symptomatic light. Pulvinar nuclei are associated with melanopsin visual pathway and migraine. First demonstration of fMRI activation of melanopsin pathway during photophobia.
Numerous pathologies can contribute to photophobia. When considering light transduction alone, photophobia may be triggered through melanopsin pathways (non-image forming), rod and cone pathways (image-forming), or some combination of the two. We evaluated a 39 year old female patient with longstanding idiopathic photophobia that was exacerbated by blue light, and tested her by presenting visual stimuli in an event-related fMRI experiment. Analysis showed significantly greater activation in bilateral pulvinar nuclei, associated with the melanopsin intrinsically photosensitive retinal ganglion cell (ipRGC) visual pathway, and their activation is consistent with the patient's report that blue light differentially evoked photophobia. This appears to be the first demonstration of functional activation of the ipRGC pathway during photophobia in a patient.
Collapse
Affiliation(s)
| | - Danielle Lee
- Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, USA
| | - Katie E Silva
- Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Allen AE, Hazelhoff EM, Martial FP, Cajochen C, Lucas RJ. Exploiting metamerism to regulate the impact of a visual display on alertness and melatonin suppression independent of visual appearance. Sleep 2019; 41:4999302. [PMID: 29788219 PMCID: PMC6093320 DOI: 10.1093/sleep/zsy100] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Objectives Artificial light sources such as visual display units (VDUs) elicit a range of subconscious and reflex light responses, including increases in alertness and suppression of pineal melatonin. Such responses employ dedicated retinal circuits encompassing melanopsin photoreceptors. Here, we aimed to determine whether this arrangement can be exploited to modulate the impact of VDUs on melatonin onset and alertness without altering visual appearance. Methods We generated a five-primary VDU capable of presenting metameric movies (matched for color and luminance) but varying in melanopic-irradiance. Healthy human participants (n = 11) were exposed to the VDU from 18:00 to 23:00 hours at high- or low-melanopic setting in a randomized cross-over design and measured salivary melatonin and self-reported sleepiness at 30-minute intervals. Results Our VDU presented a 3× adjustment in melanopic-irradiance for images matched photometrically for color and luminance. Participants reported no significant difference in visual appearance (color and glare) between conditions. During the time in which the VDU was viewed, self-reported sleepiness and salivary melatonin levels increased significantly, as would be expected in this phase of the diurnal cycle. The magnitude of the increase in both parameters was significantly enhanced when melanopic-irradiance was reduced. Conclusions Our data demonstrate that melatonin onset and self-reported sleepiness can be modulated independent of photometric parameters (color and luminance) under a commonly encountered light exposure scenario (evening use of a VDU). They provide the first demonstration that the impact of light on alertness and melatonin production can be controlled independently of visual experience, and establish a VDU capable of achieving this objective.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Esther M Hazelhoff
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Franck P Martial
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Prayag AS, Jost S, Avouac P, Dumortier D, Gronfier C. Dynamics of Non-visual Responses in Humans: As Fast as Lightning? Front Neurosci 2019; 13:126. [PMID: 30890907 PMCID: PMC6411922 DOI: 10.3389/fnins.2019.00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
The eye drives non-visual (NV) responses to light, including circadian resetting, pupillary reflex and alerting effects. Initially thought to depend on melanopsin-expressing retinal ganglion cells (ipRGCs), classical photopigments play a modulatory role in some of these responses. As most studies have investigated only a limited number of NV functions, generally under conditions of relatively high light levels and long duration of exposure, whether NV functions share similar irradiance sensitivities and response dynamics during light exposure is unknown. We addressed this issue using light exposure paradigms spectrally and spatially tuned to target mainly cones or ipRGCs, and by measuring longitudinally (50 min) several NV responses in 28 men. We demonstrate that the response dynamics of NV functions are faster than previously thought. We find that the brain, the heart, and thermoregulation are activated within 1 to 5 min of light exposure. Further, we show that NV functions do not share the same response sensitivities. While the half-maximum response is only ∼48 s for the tonic pupil diameter, it is ∼12 min for EEG gamma activity. Most NV responses seem to be saturated by low light levels, as low as 90 melanopic lux. Our results also reveal that it is possible to maintain optimal visual performance while modulating NV responses. Our findings have real-life implications. On one hand, light therapy paradigms should be re-evaluated with lower intensities and shorter durations, with the potential of improving patients' compliance. On the other hand, the significant impact of low intensity and short duration light exposures on NV physiology should make us reconsider the potential health consequences of light exposure before bedtime, in particular on sleep and circadian physiology.
Collapse
Affiliation(s)
- Abhishek S Prayag
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sophie Jost
- ENTPE, LGCB, Université de Lyon, Lyon, France
| | | | | | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
15
|
McGlashan EM, Poudel GR, Vidafar P, Drummond SPA, Cain SW. Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light. Front Neurol 2018; 9:1022. [PMID: 30555405 PMCID: PMC6281828 DOI: 10.3389/fneur.2018.01022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption.
Collapse
Affiliation(s)
- Elise M McGlashan
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Govinda R Poudel
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.,Sydney Imaging, The University of Sydney, Camperdown, NSW, Australia.,Mary Mackillop Institute of Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Parisa Vidafar
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sean P A Drummond
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sean W Cain
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci Rep 2018; 8:16968. [PMID: 30446699 PMCID: PMC6240048 DOI: 10.1038/s41598-018-35400-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
The discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) marked a major shift in our understanding of how light information is processed by the mammalian brain. These ipRGCs influence multiple functions not directly related to image formation such as circadian resetting and entrainment, pupil constriction, enhancement of alertness, as well as the modulation of cognition. More recently, it was demonstrated that ipRGCs may also contribute to basic visual functions. The impact of ipRGCs on visual function, independently of image forming photoreceptors, remains difficult to isolate, however, particularly in humans. We previously showed that exposure to intense monochromatic blue light (465 nm) induced non-conscious light perception in a forced choice task in three rare totally visually blind individuals without detectable rod and cone function, but who retained non-image-forming responses to light, very likely via ipRGCs. The neural foundation of such light perception in the absence of conscious vision is unknown, however. In this study, we characterized the brain activity of these three participants using electroencephalography (EEG), and demonstrate that unconsciously perceived light triggers an early and reliable transient desynchronization (i.e. decreased power) of the alpha EEG rhythm (8–14 Hz) over the occipital cortex. These results provide compelling insight into how ipRGC may contribute to transient changes in ongoing brain activity. They suggest that occipital alpha rhythm synchrony, which is typically linked to the visual system, is modulated by ipRGCs photoreception; a process that may contribute to the non-conscious light perception in those blind individuals.
Collapse
|
17
|
Daneault V, Dumont M, Massé É, Forcier P, Boré A, Lina JM, Doyon J, Vandewalle G, Carrier J. Plasticity in the Sensitivity to Light in Aging: Decreased Non-visual Impact of Light on Cognitive Brain Activity in Older Individuals but No Impact of Lens Replacement. Front Physiol 2018; 9:1557. [PMID: 30459639 PMCID: PMC6232421 DOI: 10.3389/fphys.2018.01557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/17/2018] [Indexed: 11/29/2022] Open
Abstract
Beyond its essential visual role, light, and particularly blue light, has numerous non-visual effects, including stimulating cognitive functions and alertness. Non-visual effects of light may decrease with aging and contribute to cognitive and sleepiness complaints in aging. However, both the brain and the eye profoundly change in aging. Whether the stimulating effects light on cognitive brain functions varies in aging and how ocular changes may be involved is not established. We compared the impact of blue and orange lights on non-visual cognitive brain activity in younger (23.6 ± 2.5 years), and older individuals with their natural lenses (NL; 66.7 ± 5.1 years) or with intraocular lens (IOL) replacement following cataract surgery (69.6 ± 4.9 years). Analyses reveal that blue light modulates executive brain responses in both young and older individuals. Light effects were, however, stronger in young individuals including in the hippocampus and frontal and cingular cortices. Light effects did not significantly differ between older-IOL and older-NL while regression analyses indicated that differential brain engagement was not underlying age-related differences in light effects. These findings show that, although its impact decreases, light can stimulate cognitive brain activity in aging. Since lens replacement did not affect light impact, the brain seems to adapt to the progressive decrease in retinal light exposure in aging.
Collapse
Affiliation(s)
- Véronique Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Marie Dumont
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychiatry, University of Montreal, Montreal, QC, Canada
| | - Éric Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Pierre Forcier
- École d'Optométrie, University of Montreal, Montreal, QC, Canada
| | - Arnaud Boré
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Génie Électrique, École de technologie supérieure, Montreal, QC, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Gilles Vandewalle
- GIGA-Institute, Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Julie Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
18
|
Bauer M, Glenn T, Monteith S, Gottlieb JF, Ritter PS, Geddes J, Whybrow PC. The potential influence of LED lighting on mental illness. World J Biol Psychiatry 2018; 19:59-73. [PMID: 29251065 DOI: 10.1080/15622975.2017.1417639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Two recent scientific breakthroughs may alter the treatment of mental illness, as discussed in this narrative review. The first was the invention of white light-emitting diodes (LEDs), which enabled an ongoing, rapid transition to energy-efficient LEDs for lighting, and the use of LEDs to backlight digital devices. The second was the discovery of melanopsin-expressing photosensitive retinal ganglion cells, which detect environmental irradiance and mediate non-image forming (NIF) functions including circadian entrainment, melatonin secretion, alertness, sleep regulation and the pupillary light reflex. These two breakthroughs are interrelated because unlike conventional lighting, white LEDs have a dominant spectral wavelength in the blue light range, near the peak sensitivity for the melanopsin system. METHODS Pertinent articles were identified. RESULTS Blue light exposure may suppress melatonin, increase alertness, and interfere with sleep in young, healthy volunteers and in animals. Areas of concern in mental illness include the influence of blue light on sleep, other circadian-mediated symptoms, prescribed treatments that target the circadian system, measurement using digital apps and devices, and adolescent sensitivity to blue light. CONCLUSIONS While knowledge in both fields is expanding rapidly, future developments must address the potential impact of blue light on NIF functions for healthy individuals and those with mental illness.
Collapse
Affiliation(s)
- Michael Bauer
- a Department of Psychiatry and Psychotherapy , University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden , Dresden , Germany
| | - Tasha Glenn
- b ChronoRecord Association, Inc , Fullerton , CA , USA
| | - Scott Monteith
- c Michigan State University College of Human Medicine, Traverse City Campus , Traverse City , MI , USA
| | - John F Gottlieb
- d Department of Psychiatry , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Philipp S Ritter
- a Department of Psychiatry and Psychotherapy , University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden , Dresden , Germany
| | - John Geddes
- e Department of Psychiatry , University of Oxford, Warneford Hospital , Oxford , UK
| | - Peter C Whybrow
- f Department of Psychiatry and Biobehavioral Sciences , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA) , Los Angeles , CA , USA
| |
Collapse
|