1
|
Ren B, Zhang Y, Cui Z, Cheng D, Liang X, Lin P, Lyu B, Zhou X. Behavior-related potentials from single-trial interindividual correlation between event related potentials and behavioral performance reveals right lateralized processing of numerosity. Brain Cogn 2024; 180:106185. [PMID: 38878607 DOI: 10.1016/j.bandc.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024]
Abstract
Accumulated functional magnetic resonance imaging (fMRI) and electroencephalography evidence indicate that numerosity is first processed in the occipito-parietal cortex. fMRI evidence also indicates right-lateralized processing of numerosity, but there is no consistent evidence from event-related potential (ERP) studies. This study investigated the ERP of numerosity processing in the left, right, and bilateral visual fields. The single-trial ERP-behavioral correlation was applied to show how the ERP was associated with behavioral responses. The results showed a significant early behavioral-ERP correlation on the right N1 component when stimuli were presented in the left visual field rather than in the right visual field. The behavioral ERP correlation was termed BN1. There was bilateral BN1 based on the reaction time or error rate, but the right BN1 was larger than that the left BN1 when the stimulus was present in the bilateral visual field. Therefore, this study provided a new neural marker for individual differences in processing numerosity and suggested that processing numerosity was supported by the right occipito-parietal cortex.
Collapse
Affiliation(s)
- Bingqian Ren
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuhan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhijun Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dazhi Cheng
- School of Psychology, Capital Normal University, Beijing 100073, China
| | - Xiaotong Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Pingting Lin
- School of Biological Science & Medical Engineering, Southeast University, China
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Cona G, Wiener M, Allegrini F, Scarpazza C. Gradient Organization of Space, Time, and Numbers in the Brain: A Meta-analysis of Neuroimaging Studies. Neuropsychol Rev 2024; 34:721-737. [PMID: 37594695 PMCID: PMC11478975 DOI: 10.1007/s11065-023-09609-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
In this study, we ran a meta-analysis of neuroimaging studies to pinpoint the neural regions that are commonly activated across space, time, and numerosity, and we tested the existence of gradient transitions among these magnitude representations in the brain. Following PRISMA guidelines, we included in the meta-analysis 112 experiments (for space domain), 114 experiments (time domain), and 115 experiments (numerosity domain), and we used the activation likelihood estimation method. We found a system of brain regions that was commonly recruited in all the three magnitudes, which included bilateral insula, the supplementary motor area (SMA), the right inferior frontal gyrus, and bilateral intraparietal sulci. Gradiental transitions between different magnitudes were found along all these regions but insulae, with space and numbers leading to gradients mainly over parietal regions (and SMA) whereas time and numbers mainly over frontal regions. These findings provide evidence for the GradiATOM theory (Gradient Theory of Magnitude), suggesting that spatial proximity given by overlapping activations and gradients is a key aspect for efficient interactions and integrations among magnitudes.
Collapse
Affiliation(s)
- Giorgia Cona
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy.
- Padova Neuroscience Center, University of Padua, Padua, Italy.
- Department of Neuroscience, University of Padua, Padua, Italy.
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Francesco Allegrini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Cristina Scarpazza
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- IRCSS San Camillo Hospital, Venice, Italy
| |
Collapse
|
3
|
Park Y, Zhang Y, Chang H, Menon V. Short-term number sense training recapitulates long-term neurodevelopmental changes from childhood to adolescence. Dev Sci 2024; 27:e13524. [PMID: 38695515 PMCID: PMC11343340 DOI: 10.1111/desc.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
Number sense is fundamental to the development of numerical problem-solving skills. In early childhood, children establish associations between non-symbolic (e.g., a set of dots) and symbolic (e.g., Arabic numerals) representations of quantity. The developmental estrangement theory proposes that the relationship between non-symbolic and symbolic representations of quantity evolves with age, with increased dissociation across development. Consistent with this theory, recent research suggests that cross-format neural representational similarity (NRS) between non-symbolic and symbolic quantities is correlated with arithmetic fluency in children but not in adolescents. However, it is not known if short-term training (STT) can induce similar changes as long-term development. In this study, children aged 7-10 years underwent a theoretically motivated 4-week number sense training. Using multivariate neural pattern analysis, we investigated whether short-term learning could modify the relation between cross-format NRS and arithmetic skills. Our results revealed a significant correlation between cross-format NRS and arithmetic fluency in distributed brain regions, including the parietal and prefrontal cortices, prior to training. However, this association was no longer observed after training, and multivariate predictive models confirmed these findings. Our findings provide evidence that intensive STT during early childhood can promote behavioral improvements and neural plasticity that resemble and recapitulate long-term neurodevelopmental changes that occur from childhood to adolescence. More generally, our study contributes to our understanding of the malleability of number sense and highlights the potential for targeted interventions to shape neurodevelopmental trajectories in early childhood. RESEARCH HIGHLIGHTS: We tested the hypothesis that short-term number sense training induces the dissociation of symbolic numbers from non-symbolic representations of quantity in children. We leveraged a theoretically motivated intervention and multivariate pattern analysis to determine training-induced neurocognitive changes in the relation between number sense and arithmetic problem-solving skills. Neural representational similarity between non-symbolic and symbolic quantity representations was correlated with arithmetic skills before training but not after training. Short-term training recapitulates long-term neurodevelopmental changes associated with numerical problem-solving from childhood to adolescence.
Collapse
Affiliation(s)
- Yunji Park
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Stanford Neuroscience Institute, Stanford, California, USA
- Symbolic Systems Program, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Ng C, Huang P, Cho Y, Lee P, Liu Y, Chang T. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth. Hum Brain Mapp 2024; 45:e26777. [PMID: 39046114 PMCID: PMC11267564 DOI: 10.1002/hbm.26777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.
Collapse
Affiliation(s)
- Chan‐Tat Ng
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Po‐Hsien Huang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Cheng Cho
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
| | - Pei‐Hong Lee
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Yi‐Chang Liu
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| | - Ting‐Ting Chang
- Department of PsychologyNational Chengchi UniversityTaipeiTaiwan
- Research Center for Mind, Brain & LearningNational Chengchi UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Cerda VR, Suárez-Pellicioni M, Booth JR, Wicha NY. Arithmetic in two languages: Localizing simple multiplication processing in the adult bilingual brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00199. [PMID: 39328847 PMCID: PMC11426113 DOI: 10.1162/imag_a_00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Verbally memorized multiplication tables are thought to create language-specific memories. Supporting this idea, bilinguals are typically faster and more accurate in the language in which they learned math (LA+) than in their other language (LA- ) . No study has yet revealed the underlying neurocognitive mechanisms explaining this effect, or the role of problem size in explaining the recruitment of different brain regions in LA+ and LA- . To fill this gap in the literature, 29 Spanish-English early bilingual adults, proficient in both languages, verified simple multiplication problems in each language while functional magnetic resonance imaging (fMRI) was acquired. More specifically, this study aimed to answer two questions: 1) Does LA+ recruit left superior and middle temporal gyri (STG/MTG) to a greater extent than LA- , reflecting more robust verbal representations of multiplication facts in LA+? In contrast, does LA- recruit the inferior frontal gyrus (IFG), reflecting more effortful retrieval, or the intraparietal sulcus (IPS), reflecting reliance on quantity processes? 2) Is there an interaction between language and problem size, where language differences are more pronounced for less practiced, large multiplication problems (e.g., 8 × 9) in comparison to more familiar, small problems (e.g., 2 × 3). Functional localizer tasks were used to identify hypothesis-driven regions of interest in verbal areas associated with verbal representations of arithmetic facts (left STG/MTG) and with the effortful retrieval of these facts (left IFG) and quantity areas engaged when calculation-based strategies are used (bilateral IPS). In planned analyses, no cluster reached significance for the direct comparison of languages (question 1) or for the interaction between language and problem size (question 2). An exploratory analysis found a main effect of problem size, where small problems recruited left STG/MTG and left IFG to a greater extent than large problems, suggesting greater verbal involvement for these problems in both languages. Additionally, large problems recruited right IPS to a greater extent than small problems, suggesting reliance on quantity processes. Our results suggest that proficient early bilingual adults engage similar brain regions in both languages, even for more difficult, large problems.
Collapse
Affiliation(s)
- Vanessa R. Cerda
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| | - Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, University of Alabama, Tuscaloosa, AL, United States
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| | - Nicole Y. Wicha
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Vandecruys F, Vandermosten M, De Smedt B. The inferior fronto-occipital fasciculus correlates with early precursors of mathematics and reading before the start of formal schooling. Cortex 2024; 174:149-163. [PMID: 38547813 DOI: 10.1016/j.cortex.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/20/2023] [Accepted: 02/13/2024] [Indexed: 04/21/2024]
Abstract
Diffusion-weighted imaging studies in preschoolers have almost exclusively been done in the field of reading. As a result, virtually nothing is known about white matter tracts associated with individual differences in mathematics at this age. Studying the preschoolers' brain is crucial because it allows us to identify individual differences in brain anatomy without influences of formal mathematics and reading instruction. To fill this gap, we investigated for the first time before the start of formal school entry the associations between white matter tracts and precursors of mathematics and reading simultaneously. We also investigated whether these associations were specific to mathematics and to reading, or not. We focused on four bilateral white matter tracts (arcuate fasciculus (direct, anterior), inferior fronto-occipital fasciculus, inferior longitudinal fasciculus), which have been previously correlated with mathematical performance in older children and with reading performance in children of a similar age as the current study. Participants were 56 5-year-old children (Mage = 67 months; SD = 1.8), none of which received formal instruction. Our results showed an association between the bilateral inferior fronto-occipital fasciculus and precursors of mathematics (numerical ordering, numeral knowledge) and reading (phonological awareness, letter knowledge). Follow-up regression analyses revealed that the associations found with the inferior fronto-occipital fasciculus were neither specific to mathematics nor specific to reading. These findings suggest that, already before the start of formal schooling, the inferior fronto-occipital fasciculus might be related to the neural overlap between mathematics and reading. This overlap potentially reflects one of their many shared mechanisms, such as the reliance on phonological codes or the processing of visual symbols, and these mechanisms should be exploited in future studies.
Collapse
Affiliation(s)
- Floor Vandecruys
- Parenting and Special Education Research Unit, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| | - Maaike Vandermosten
- Experimental ORL, Department of Neurosciences, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| | - Bert De Smedt
- Parenting and Special Education Research Unit, KU Leuven, Belgium; Leuven Brain Institute, KU Leuven, Belgium.
| |
Collapse
|
7
|
Park Y, Zhang Y, Schwartz F, Iuculano T, Chang H, Menon V. Integrated number sense tutoring remediates aberrant neural representations in children with mathematical disabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.587577. [PMID: 38645139 PMCID: PMC11030345 DOI: 10.1101/2024.04.09.587577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, 'inverted U-shaped' neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions.
Collapse
Affiliation(s)
- Yunji Park
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Flora Schwartz
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Teresa Iuculano
- Centre National de la Recherche Scientifique & Université Paris Sorbonne, Paris 75016, France
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, 94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305
- Stanford Neuroscience Institute, Stanford University, Stanford, California, CA, 94305
- Symbolic Systems Program, Stanford University, Stanford, California, CA, 94305
| |
Collapse
|
8
|
Fresnoza S, Ischebeck A. Probing Our Built-in Calculator: A Systematic Narrative Review of Noninvasive Brain Stimulation Studies on Arithmetic Operation-Related Brain Areas. eNeuro 2024; 11:ENEURO.0318-23.2024. [PMID: 38580452 PMCID: PMC10999731 DOI: 10.1523/eneuro.0318-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024] Open
Abstract
This systematic review presented a comprehensive survey of studies that applied transcranial magnetic stimulation and transcranial electrical stimulation to parietal and nonparietal areas to examine the neural basis of symbolic arithmetic processing. All findings were compiled with regard to the three assumptions of the triple-code model (TCM) of number processing. Thirty-seven eligible manuscripts were identified for review (33 with healthy participants and 4 with patients). Their results are broadly consistent with the first assumption of the TCM that intraparietal sulcus both hold a magnitude code and engage in operations requiring numerical manipulations such as subtraction. However, largely heterogeneous results conflicted with the second assumption of the TCM that the left angular gyrus subserves arithmetic fact retrieval, such as the retrieval of rote-learned multiplication results. Support is also limited for the third assumption of the TCM, namely, that the posterior superior parietal lobule engages in spatial operations on the mental number line. Furthermore, results from the stimulation of brain areas outside of those postulated by the TCM show that the bilateral supramarginal gyrus is involved in online calculation and retrieval, the left temporal cortex in retrieval, and the bilateral dorsolateral prefrontal cortex and cerebellum in online calculation of cognitively demanding arithmetic problems. The overall results indicate that multiple cortical areas subserve arithmetic skills.
Collapse
Affiliation(s)
- Shane Fresnoza
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| | - Anja Ischebeck
- Department of Psychology, University of Graz, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
9
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
10
|
Morton NJ, Hooson-Smith C, Stuart K, Kemp S, Grace RC. Perceptual addition of continuous magnitudes in an 'artificial algebra'. Cognition 2024; 244:105710. [PMID: 38159525 DOI: 10.1016/j.cognition.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Although there is substantial evidence for an innate 'number sense' that scaffolds learning about mathematics, whether the underlying representations are based on discrete or continuous perceptual magnitudes has been controversial. Yet the nature of the computations supported by these representations has been neglected in this debate. While basic computation of discrete non-symbolic quantities has been reliably demonstrated in adults, infants, and non-humans, far less consideration has been given to the capacity for computation of continuous perceptual magnitudes. Here we used a novel experimental task to ask if humans can learn to add non-symbolic, continuous magnitudes in accord with the properties of an algebraic group, by feedback and without explicit instruction. Three pairs of experiments tested perceptual addition under the group properties of commutativity (Experiments 1a-b), identity and inverses (Experiments 2a-b) and associativity (Experiments 3a-b), with both line length and brightness modalities. Transfer designs were used in which participants responded on trials with feedback based on sums of magnitudes and later were tested with novel stimulus configurations. In all experiments, correlations of average responses with magnitude sums were high on trials with feedback. Responding on transfer trials was accurate and provided strong support for addition under all of the group axioms with line length, and for all except associativity with brightness. Our results confirm that adult human subjects can implicitly add continuous quantities in a manner consistent with symbolic addition over the integers, and that an 'artificial algebra' task can be used to study implicit computation.
Collapse
Affiliation(s)
| | | | - Kate Stuart
- University of Canterbury, Christchurch, New Zealand
| | - Simon Kemp
- University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
11
|
Farshad M, Artemenko C, Cipora K, Svaldi J, Schroeder PA. Regional specificity of cathodal transcranial direct current stimulation effects on spatial-numerical associations: Comparison of four stimulation sites. J Neurosci Res 2024; 102:e25304. [PMID: 38361404 DOI: 10.1002/jnr.25304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Neuromodulation with transcranial direct current stimulation (tDCS) is an increasingly popular research tool to experimentally manipulate cortical areas and probe their causal involvements in behavior, but its replicability and regional specificity are not clear. This registered report investigated cathodal tDCS effects on spatial-numerical associations (i.e., the SNARC effect), the numerical distance effect (NDE), and inhibitory control (i.e., stop-signal reaction time; SSRT). Healthy adults (N = 160) were randomly assigned to one of five groups to receive sham tDCS or 1 mA cathodal tDCS to one of four stimulation sites (left/right prefrontal cortex [PFC], left/right posterior parietal cortex) with extracephalic return. We replicated that cathodal tDCS over the left PFC reduced the SNARC effect compared to sham tDCS and to tDCS over the left parietal cortex. However, neither NDE nor SSRT were modulated in the main analyses. Post hoc contrasts and exploratory analyses showed that cathodal tDCS over the right PFC had a time-dependent effect by delayed practice-related improvements in SSRT. Math anxiety moderated changes in the NDE in the groups receiving tDCS to the right parietal cortex. With few exceptions, the replicability and regional specificity of tDCS effects on behavior were weak and partially moderated by individual differences. Future research needs to characterize the parameter settings for effective neuromodulation.
Collapse
Affiliation(s)
- Maryam Farshad
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | - Christina Artemenko
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Research Network, University of Tuebingen, Tuebingen, Germany
| | - Krzysztof Cipora
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- LEAD Research Network, University of Tuebingen, Tuebingen, Germany
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Jennifer Svaldi
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
12
|
Poikonen H, Tobler S, Trninić D, Formaz C, Gashaj V, Kapur M. Math on cortex-enhanced delta phase synchrony in math experts during long and complex math demonstrations. Cereb Cortex 2024; 34:bhae025. [PMID: 38365270 PMCID: PMC11461154 DOI: 10.1093/cercor/bhae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.
Collapse
Affiliation(s)
- Hanna Poikonen
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Samuel Tobler
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Dragan Trninić
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Cléa Formaz
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Venera Gashaj
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Department of Psychology, University of Tuebingen, Tuebingen 72076, Germany
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| |
Collapse
|
13
|
Nugiel T, Demeter DV, Mitchell ME, Garza A, Hernandez AE, Juranek J, Church JA. Brain connectivity and academic skills in English learners. Cereb Cortex 2024; 34:bhad414. [PMID: 38044467 PMCID: PMC10793574 DOI: 10.1093/cercor/bhad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
English learners (ELs) are a rapidly growing population in schools in the United States with limited experience and proficiency in English. To better understand the path for EL's academic success in school, it is important to understand how EL's brain systems are used for academic learning in English. We studied, in a cohort of Hispanic middle-schoolers (n = 45, 22F) with limited English proficiency and a wide range of reading and math abilities, brain network properties related to academic abilities. We applied a method for localizing brain regions of interest (ROIs) that are group-constrained, yet individually specific, to test how resting state functional connectivity between regions that are important for academic learning (reading, math, and cognitive control regions) are related to academic abilities. ROIs were selected from task localizers probing reading and math skills in the same participants. We found that connectivity across all ROIs, as well as connectivity of just the cognitive control ROIs, were positively related to measures of reading skills but not math skills. This work suggests that cognitive control brain systems have a central role for reading in ELs. Our results also indicate that an individualized approach for localizing brain function may clarify brain-behavior relationships.
Collapse
Affiliation(s)
- Tehila Nugiel
- Department of Psychology, Florida State University, Tallahassee, FL 32304, United States
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037, United States
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - AnnaCarolina Garza
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Arturo E Hernandez
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center, Houston, TX 77225, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Biomedical Imaging Center, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
14
|
Bahreini N, Artemenko C, Plewnia C, Nuerk HC. tDCS effects in basic symbolic number magnitude processing are not significantly lateralized. Sci Rep 2023; 13:21515. [PMID: 38057342 PMCID: PMC10700326 DOI: 10.1038/s41598-023-48189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Functional lateralization was previously established for various cognitive domains-but not for number processing. Although numbers are considered to be bilaterally represented in the intraparietal sulcus (IPS), there are some indications of different functional roles of the left vs. right IPS in processing number pairs with small vs. large distance, respectively. This raises the question whether number size plays a distinct role in the lateralization within the IPS. In our preregistered study, we applied anodal transcranial direct current stimulation (tDCS) over the left vs. right IPS to investigate the effect of stimulation as compared to sham on small vs. large distance, in both single-digit and two-digit number comparison. We expected that anodal tDCS over the left IPS facilitates number comparison with small distance, while anodal tDCS over the right IPS facilitates number comparison with large distance. Results indicated no effect of stimulation; however, exploratory analyses revealed that tDCS over the right IPS slowed down single-digit number processing after controlling for the training effect. In conclusion, number magnitude processing might be bilaterally represented in the IPS, however, our exploratory analyses emphasise the need for further investigation on functional lateralization of number processing.
Collapse
Affiliation(s)
- Narjes Bahreini
- Department of Psychology, University of Tuebingen, Tuebingen, Germany.
| | | | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University Hospital of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| | - Hans-Christoph Nuerk
- Department of Psychology, University of Tuebingen, Tuebingen, Germany
- German Centre for Mental Health (DZPG), Jena, Germany
| |
Collapse
|
15
|
Rosenberg-Lee M, Varma S, Cole MW, Abreu-Mendoza RA. Competing numerical magnitude codes in decimal comparison: Whole number and rational number distance both impact performance. Cognition 2023; 241:105608. [PMID: 37804574 DOI: 10.1016/j.cognition.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023]
Abstract
A critical difference between decimal and whole numbers is that among whole numbers the number of digits provides reliable information about the size of the number, e.g., double-digit numbers are larger than single-digit numbers. However, for decimals, fewer digits can sometimes denote a larger number (i.e., 0.8 > 0.27). Accordingly, children and adults perform worse when comparing such Inconsistent decimal pairs relative to Consistent pairs, where the larger number also has more digits (i.e., 0.87 > 0.2). Two explanations have been posited for this effect. The string length congruity account proposes that participants compare each position in the place value system, and they additionally compare the number of digits. The semantic interference account suggests that participants additionally activate the whole number referents of numbers - the numbers unadorned with decimal points (e.g., 8 < 27) - and compare these. The semantic interference account uniquely predicts that for Inconsistent problems with the same actual rational distance, those with larger whole number distances should be harder, e.g., 0.9 vs. 0.81 should be harder than 0.3 vs. 0.21 because 9 < < 81 whereas 3 < 21. Here we test this prediction in two experiments with college students (Study 1: n = 58 participants, Study 2: n = 78). Across both, we find a main effect of consistency, demonstrating string length effects, and also that whole number distance interferes with processing conflicting decimals, demonstrating semantic interference effects. Evidence for both effects supports the semantic interference account, highlighting that decimal comparison difficulties arise from multiple competing numerical codes. Finally, for accuracy we found no relationship between whole number distance sensitivity and math achievement, indicating that whole number magnitude interference affects participants similarly across the spectrum of math achievement.
Collapse
Affiliation(s)
| | - Sashank Varma
- School of Interactive Computing and School of Psychology, Georgia Tech, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, USA
| | | |
Collapse
|
16
|
Kuzmina Y, Marakshina J, Lobaskova M, Zakharov I, Tikhomirova T, Malykh S. The Interaction between Congruency and Numerical Ratio Effects in the Nonsymbolic Comparison Test. Behav Sci (Basel) 2023; 13:983. [PMID: 38131839 PMCID: PMC10740770 DOI: 10.3390/bs13120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
The nonsymbolic comparison task is used to investigate the precision of the Approximate Number Sense, the ability to process discrete numerosity without counting and symbols. There is an ongoing debate regarding the extent to which the ANS is influenced by the processing of non-numerical visual cues. To address this question, we assessed the congruency effect in a nonsymbolic comparison task, examining its variability across different stimulus presentation formats and numerical proportions. Additionally, we examined the variability of the numerical ratio effect with the format and congruency. Utilizing generalized linear mixed-effects models with a sample of 290 students (89% female, mean age 19.33 years), we estimated the congruency effect and numerical ratio effect for separated and intermixed formats of stimulus presentation, and for small and large numerical proportions. The findings indicated that the congruency effect increased in large numerical proportion conditions, but this pattern was observed only in the separated format. In the intermixed format, the congruency effect was insignificant for both types of numerical proportion. Notably, the numerical ratio effect varied for congruent and incongruent trials in different formats. The results may suggest that the processing of visual non-numerical parameters may be crucial when numerosity processing becomes noisier, specifically when numerical proportion becomes larger. The implications of these findings for refining the ANS theory are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Malykh
- Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (Y.K.); (J.M.); (M.L.); (I.Z.); (T.T.)
| |
Collapse
|
17
|
Garcia-Sanz S, Serra Grabulosa JM, Cohen Kadosh R, Muñóz Aguilar N, Marín Gutiérrez A, Redolar Ripoll D. Effects of prefrontal and parietal neuromodulation on magnitude processing and integration. PROGRESS IN BRAIN RESEARCH 2023; 282:95-121. [PMID: 38035911 DOI: 10.1016/bs.pbr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Numerical cognition is an essential skill for survival, which includes the processing of discrete and continuous quantities, involving a mainly right fronto-parietal network. However, the neurocognitive systems underlying the processing and integration of discrete and continuous quantities are currently under debate. Noninvasive brain stimulation techniques have been used in the study of the neural basis of numerical cognition with a spatial, temporal and functional resolution superior to other neuroimaging techniques. The present randomized sham-controlled single-blinded trial addresses the involvement of the right dorsolateral prefrontal cortex and the right intraparietal sulcus in magnitude processing and integration. Multifocal anodal transcranial direct current stimulation was applied online during the execution of magnitude comparison tasks in three conditions: right prefrontal, right parietal and sham stimulation. The results show that prefrontal stimulation produced a moderated decrease in response times in all magnitude processing and integration tasks compared to sham condition. While parietal stimulation had no significant effect on any of the tasks. The effect found is interpreted as a generalized improvement in processing speed and magnitude integration due to right prefrontal neuromodulation, which may be attributable to domain-general or domain-specific factors.
Collapse
Affiliation(s)
- Sara Garcia-Sanz
- Faculty of Psychology and Education, Universidad del Atlantico Medio, Las Palmas, Spain; Child Development Research Group, Universidad de La Sabana, Chía, Colombia.
| | | | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | - Diego Redolar Ripoll
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
18
|
Church JA. The Brain's Control Networks in Reading: Insights From Cross-Task Studies of Youth. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:257-266. [PMID: 38745918 PMCID: PMC11091959 DOI: 10.1111/mbe.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/04/2023] [Indexed: 05/16/2024]
Abstract
Humans engage multiple brain systems to read successfully, including using regions important for vision, language, and control. Control refers to the set of executive processes in the brain that guide moment-to-moment behavior in service of our goals. There is a growing appreciation for the role of the brain's control system in reading comprehension, in reading skill change over time, and in those who have difficulty with the reading process. One way to understand the brain's control engagement in reading may be to study control engagement across multiple tasks in order to study consistencies, or cross-task similarities, relative to reading-specific variations. In this commentary, I briefly summarize some of our recent work studying the brain's control networks across different tasks (e.g., when reading, or doing different executive function tasks). I then review our findings of when control activation does or does not relate to measures of reading ability, and reading growth over time. The utility of cross-task comparisons in neuroimaging is noted, as well as the need to better understand multiple sources of heterogeneity in our developmental samples. I end by discussing a few of the many future directions for further study of the brain with regard to the brain's control processing and academic achievement.
Collapse
|
19
|
Szymanik J, Kochari A, Bremnes HS. Questions About Quantifiers: Symbolic and Nonsymbolic Quantity Processing by the Brain. Cogn Sci 2023; 47:e13346. [PMID: 37867321 DOI: 10.1111/cogs.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023]
Abstract
One approach to understanding how the human cognitive system stores and operates with quantifiers such as "some," "many," and "all" is to investigate their interaction with the cognitive mechanisms for estimating and comparing quantities from perceptual input (i.e., nonsymbolic quantities). While a potential link between quantifier processing and nonsymbolic quantity processing has been considered in the past, it has never been discussed extensively. Simultaneously, there is a long line of research within the field of numerical cognition on the relationship between processing exact number symbols (such as "3" or "three") and nonsymbolic quantity. This accumulated knowledge can potentially be harvested for research on quantifiers since quantifiers and number symbols are two different ways of referring to quantity information symbolically. The goal of the present review is to survey the research on the relationship between quantifiers and nonsymbolic quantity processing mechanisms and provide a set of research directions and specific questions for the investigation of quantifier processing.
Collapse
Affiliation(s)
- Jakub Szymanik
- Center for Brain/Mind Sciences and the Department of Information Engineering and Computer Science, University of Trento
| | - Arnold Kochari
- Institute for Logic, Language, and Computation, University of Amsterdam
| | | |
Collapse
|
20
|
De Nicolò M, Kanatschnig T, Hons M, Wood G, Kiili K, Moeller K, Greipl S, Ninaus M, Kober SE. Engaging learners with games-Insights from functional near-infrared spectroscopy. PLoS One 2023; 18:e0286450. [PMID: 37279251 PMCID: PMC10243642 DOI: 10.1371/journal.pone.0286450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The use of game elements in learning tasks is thought to facilitate emotional and behavioral responses as well as learner engagement. So far, however, little is known about the underlying neural mechanisms of game-based learning. In the current study, we added game elements to a number line estimation task assessing fraction understanding and compared brain activation patterns to a non-game-based task version. Forty-one participants performed both task versions in counterbalanced order while frontal brain activation patterns were assessed using near-infrared spectroscopy (within-subject, cross-sectional study design). Additionally, heart rate, subjective user experience, and task performance were recorded. Task performance, mood, flow experience, as well as heart rate did not differ between task versions. However, the game-based task-version was rated as more attractive, stimulating and novel compared to the non-game-based task version. Additionally, completing the game-based task version was associated with stronger activation in frontal brain areas generally involved in emotional and reward processing as well as attentional processes. These results provide new neurofunctional evidence substantiating that game elements in learning tasks seem to facilitate learning through emotional and cognitive engagement.
Collapse
Affiliation(s)
| | | | - Manuel Hons
- Institute of Psychology, University of Graz, Graz, Austria
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Kristian Kiili
- Faculty of Education and Culture, Tampere University, Tampere, Finland
| | - Korbinian Moeller
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Simon Greipl
- Department of Media and Communication, Ludwig Maximilian University of Munich, Munich, Germany
| | - Manuel Ninaus
- Institute of Psychology, University of Graz, Graz, Austria
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Silvia Erika Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
21
|
Morin TM, Moore KN, Isenburg K, Ma W, Stern CE. Functional reconfiguration of task-active frontoparietal control network facilitates abstract reasoning. Cereb Cortex 2023; 33:5761-5773. [PMID: 36420534 DOI: 10.1093/cercor/bhac457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
While the brain's functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven's Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven's Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a "task-ready" state, facilitating efficient task-based activation.
Collapse
Affiliation(s)
- Thomas M Morin
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie N Moore
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie Isenburg
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Weida Ma
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Chantal E Stern
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
- Department of Psychological and Brain Sciences, 64 Cummington Mall, Boston University, Boston, MA 02215, United States
| |
Collapse
|
22
|
Nugiel T, Mitchell ME, Demeter DV, Garza A, Cirino PT, Hernandez AE, Juranek J, Church JA. Brain Engagement During a Cognitive Flexibility Task Relates to Academic Performance in English Learners. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:149-160. [PMID: 38770227 PMCID: PMC11103627 DOI: 10.1111/mbe.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/13/2023] [Indexed: 05/22/2024]
Abstract
English Learners (ELs), students from non-English-speaking backgrounds, are a fast-growing, understudied, group of students in the U.S. with unique learning challenges. Cognitive flexibility-the ability to switch between task demands with ease-may be an important factor in learning for ELs as they have to manage learning in their non-dominant language and access knowledge in multiple languages. We used functional MRI to measure cognitive flexibility brain activity in a group of Hispanic middle school ELs (N = 63) and related it to their academic skills. We found that brain engagement during the cognitive flexibility task was related to both out-of-scanner reading and math measures. These relationships were observed across the brain, including in cognitive control, attention, and default mode networks. This work suggests the real-world importance of cognitive flexibility for adolescent ELs, where individual differences in brain engagement were associated with educational outcomes.
Collapse
Affiliation(s)
- Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Mackenzie E Mitchell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | - Damion V Demeter
- Department of Cognitive Science, University of California San Diego
| | | | | | | | - Jenifer Juranek
- Department of Pediatrics, University of Texas Health Science Center
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin
- Biomedical Imaging Center, The University of Texas at Austin
| |
Collapse
|
23
|
Tablante J, Krossa L, Azimi T, Chen L. Dysfunctions associated with the intraparietal sulcus and a distributed network in individuals with math learning difficulties: An ALE meta-analysis. Hum Brain Mapp 2023; 44:2726-2740. [PMID: 36807960 PMCID: PMC10089103 DOI: 10.1002/hbm.26240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Math learning difficulty (MLD) is a learning disorder characterized by persistent impairments in the understanding and application of numbers independent of intelligence or schooling. The current study aims to review existing neuroimaging studies to characterize the neurobiological basis in MLD for their quantity and arithmetic dysfunctions. We identified a total of 24 studies with 728 participants through the literature. Using the activation likelihood estimate (ALE) method, we found that the most consistent neurobiological dysfunction in MLD was observed in the right intraparietal sulcus (IPS) with distinct patterns of the anterior and posterior aspects. Meanwhile, neurobiological dysfunctions were also observed in a distributed network including the fusiform gyrus, inferior temporal gyrus, insula, prefrontal cortex, anterior cingulate cortex, and claustrum. Our results suggest a core dysfunction in the right anterior IPS and left fusiform gyrus with atypically upregulated functions in brain regions for attention, working memory, visual processing, and motivation, serving as the neurobiological basis of MLD.
Collapse
Affiliation(s)
| | - Lani Krossa
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Tannaz Azimi
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Lang Chen
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| |
Collapse
|
24
|
Czarnecka M, Rączy K, Szewczyk J, Paplińska M, Jednoróg K, Marchewka A, Hesselmann G, Knops A, Szwed M. Overlapping but separate number representations in the intraparietal sulcus – probing format- and modality-independence in sighted Braille readers. Cortex 2023; 162:65-80. [PMID: 37003099 DOI: 10.1016/j.cortex.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 01/22/2023] [Indexed: 03/06/2023]
Abstract
The Triple-Code Model stipulates that numerical information from different formats and modalities converges on a common magnitude representation in the Intraparietal Sulcus (IPS). To what extent the representations of all numerosity forms overlap remains unsolved. It has been postulated that the representation of symbolic numerosities (for example, Arabic digits) is sparser and grounded in an existing representation that codes for non-symbolic numerosity information (i.e., sets of objects). Other theories argue that numerical symbols represent a separate number category that emerges only during education. Here, we tested a unique group of sighted tactile Braille readers with numerosities 2, 4, 6 and 8 in three number notations: Arabic digits, sets of dots, tactile Braille numbers. Using univariate methods, we showed a consistent overlap in activations evoked by these three number notations. This result shows that all three used notations are represented in the IPS, which may suggest at least a partial overlap between the representations of the three notations used in this experiment. Using MVPA, we found that only non-automatized number information (Braille and sets of dots) allowed successful number classification. However, the numerosity of one notation could not be predicted above chance from the brain activation patterns evoked by another notation (no cross-classification). These results show that the IPS may host independent number codes in overlapping cortical circuits. In addition, they suggest that the level of training in encoding a given type of number information is an important factor that determines the amount of exploitable information and needs to be controlled for in order to identify the neural code underlying numerical information per se.
Collapse
|
25
|
Nakai T, Girard C, Longo L, Chesnokova H, Prado J. Cortical representations of numbers and nonsymbolic quantities expand and segregate in children from 5 to 8 years of age. PLoS Biol 2023; 21:e3001935. [PMID: 36603025 PMCID: PMC9815645 DOI: 10.1371/journal.pbio.3001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
Number symbols, such as Arabic numerals, are cultural inventions that have transformed human mathematical skills. Although their acquisition is at the core of early elementary education in children, it remains unknown how the neural representations of numerals emerge during that period. It is also unclear whether these relate to an ontogenetically earlier sense of approximate quantity. Here, we used multivariate fMRI adaptation coupled with within- and between-format machine learning to probe the cortical representations of Arabic numerals and approximate nonsymbolic quantity in 89 children either at the beginning (age 5) or four years into formal education (age 8). Although the cortical representations of both numerals and nonsymbolic quantities expanded from age 5 to age 8, these representations also segregated with learning and development. Specifically, a format-independent neural representation of quantity was found in the right parietal cortex, but only for 5-year-olds. These results are consistent with the so-called symbolic estrangement hypothesis, which argues that the relation between symbolic and nonsymbolic quantity weakens with exposure to formal mathematics in children.
Collapse
Affiliation(s)
- Tomoya Nakai
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
- * E-mail: (TN); (JP)
| | - Cléa Girard
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Léa Longo
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Hanna Chesnokova
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028—CNRS UMR5292, University of Lyon, Bron, France
- * E-mail: (TN); (JP)
| |
Collapse
|
26
|
Andin J, Elwér Å, Mäki‐Torkko E. Arithmetic in the signing brain: Differences and similarities in arithmetic processing between deaf signers and hearing non-signers. J Neurosci Res 2023; 101:172-195. [PMID: 36259315 PMCID: PMC9828253 DOI: 10.1002/jnr.25138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
Deaf signers and hearing non-signers have previously been shown to recruit partially different brain regions during simple arithmetic. In light of the triple code model, the differences were interpreted as relating to stronger recruitment of the verbal system of numerical processing, that is, left angular and inferior frontal gyrus, in hearing non-signers, and of the quantity system of numerical processing, that is, right horizontal intraparietal sulcus, for deaf signers. The main aim of the present study was to better understand similarities and differences in the neural correlates supporting arithmetic in deaf compared to hearing individuals. Twenty-nine adult deaf signers and 29 hearing non-signers were enrolled in an functional magnetic resonance imaging study of simple and difficult subtraction and multiplication. Brain imaging data were analyzed using whole-brain analysis, region of interest analysis, and functional connectivity analysis. Although the groups were matched on age, gender, and nonverbal intelligence, the deaf group performed generally poorer than the hearing group in arithmetic. Nevertheless, we found generally similar networks to be involved for both groups, the only exception being the involvement of the left inferior frontal gyrus. This region was activated significantly stronger for the hearing compared to the deaf group but showed stronger functional connectivity with the left superior temporal gyrus in the deaf, compared to the hearing, group. These results lend no support to increased recruitment of the quantity system in deaf signers. Perhaps the reason for performance differences is to be found in other brain regions not included in the original triple code model.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Åsa Elwér
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Elina Mäki‐Torkko
- Audiological Research Center, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
27
|
Zhu C, Zhao X, Lu F, Wang Y, Zhao Y, Kou D, Liu D, Luo W. Estimation Strategy Utilization Is Modulated by Implicit Emotion Regulation: Evidence from Behavioral and Event-Related Potentials Studies. Brain Sci 2022; 13:brainsci13010077. [PMID: 36672058 PMCID: PMC9857239 DOI: 10.3390/brainsci13010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
A large number of studies have studied the influence of emotional experience on an individual's estimation performance, but the influence of implicit emotion regulation is still unknown. Participants were asked to complete the following tasks in order: idiom matching task, multiplication computational estimation task (MCE task), gender judgment task (GJ task), and emotional experience intensity assessment task. The words matching task was adopted to achieve the purpose of implicit emotion regulation (implicit reappraisal and implicit suppression). Behavioral results showed that implicit reappraisal and implicit suppression equally contributed to improving an individual's estimation speed (but not ACC (accuracy)). The MCE task related ERP (event-related potential) results showed that the influence of implicit emotion regulation on estimation consisted of two phases. In the first phase (encoding phase), implicit reappraisal both enhanced (larger P1 amplitudes) and weakened (smaller N170 amplitudes) an individual's encoding sensitivity, while implicit suppression enhanced an individual's encoding sensitivity (larger P1 amplitudes). In the second phase (estimation strategies retrieval phase), implicit reappraisal (but not implicit suppression) cost more attention resources (larger LPC2 and LPC3 amplitudes). The present study suggested that both implicit reappraisal and implicit suppression contributed to improving an individual's estimation performance, and the regulation effect of implicit suppression (vs. implicit reappraisal) was better.
Collapse
Affiliation(s)
- Chuanlin Zhu
- School of Educational Science, Yangzhou University, Yangzhou 225002, China
| | - Xinyi Zhao
- School of Educational Science, Yangzhou University, Yangzhou 225002, China
| | - Feng Lu
- College of Educational Science, Taizhou University, Taizhou 225300, China
| | - Yun Wang
- School of Foreign Languages, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuan Zhao
- Police Officer Academy, Shandong University of Political Science and Law, Jinan 250014, China
| | - Dongquan Kou
- School of Educational Science, Yangzhou University, Yangzhou 225002, China
- Correspondence: (D.K.); (D.L.); (W.L.); Tel.: +86-0514-8797-5536 (D.K.); +86-0512-6588-0832 (D.L.); +86-411-8215-3336 (W.L.)
| | - Dianzhi Liu
- School of Education, Soochow University, Suzhou 215123, China
- Correspondence: (D.K.); (D.L.); (W.L.); Tel.: +86-0514-8797-5536 (D.K.); +86-0512-6588-0832 (D.L.); +86-411-8215-3336 (W.L.)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, China
- Correspondence: (D.K.); (D.L.); (W.L.); Tel.: +86-0514-8797-5536 (D.K.); +86-0512-6588-0832 (D.L.); +86-411-8215-3336 (W.L.)
| |
Collapse
|
28
|
Sokolowski HM, Levine B. Common neural substrates of diverse neurodevelopmental disorders. Brain 2022; 146:438-447. [PMID: 36299249 PMCID: PMC9924912 DOI: 10.1093/brain/awac387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Neurodevelopmental disorders are categorized and studied according to their manifestations as distinct syndromes. For instance, congenital prosopagnosia and dyslexia have largely non-overlapping research literatures and clinical pathways for diagnosis and intervention. On the other hand, the high incidence of neurodevelopmental comorbidities or co-existing extreme strengths and weaknesses suggest that transdiagnostic commonalities may be greater than currently appreciated. The core-periphery model holds that brain regions within the stable core perceptual and motor regions are more densely connected to one another compared to regions in the flexible periphery comprising multimodal association regions. This model provides a framework for the interpretation of neural data in normal development and clinical disorders. Considering network-level commonalities reported in studies of neurodevelopmental disorders, variability in multimodal association cortex connectivity may reflect a shared origin of seemingly distinct neurodevelopmental disorders. This framework helps to explain both comorbidities in neurodevelopmental disorders and profiles of strengths and weaknesses attributable to competitive processing between cognitive systems within an individual.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Correspondence may also be addressed to: H. Moriah Sokolowski E-mail: Twitter: https://twitter.com/hm_sokolowski
| | - Brian Levine
- Correspondence to: Brian Levine 3560 Bathurst St, North York, ON M6A 2E1, Canada E-mail: Website: www.LevineLab.ca Twitter: https://twitter.com/briantlevine
| |
Collapse
|
29
|
Sokolowski HM, Hawes Z, Ansari D. The neural correlates of retrieval and procedural strategies in mental arithmetic: A functional neuroimaging meta-analysis. Hum Brain Mapp 2022; 44:229-244. [PMID: 36121072 PMCID: PMC9783428 DOI: 10.1002/hbm.26082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
Mental arithmetic is a complex skill of great importance for later academic and life success. Many neuroimaging studies and several meta-analyses have aimed to identify the neural correlates of mental arithmetic. Previous meta-analyses of arithmetic grouped all problem types into a single meta-analytic map, despite evidence suggesting that different types of arithmetic problems are solved using different strategies. We used activation likelihood estimation (ALE) to conduct quantitative meta-analyses of mental arithmetic neuroimaging (n = 31) studies, and subsequently grouped contrasts from the 31 studies into problems that are typically solved using retrieval strategies (retrieval problems) (n = 18) and problems that are typically solved using procedural strategies (procedural problems) (n = 19). Foci were compiled to generate probabilistic maps of activation for mental arithmetic (i.e., all problem types), retrieval problems, and procedural problems. Conjunction and contrast analyses were conducted to examine overlapping and distinct activation for retrieval and procedural problems. The conjunction analysis revealed overlapping activation for retrieval and procedural problems in the bilateral inferior parietal lobules, regions typically associated with magnitude processing. Contrast analyses revealed specific activation in the left angular gyrus for retrieval problems and specific activation in the inferior frontal gyrus and cingulate gyrus for procedural problems. These findings indicate that the neural bases of arithmetic systematically differs according to problem type, providing new insights into the dynamic and task-dependent neural underpinnings of the calculating brain.
Collapse
Affiliation(s)
- H. Moriah Sokolowski
- Rotman Research InstituteBaycrest HospitalNorth YorkOntarioCanada,Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada
| | - Zachary Hawes
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada,Ontario Institute for Studies in EducationUniversity of TorontoTorontoOntarioCanada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology and Brain and Mind InstituteUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
30
|
Supporting mathematics learning: a review of spatial abilities from research to practice. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Fraga-González G, Di Pietro SV, Pleisch G, Walitza S, Brandeis D, Karipidis II, Brem S. Visual Occipito-Temporal N1 Sensitivity to Digits Across Elementary School. Front Hum Neurosci 2022; 16:887413. [PMID: 35959243 PMCID: PMC9360418 DOI: 10.3389/fnhum.2022.887413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Number processing abilities are important for academic and personal development. The course of initial specialization of ventral occipito-temporal cortex (vOTC) sensitivity to visual number processing is crucial for the acquisition of numeric and arithmetic skills. We examined the visual N1, the electrophysiological correlate of vOTC activation across five time points in kindergarten (T1, mean age 6.60 years), middle and end of first grade (T2, 7.38 years; T3, 7.68 years), second grade (T4, 8.28 years), and fifth grade (T5, 11.40 years). A combination of cross-sectional and longitudinal EEG data of a total of 62 children (35 female) at varying familial risk for dyslexia were available to form groups of 23, 22, 27, 27, and 42 participants for each of the five time points. The children performed a target detection task which included visual presentation of single digits (DIG), false fonts (FF), and letters (LET) to derive measures for coarse (DIG vs. FF) and fine (DIG vs. LET) digit sensitive processing across development. The N1 amplitude analyses indicated coarse and fine sensitivity characterized by a stronger N1 to digits than false fonts across all five time points, and stronger N1 to digits than letters at all but the second (T2) time point. In addition, lower arithmetic skills were associated with stronger coarse N1 digit sensitivity over the left hemisphere in second grade (T4), possibly reflecting allocation of more attentional resources or stronger reliance on the verbal system in children with poorer arithmetic skills. To summarize, our results show persistent visual N1 sensitivity to digits that is already present early on in pre-school and remains stable until fifth grade. This pattern of digit sensitivity development clearly differs from the relatively sharp rise and fall of the visual N1 sensitivity to words or letters between kindergarten and middle of elementary school and suggests unique developmental trajectories for visual processing of written characters that are relevant to numeracy and literacy.
Collapse
Affiliation(s)
- Gorka Fraga-González
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah V. Di Pietro
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Iliana I. Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- MR-Center, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- *Correspondence: Silvia Brem,
| |
Collapse
|
32
|
Zacharopoulos G, Sella F, Cohen Kadosh K, Emir U, Cohen Kadosh R. The effect of parietal glutamate/GABA balance on test anxiety levels in early childhood in a cross-sectional and longitudinal study. Cereb Cortex 2022; 32:3243-3253. [PMID: 34963130 PMCID: PMC9340388 DOI: 10.1093/cercor/bhab412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
The increased prevalence of test anxiety in our competitive society makes it a health issue of public concern. However, its neurobiological basis, especially during the years of formal education, is currently scant. Previous research has highlighted the association between neural excitation/inhibition balance and psychopathology and disease. We examined whether the glutamate/GABA profile tracks test anxiety levels in development, using a cross-sectional and longitudinal design in a cohort spanning from early childhood to early adulthood (N = 289), reassessed approximately 21 months later (N = 194). We used magnetic resonance spectroscopy to noninvasively quantify glutamate and gamma-Aminobutyric acid (GABA) levels in the intraparietal sulcus (IPS) and the middle frontal gyrus. We show that the glutamate/GABA balance within the IPS relates to current individual variation in test anxiety levels and predict future test anxiety approximately 21 months later. Critically, this relationship was observed during early childhood but not during the later developmental stages. Our results extend the use of the excitation/inhibition balance framework to characterize the psychopathology mechanisms of test anxiety, an underexplored yet widespread and debilitating condition that can impact early child development. Our findings provide a better understanding of the neurotransmitter basis underlying the emergence of anxiety disorders during development.
Collapse
Affiliation(s)
- George Zacharopoulos
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX2 6GG, UK
- School of Psychology, Swansea University, Swansea, SA2 8PP, UK
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, LE11 3TU, UK
| | - Kathrin Cohen Kadosh
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX2 6GG, UK
- School of Psychology, University of Surrey, Guildford, GU2 7XH, UK
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX2 6GG, UK
- School of Psychology, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
33
|
Investigating the association between variability in sulcal pattern and academic achievement. Sci Rep 2022; 12:12323. [PMID: 35854034 PMCID: PMC9296655 DOI: 10.1038/s41598-022-15335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
Investigating how the brain may constrain academic achievement is not only relevant to understanding brain structure but also to providing insight into the origins of individual differences in these academic abilities. In this pre-registered study, we investigated whether the variability of sulcal patterns, a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning, accounted for individual differences in reading and mathematics. Participants were 97 typically developing 10-year-olds. We examined (a) the association between the sulcal pattern of the IntraParietal Sulcus (IPS) and mathematical ability; (b) the association between the sulcal pattern of the Occipito Temporal Sulcus (OTS) and reading ability; and (c) the overlap and specificity of sulcal morphology of IPS and OTS and their associations with mathematics and reading. Despite its large sample, the present study was unable to replicate a previously observed relationship between the IPS sulcal pattern and mathematical ability and a previously observed association between the left posterior OTS sulcal pattern and reading. We found a weak association between right IPS sulcal morphology and symbolic number abilities and a weak association between left posterior OTS and reading. However, both these associations were the opposite of previous reports. We found no evidence for a possible overlap or specificity in the effect of sulcal morphology on mathematics and reading. Possible explanations for this weak association between sulcal morphology and academic achievement and suggestions for future research are discussed.
Collapse
|
34
|
Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. Acta Psychol (Amst) 2022; 228:103644. [PMID: 35749820 DOI: 10.1016/j.actpsy.2022.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Are number symbols (e.g., 3) and numerically equivalent quantities (e.g., •••) processed similarly or distinctly? If symbols and quantities are processed similarly then processing one format should activate the processing of the other. To experimentally probe this prediction, we assessed the processing of symbols and quantities using a Stroop-like paradigm. Participants (NStudy1 = 80, NStudy2 = 63) compared adjacent arrays of symbols (e.g., 4444 vs 333) and were instructed to indicate the side containing either the greater quantity of symbols (nonsymbolic task) or the numerically larger symbol (symbolic task). The tasks included congruent trials, where the greater symbol and quantity appeared on the same side (e.g. 333 vs. 4444), incongruent trials, where the greater symbol and quantity appeared on opposite sides (e.g. 3333 vs. 444), and neutral trials, where the irrelevant dimension was the same across both sides (e.g. 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). The numerical distance between stimuli was systematically varied, and quantities in the subitizing and counting range were analyzed together and independently. Participants were more efficient comparing symbols and ignoring quantities, than comparing quantities and ignoring symbols. Similarly, while both symbols and quantities influenced each other as the irrelevant dimension, symbols influenced the processing of quantities more than quantities influenced the processing of symbols, especially for quantities in the counting rage. Additionally, symbols were less influenced by numerical distance than quantities, when acting as the relevant and irrelevant dimension. These findings suggest that symbols are processed differently and more automatically than quantities.
Collapse
|
35
|
Shmueli M, Ben-Shachar MS, Jacobson JL, Meintjes EM, Molteno CD, Jacobson SW, Berger A. Magnitude comparison and automaticity in number processing in adolescents with prenatal alcohol exposure: An event-related potentials study. Alcohol Clin Exp Res 2022; 46:961-978. [PMID: 35373355 DOI: 10.1111/acer.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individuals with fetal alcohol spectrum disorders may exhibit a distinct pattern of dysmorphic facial features, growth restriction, and cognitive deficits, particularly in arithmetic. Magnitude comparison, a fundamental element of numerical cognition, is modulated by the numerical distance effect, with numbers closer in value more difficult to compare than those further apart, and by the automaticity of the association of numerical values with their symbolic representations (Arabic numerals). METHODS We examined event-related potentials acquired during the Numerical Stroop numerical and physical tasks administered to 24 alcohol-exposed adolescents (eight fetal alcohol syndrome (FAS), eight partial FAS (PFAS), eight heavily exposed (HE) nonsyndromal) and 23 typically developing (TD), same- age controls. The distance effect was assessed on the numerical task to examine differences in reaction time (RT) and accuracy when two numbers are close in value (e.g., 1 vs. 2) compared to when the numbers are less close (e.g., 1 vs. 6). Automaticity was assessed in the physical task by examining the degree to which RT and accuracy are reduced when the relative physical size of two numerals is incongruent with their numerical values (e.g., 1 vs. 6). RESULTS Adolescents in all four groups performed behaviorally as expected on these relatively simple magnitude comparison tasks, but accuracy was poorer and RT was slower on both tasks in the FAS and PFAS than the HE and TD groups. At the neurophysiological level, in the numerical task, a higher level of prenatal alcohol exposure was associated with smaller P2p amplitude. In the physical task, only the TD and nonsyndromal HE groups exhibited the expected smaller P300 amplitude in the incongruent than the congruent condition. CONCLUSIONS These findings suggest that magnitude comparison in alcohol-exposed individuals may be mediated by recruitment of alternative neural pathways that are likely to be inefficient when number processing becomes more challenging.
Collapse
Affiliation(s)
- Michael Shmueli
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mattan S Ben-Shachar
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrea Berger
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
36
|
Chang H, Chen L, Zhang Y, Xie Y, de Los Angeles C, Adair E, Zanitti G, Wassermann D, Rosenberg-Lee M, Menon V. Foundational Number Sense Training Gains Are Predicted by Hippocampal-Parietal Circuits. J Neurosci 2022; 42:4000-4015. [PMID: 35410879 PMCID: PMC9097592 DOI: 10.1523/jneurosci.1005-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022] Open
Abstract
The development of mathematical skills in early childhood relies on number sense, the foundational ability to discriminate among quantities. Number sense in early childhood is predictive of academic and professional success, and deficits in number sense are thought to underlie lifelong impairments in mathematical abilities. Despite its importance, the brain circuit mechanisms that support number sense learning remain poorly understood. Here, we designed a theoretically motivated training program to determine brain circuit mechanisms underlying foundational number sense learning in female and male elementary school-age children (7-10 years). Our 4 week integrative number sense training program gradually strengthened the understanding of the relations between symbolic (Arabic numerals) and nonsymbolic (sets of items) representations of quantity. We found that our number sense training program improved symbolic quantity discrimination ability in children across a wide range of math abilities including children with learning difficulties. Crucially, the strength of pretraining functional connectivity between the hippocampus and intraparietal sulcus, brain regions implicated in associative learning and quantity discrimination, respectively, predicted individual differences in number sense learning across typically developing children and children with learning difficulties. Reverse meta-analysis of interregional coactivations across 14,371 fMRI studies and 89 cognitive functions confirmed a reliable role for hippocampal-intraparietal sulcus circuits in learning. Our study identifies a canonical hippocampal-parietal circuit for learning that plays a foundational role in children's cognitive skill acquisition. Findings provide important insights into neurobiological circuit markers of individual differences in children's learning and delineate a robust target for effective cognitive interventions.SIGNIFICANCE STATEMENT Mathematical skill development relies on number sense, the ability to discriminate among quantities. Here, we develop a theoretically motivated training program and investigate brain circuits that predict number sense learning in children during a period important for acquisition of foundational cognitive skills. Our integrated number sense training program was effective in children across a wide a range of math abilities, including children with learning difficulties. We identify hippocampal-parietal circuits that predict individual differences in learning gains. Our study identifies a brain circuit critical for the acquisition of foundational cognitive skills, which will be useful for developing effective interventions to remediate learning disabilities.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Lang Chen
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Santa Clara University, Santa Clara, California 95053
| | - Yuan Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Ye Xie
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Carlo de Los Angeles
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Emma Adair
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
| | - Gaston Zanitti
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, Campus de l'École Polytechnique, Université Paris-Sud, Palaiseau 91120, France
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Psychology, Rutgers University, Newark, New Jersey 07102
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California 94305
- Stanford Neurosciences Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
37
|
Chalas N, Karagiorgis A, Bamidis P, Paraskevopoulos E. The impact of musical training in symbolic and non-symbolic audiovisual judgements of magnitude. PLoS One 2022; 17:e0266165. [PMID: 35511806 PMCID: PMC9070945 DOI: 10.1371/journal.pone.0266165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Quantity estimation can be represented in either an analog or symbolic manner and recent evidence now suggests that analog and symbolic representation of quantities interact. Nonetheless, those two representational forms of quantities may be enhanced by convergent multisensory information. Here, we elucidate those interactions using high-density electroencephalography (EEG) and an audiovisual oddball paradigm. Participants were presented simultaneous audiovisual tokens in which the co-varying pitch of tones was combined with the embedded cardinality of dot patterns. Incongruencies were elicited independently from symbolic and non-symbolic modality within the audio-visual percept, violating the newly acquired rule that “the higher the pitch of the tone, the larger the cardinality of the figure.” The effect of neural plasticity in symbolic and non-symbolic numerical representations of quantities was investigated through a cross-sectional design, comparing musicians to musically naïve controls. Individual’s cortical activity was reconstructed and statistically modeled for a predefined time-window of the evoked response (130–170 ms). To summarize, we show that symbolic and non-symbolic processing of magnitudes is re-organized in cortical space, with professional musicians showing altered activity in motor and temporal areas. Thus, we argue that the symbolic representation of quantities is altered through musical training.
Collapse
Affiliation(s)
- Nikos Chalas
- Institute for Biomagnetism and Biosignal analysis, University of Münster, Münster, Germany
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
38
|
Wang C, Ren T, Zhang X, Dou W, Jia X, Li BM. The longitudinal development of large-scale functional brain networks for arithmetic ability from childhood to adolescence. Eur J Neurosci 2022; 55:1825-1839. [PMID: 35304780 DOI: 10.1111/ejn.15651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Arithmetic ability is an important high-level cognitive function that requires interaction among multiple brain regions. Previous studies on arithmetic development have focused on task-induced activation in isolated brain regions or functional connectivity among particular seed regions. However, it remains largely unknown whether and how functional connectivity among large-scale brain modules contributes to arithmetic development. In the present study, we used a longitudinal sample of task-based functional magnetic resonance imaging (fMRI) data comprising 63 typically developing children, with two testing points being about two years apart. With graph theory, we examined the longitudinal development of large-scale brain modules for a multiplication task in younger (mean age 9.88 at time 1) and older children (mean age 12.34 at time 1), respectively. The results showed that the default-mode (DMN) and frontal-parietal networks (FPN) became increasingly segregated over time. Specifically, intra-connectivity within the DMN and FPN increased significantly with age, and inter-connectivity between the DMN and visual network decreased significantly with age. Such developmental changes were mainly observed in the younger children, but not in the older children. Moreover, the change in network segregation of the DMN was positively correlated with longitudinal gain in arithmetic performance in the younger children, and individual difference in network segregation of the FPN was positively correlated with arithmetic performance at time 2 in the older children. Taken together, the present results highlight the development of the functional architecture in large-scale brain networks from childhood to adolescence, which may provide insights into potential neural mechanisms underlying arithmetic development.
Collapse
Affiliation(s)
- Chunjie Wang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tian Ren
- Institute of Brain Science and Department of Psychology, Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Xinyuan Zhang
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenjie Dou
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xi Jia
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bao-Ming Li
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
39
|
Magariño DE, Turel O, He Q. Bilateral intraparietal activation for number tasks in studies using an adaptation paradigm: A meta-analysis. Neuroscience 2022; 490:296-308. [PMID: 35276305 DOI: 10.1016/j.neuroscience.2022.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 01/29/2023]
Abstract
Mathematical processing is important for professional successes. The Adaptation Paradigm has been widely used to study the brain underpinnings of mathematical processing. In this study, we aim at shedding light on an important component of mathematical processing, namely numerical cognition. To do so, we performed a meta-analysis using the Activation Likelihood Estimation method on studies that have employed the Adaptation Paradigm for examining numerical cognition. We found a bilateral Intraparietal Sulcus (IPS) activation in studies using both symbolic and non-symbolic stimuli formats. We also found a right lateralized brain activation for the non-symbolic condition and a left lateralized brain activation for the symbolic condition. These results imply that the Adaptation Paradigm likely targets numeric magnitude processing and confirms the potency of this paradigm to activate the Intraparietal Sulcus.
Collapse
Affiliation(s)
- Daniela Escobar Magariño
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Faculty of Psychology, Havana University, Havana, Cuba
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Chongqing, China.
| |
Collapse
|
40
|
Tolomeo S, Yu R. Brain network dysfunctions in addiction: a meta-analysis of resting-state functional connectivity. Transl Psychiatry 2022; 12:41. [PMID: 35091540 PMCID: PMC8799706 DOI: 10.1038/s41398-022-01792-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional connectivity (rsFC) provides novel insights into variabilities in neural networks associated with the use of addictive drugs or with addictive behavioral repertoire. However, given the broad mix of inconsistent findings across studies, identifying specific consistent patterns of network abnormalities is warranted. Here we aimed at integrating rsFC abnormalities and systematically searching for large-scale functional brain networks in substance use disorder (SUD) and behavioral addictions (BA), through a coordinate-based meta-analysis of seed-based rsFC studies. A total of fifty-two studies are eligible in the meta-analysis, including 1911 SUD and BA patients and 1580 healthy controls. In addition, we performed multilevel kernel density analysis (MKDA) for the brain regions reliably involved in hyperconnectivity and hypoconnectivity in SUD and BA. Data from fifty-two studies showed that SUD was associated with putamen, caudate and middle frontal gyrus hyperconnectivity relative to healthy controls. Eight BA studies showed hyperconnectivity clusters within the putamen and medio-temporal lobe relative to healthy controls. Altered connectivity in salience or emotion-processing areas may be related to dysregulated affective and cognitive control-related networks, such as deficits in regulating elevated sensitivity to drug-related stimuli. These findings confirm that SUD and BA might be characterized by dysfunctions in specific brain networks, particularly those implicated in the core cognitive and affective functions. These findings might provide insight into the development of neural mechanistic biomarkers for SUD and BA.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
- Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
41
|
Chutko L, Surushkina S, Yakovenko E. Clinical and psychophysiological manifestations of dyscalculia in children. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:62-67. [DOI: 10.17116/jnevro202212209262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Ranzini M, Scarpazza C, Radua J, Cutini S, Semenza C, Zorzi M. A common neural substrate for number comparison, hand reaching and grasping: a SDM-PSI meta-analysis of neuroimaging studies. Cortex 2022; 148:31-67. [DOI: 10.1016/j.cortex.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
|
43
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4733-4745. [DOI: 10.1093/cercor/bhab513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/29/2023] Open
|
44
|
Abreu-Mendoza RA, Pincus M, Chamorro Y, Jolles D, Matute E, Rosenberg-Lee M. Parietal and hippocampal hyper-connectivity is associated with low math achievement in adolescence - A preliminary study. Dev Sci 2021; 25:e13187. [PMID: 34761855 DOI: 10.1111/desc.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
Mathematical cognition requires coordinated activity across multiple brain regions, leading to the emergence of resting-state functional connectivity as a method for studying the neural basis of differences in mathematical achievement. Hyper-connectivity of the intraparietal sulcus (IPS), a key locus of mathematical and numerical processing, has been associated with poor mathematical skills in childhood, whereas greater connectivity has been related to better performance in adulthood. No studies to date have considered its role in adolescence. Further, hippocampal connectivity can predict mathematical learning, yet no studies have considered its contributions to contemporaneous measures of math achievement. Here, we used seed-based resting-state fMRI analyses to examine IPS and hippocampal intrinsic functional connectivity relations to math achievement in a group of 31 adolescents (mean age = 16.42 years, range 15-17), whose math performance spanned the 1% to 99% percentile. After controlling for IQ, IPS connectivity was negatively related to math achievement, akin to findings in children. However, the specific temporo-occipital regions were more akin to the posterior loci implicated in adults. Hippocampal connectivity with frontal regions was also negatively correlated with concurrent math measures, which contrasts with results from learning studies. Finally, hyper-connectivity was not a global feature of low math performance, as math performance did not modulate connectivity of Heschl's gyrus, a control seed not involved in math cognition. Our results provide preliminary evidence that adolescence is a transitional stage in which patterns found in childhood and adulthood can be observed; most notably, hyper-connectivity continues to be related to low math ability into this period.
Collapse
Affiliation(s)
| | - Melanie Pincus
- Department of Psychology, Rutgers University-Newark, Newark, New Jersey, USA
| | - Yaira Chamorro
- Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Dietsje Jolles
- Department of Education and Child Studies, Leiden University, Leiden, The Netherlands
| | - Esmeralda Matute
- Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Miriam Rosenberg-Lee
- Department of Psychology, Rutgers University-Newark, Newark, New Jersey, USA.,Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey, USA
| |
Collapse
|
45
|
Automatic integration of numerical formats examined with frequency-tagged EEG. Sci Rep 2021; 11:21405. [PMID: 34725370 PMCID: PMC8560945 DOI: 10.1038/s41598-021-00738-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023] Open
Abstract
How humans integrate and abstract numerical information across different formats is one of the most debated questions in human cognition. We addressed the neuronal signatures of the numerical integration using an EEG technique tagged at the frequency of visual stimulation. In an oddball design, participants were stimulated with standard sequences of numbers (< 5) depicted in single (digits, dots, number words) or mixed notation (dots-digits, number words-dots, digits-number words), presented at 10 Hz. Periodically, a deviant stimulus (> 5) was inserted at 1.25 Hz. We observed significant oddball amplitudes for all single notations, showing for the first time using this EEG technique, that the magnitude information is spontaneously and unintentionally abstracted, irrespectively of the numerical format. Significant amplitudes were also observed for digits-number words and number words-dots, but not for digits-dots, suggesting an automatic integration across some numerical formats. These results imply that direct and indirect neuro-cognitive links exist across the different numerical formats.
Collapse
|
46
|
Schwartz F, Zhang Y, Chang H, Karraker S, Kang JB, Menon V. Neural representational similarity between symbolic and non-symbolic quantities predicts arithmetic skills in childhood but not adolescence. Dev Sci 2021; 24:e13123. [PMID: 34060183 PMCID: PMC9112867 DOI: 10.1111/desc.13123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Mathematical knowledge is constructed hierarchically from basic understanding of quantities and the symbols that denote them. Discrimination of numerical quantity in both symbolic and non-symbolic formats has been linked to mathematical problem-solving abilities. However, little is known of the extent to which overlap in quantity representations between symbolic and non-symbolic formats is related to individual differences in numerical problem solving and whether this relation changes with different stages of development and skill acquisition. Here we investigate the association between neural representational similarity (NRS) across symbolic and non-symbolic quantity discrimination and arithmetic problem-solving skills in early and late developmental stages: elementary school children (ages 7-10 years) and adolescents and young adults (AYA, ages 14-21 years). In children, cross-format NRS in distributed brain regions, including parietal and frontal cortices and the hippocampus, was positively correlated with arithmetic skills. In contrast, no brain region showed a significant association between cross-format NRS and arithmetic skills in the AYA group. Our findings suggest that the relationship between symbolic-non-symbolic NRS and arithmetic skills depends on developmental stage. Taken together, our study provides evidence for both mapping and estrangement hypotheses in the context of numerical problem solving, albeit over different cognitive developmental stages.
Collapse
Affiliation(s)
- Flora Schwartz
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Shelby Karraker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Julia Boram Kang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Stanford Neuroscience InstituteStanford University School of Medicine, Stanford, California, USA
- Symbolic Systems Program, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
Bugden S, Park A, Mackey A, Brannon E. The neural basis of number word processing in children and adults. Dev Cogn Neurosci 2021; 51:101011. [PMID: 34562794 PMCID: PMC8476348 DOI: 10.1016/j.dcn.2021.101011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
The ability to map number words to their corresponding quantity representations is a gatekeeper for children's future math success (Spaepen et al., 2018). Without number word knowledge at school entry, children are at greater risk for developing math learning difficulties (Chu et al., 2019). In the present study, we used functional magnetic resonance imaging (fMRI) to examine the neural basis for processing the meaning of spoken number words and its developmental trajectory in 4- to 10-year-old children, and in adults. In a number word-quantity mapping paradigm, participants listened to number words while simultaneously viewing quantities that were congruent or incongruent to the number word they heard. Whole brain analyses revealed that adults showed a neural congruity effect with greater neural activation for incongruent relative to congruent trials in anterior cingulate cortex (ACC) and left intraparietal sulcus (LIPS). In contrast, children did not show a significant neural congruity effect. However, a region of interest analysis in the child sample demonstrated age-related increases in the neural congruity effect, specifically in the LIPS. The positive correlation between neural congruity in LIPS and age was stronger in children who were already attending school, suggesting that developmental changes in LIPS function are experience-dependent.
Collapse
Affiliation(s)
- S. Bugden
- Department of Psychology, University of Winnipeg, 515 Portage Ave, Manitoba, R3B 2E9, Canada,Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA,Corresponding author at: Department of Psychology, University of Winnipeg, 515 Portage Ave, Manitoba, R3B 2E9, Canada.
| | - A.T. Park
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| | - A.P. Mackey
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| | - E.M. Brannon
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Zacharopoulos G, Sella F, Emir U, Cohen Kadosh R. The relation between parietal GABA concentration and numerical skills. Sci Rep 2021; 11:17656. [PMID: 34480033 PMCID: PMC8417296 DOI: 10.1038/s41598-021-95370-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Several scientific, engineering, and medical advancements are based on breakthroughs made by people who excel in mathematics. Our current understanding of the underlying brain networks stems primarily from anatomical and functional investigations, but our knowledge of how neurotransmitters subserve numerical skills, the building block of mathematics, is scarce. Using 1H magnetic resonance spectroscopy (N = 54, 3T, semi-LASER sequence, TE = 32 ms, TR = 3.5 s), the study examined the relation between numerical skills and the brain's major inhibitory (GABA) and excitatory (glutamate) neurotransmitters. A negative association was found between the performance in a number sequences task and the resting concentration of GABA within the left intraparietal sulcus (IPS), a key region supporting numeracy. The relation between GABA in the IPS and number sequences was specific to (1) parietal but not frontal regions and to (2) GABA but not glutamate. It was additionally found that the resting functional connectivity of the left IPS and the left superior frontal gyrus was positively associated with number sequences performance. However, resting GABA concentration within the IPS explained number sequences performance above and beyond the resting frontoparietal connectivity measure. Our findings further motivate the study of inhibition mechanisms in the human brain and significantly contribute to our current understanding of numerical cognition's biological bases.
Collapse
Affiliation(s)
- George Zacharopoulos
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Psychology, Swansea University, Swansea, UK.
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- School of Psychology, University of Surrey, Guildford, UK.
| |
Collapse
|
49
|
Sokolowski HM, Hawes Z, Peters L, Ansari D. Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical Magnitude Processing in the Human Brain. Cereb Cortex Commun 2021; 2:tgab048. [PMID: 34447935 PMCID: PMC8382912 DOI: 10.1093/texcom/tgab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022] Open
Abstract
How are different formats of magnitudes represented in the human brain? We used functional magnetic resonance imaging adaptation to isolate representations of symbols, quantities, and physical size in 45 adults. Results indicate that the neural correlates supporting the passive processing of number symbols are largely dissociable from those supporting quantities and physical size, anatomically and representationally. Anatomically, passive processing of quantities and size correlate with activation in the right intraparietal sulcus, whereas symbolic number processing, compared with quantity processing, correlates with activation in the left inferior parietal lobule. Representationally, neural patterns of activation supporting symbols are dissimilar from neural activation patterns supporting quantity and size in the bilateral parietal lobes. These findings challenge the longstanding notion that the culturally acquired ability to conceptualize symbolic numbers is represented using entirely the same brain systems that support the evolutionarily ancient system used to process quantities. Moreover, these data reveal that regions that support numerical magnitude processing are also important for the processing of non-numerical magnitudes. This discovery compels future investigations of the neural consequences of acquiring knowledge of symbolic numbers.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, North York, ON M6A 2E1, Canada
| | - Zachary Hawes
- Ontario Institute for Studies in Education, University of Toronto, Toronto, ON M5S1V6, Canada
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
50
|
Sulcation of the intraparietal sulcus is related to symbolic but not non-symbolic number skills. Dev Cogn Neurosci 2021; 51:100998. [PMID: 34388639 PMCID: PMC8363820 DOI: 10.1016/j.dcn.2021.100998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
The horizontal segment of intraparietal sulcus (HIPS) is one of the key functional regions for processing numbers. Sulcal morphology is a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning. The HIPS sulcal pattern explains part of the variance in participant’s symbolic number comparison and math fluency abilities. Participant’s non-symbolic number comparison abilities was not explained by HIPS sulcal pattern. This association between HIPS sulcal pattern and symbolic number abilities was stable from childhood to young adulthood.
Understanding the constraints, including biological ones, that may influence mathematical development is of great importance because math ability is a key predictor of career success, income and even psychological well-being. While research in developmental cognitive neuroscience of mathematics has extensively studied the key functional regions for processing numbers, particularly the horizontal segment of intraparietal sulcus (HIPS), few studies have investigated the effects of early cerebral constraints on later mathematical abilities. In this pre-registered study, we investigated whether variability of the sulcal pattern of the HIPS, a qualitative feature of the brain determined in-utero and not affected by brain maturation and learning, accounts for individual difference in symbolic and non-symbolic number abilities. Seventy-seven typically developing school-aged children and 21 young adults participated in our study. We found that the HIPS sulcal pattern, (a) explains part of the variance in participant’s symbolic number comparison and math fluency abilities, and (b) that this association between HIPS sulcal pattern and symbolic number abilities was found to be stable from childhood to young adulthood. However, (c) we did not find an association between participant’s non-symbolic number abilities and HIPS sulcal morphology. Our findings suggest that early cerebral constraints may influence individual difference in math abilities, in addition to the well-established neuroplastic factors.
Collapse
|