1
|
Lucon-Xiccato T, De Russi G, Frigato E, Dadda M, Bertolucci C. One-trial odour recognition learning and its underlying brain areas in the zebrafish. Behav Brain Res 2024; 465:114949. [PMID: 38479474 DOI: 10.1016/j.bbr.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Distinguishing familiar from novel stimuli is critical in many animals' activities, and procedures based on this ability are among the most exploited in translational research in rodents. However, recognition learning and the underlying brain substrates remain unclear outside a few mammalian species. Here, we investigated one-trial recognition learning for olfactory stimuli in a teleost fish using a behavioural and molecular approach. With our behavioural analysis, we found that zebrafish can learn to recognise a novel odour after a single encounter and then, discriminate between this odour and a different one provided that the molecular structure of the cues is relatively differentiated. Subsequently, by expression analysis of immediate early genes in the main brain areas, we found that the telencephalon was activated when zebrafish encountered a familiar odour, whereas the hypothalamus and the optic tectum were activated in response to the novel odour. Overall, this study provided evidence of single-trial spontaneous learning of novel odours in a teleost fish and the presence of multiple neural substrates involved in the process. These findings are promising for the development of zebrafish models to investigate cognitive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
de Chastelaine M, Horne ED, Hou M, Rugg MD. Relationships between age, fMRI correlates of familiarity and familiarity-based memory performance under single and dual task conditions. Neuropsychologia 2023; 189:108670. [PMID: 37633516 PMCID: PMC10591814 DOI: 10.1016/j.neuropsychologia.2023.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were largely age-invariant and did not vary, or varied minimally, according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have little impact on behavioral and neural estimates of familiarity.
Collapse
Affiliation(s)
- Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA.
| | - Erin D Horne
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| | - Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
3
|
Reichardt R, Polner B, Simor P. The graded novelty encoding task: Novelty gradually improves recognition of visual stimuli under incidental learning conditions. Behav Res Methods 2023; 55:1587-1600. [PMID: 35697959 PMCID: PMC10250520 DOI: 10.3758/s13428-022-01891-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022]
Abstract
It has been argued that novel compared to familiar stimuli are preferentially encoded into memory. Nevertheless, treating novelty as a categorical variable in experimental research is considered simplistic. We highlight the dimensional aspect of novelty and propose an experimental design that manipulates novelty continuously. We created the Graded Novelty Encoding Task (GNET), in which the difference between stimuli (i.e. novelty) is parametrically manipulated, paving the way for quantitative models of novelty processing. We designed an algorithm which generates visual stimuli by placing colored shapes in a grid. During the familiarization phase of the task, we repeatedly presented five pictures to the participants. In a subsequent incidental learning phase, participants were asked to differentiate between the "familiars" and novel images that varied in the degree of difference to the familiarized pictures (i.e. novelty). Finally, participants completed a surprise recognition memory test, where the novel stimuli from the previous phase were interspersed with distractors with similar difference characteristics. We numerically expressed the differences between the stimuli to compute a dimensional indicator of novelty and assessed whether it predicted recognition memory performance. Based on previous studies showing the beneficial effect of novelty on memory formation, we hypothesized that the more novel a given picture was, the better subsequent recognition performance participants would demonstrate. Our hypothesis was confirmed: recognition performance was higher for more novel stimuli. The GNET captures the continuous nature of novelty, and it may be useful in future studies that examine the behavioral and neurocognitive aspects of novelty processing.
Collapse
Affiliation(s)
- Richárd Reichardt
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary.
- Institute of Pedagogy and Psychology, Eötvös Loránd University, Szombathely, Hungary.
| | - Bertalan Polner
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Simor
- Institute of Psychology, Eötvös Loránd University, Budapest, Hungary
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
4
|
de Chastelaine M, Horne ED, Hou M, Rugg MD. Relationships between age, fMRI correlates of familiarity and familiarity-based memory performance under single and dual task conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542526. [PMID: 37398000 PMCID: PMC10312430 DOI: 10.1101/2023.05.26.542526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were age-invariant and did not vary according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have minimal impact on behavioral and neural estimates of familiarity.
Collapse
|
5
|
Hill PF, de Chastelaine M, Rugg MD. Patterns of retrieval-related cortico-striatal connectivity are stable across the adult lifespan. Cereb Cortex 2023; 33:4542-4552. [PMID: 36124666 PMCID: PMC10110447 DOI: 10.1093/cercor/bhac360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Memory retrieval effects in the striatum are well documented and robust across experimental paradigms. However, the functional significance of these effects, and whether they are moderated by age, remains unclear. We used functional magnetic resonance imaging paired with an associative recognition task to examine retrieval effects in the striatum in a sample of healthy young, middle-aged, and older adults. We identified anatomically segregated patterns of enhanced striatal blood oxygen level-dependent (BOLD) activity during recollection- and familiarity-based memory judgments. Successful recollection was associated with enhanced BOLD activity in bilateral putamen and nucleus accumbens, and neither of these effects were reliably moderated by age. Familiarity effects were evident in the head of the caudate nucleus bilaterally, and these effects were attenuated in middle-aged and older adults. Using psychophysiological interaction analyses, we observed a monitoring-related increase in functional connectivity between the caudate and regions of the frontoparietal control network, and between the putamen and bilateral retrosplenial cortex and intraparietal sulcus. In all instances, monitoring-related increases in cortico-striatal connectivity were unmoderated by age. These results suggest that the striatum, and the caudate in particular, couples with the frontoparietal control network to support top-down retrieval-monitoring operations, and that the strength of these inter-regional interactions is preserved in later life.
Collapse
Affiliation(s)
- Paul F Hill
- Psychology Department, University of Arizona, Tucson, AZ 85721, United States
| | | | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235, United States
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
6
|
Eek T, Lundin F, Larsson M, Hamilton P, Georgiopoulos C. Neural suppression in odor recognition memory. Chem Senses 2023; 48:7008795. [PMID: 36715106 PMCID: PMC9940621 DOI: 10.1093/chemse/bjad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/31/2023] Open
Abstract
Little is known about the neural basis of lower- and higher-order olfactory functions such as odor memory, compared with other sensory systems. The aim of this study was to explore neural networks and correlates associated with 3 functions: passive smelling (PS), odor encoding (OE), and in particular odor recognition memory (ORM). Twenty-six healthy participants were examined using functional magnetic resonance imaging conducted across 3 sessions, one for each function. Independent component analysis revealed a difference between sessions where a distinct ORM component incorporating hippocampus and posterior cingulate showed delayed triggering dissociated from odor stimulation and recognition. By contrasting Hit for ORM (target odors correctly recognized as old) and a combination of PS and detected odors from OE, we found significantly lower activations in amygdala, piriform cortex, insula, thalamus, and the inferior parietal lobule. Region of interest analysis including anterior insula, posterior cingulate gyrus, dentate gyrus, left middle frontal gyrus, amygdala, and piriform cortex demonstrated that Hit were associated with lower activations compared with other memory responses. In summary, our findings suggest that successful recognition of familiar odors (odor familiarity) is associated with neural suppression in the abovementioned regions of interest. Additionally, network including the hippocampus and posterior cingulate is engaged in a postrecognition process. This process may be related to incidental encoding of less familiar and more novel odors (odor novelty) and should be subject for future research.
Collapse
Affiliation(s)
- Tom Eek
- Corresponding author: Department of Neurology, Linköping University Hospital, 581 85 Linköping, Sweden.
| | - Fredrik Lundin
- Department of Neurology, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Larsson
- Gösta Ekman Laboratories, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Paul Hamilton
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charalampos Georgiopoulos
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology, Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Tautvydaitė D, Adam-Darqué A, Andryszak P, Poitrine L, Ptak R, Frisoni GB, Schnider A. Deficient Novelty Detection and Encoding in Early Alzheimer’s Disease: An ERP Study. Brain Topogr 2022; 35:667-679. [DOI: 10.1007/s10548-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
AbstractPatients with early Alzheimer’s disease (AD) have difficulty in learning new information and in detecting novel stimuli. The underlying physiological mechanisms are not well known. We investigated the electrophysiological correlates of the early (< 400 ms), automatic phase of novelty detection and encoding in AD. We used high-density EEG Queryin patients with early AD and healthy age-matched controls who performed a continuous recognition task (CRT) involving new stimuli (New), thought to provoke novelty detection and encoding, which were then repeated up to 4 consecutive times to produce over-familiarity with the stimuli. Stimuli then reappeared after 9–15 intervening items (N-back) to be re-encoded. AD patients had substantial difficulty in detecting novel stimuli and recognizing repeated ones. Main evoked potential differences between repeated and new stimuli emerged at 180–260 ms: neural source estimations in controls revealed more extended MTL activation for N-back stimuli and anterior temporal lobe activations for New stimuli compared to highly familiar repetitions. In contrast, AD patients exhibited no activation differences between the three stimulus types. In direct comparison, healthy subjects had significantly stronger MTL activation in response to New and N-back stimuli than AD patients. These results point to abnormally weak early MTL activity as a correlate of deficient novelty detection and encoding in early AD.
Collapse
|
8
|
Toth M, Sambeth A, Blokland A. The antimuscarinic agent biperiden selectively impairs recognition of abstract figures without affecting the processing of non-words. Hum Psychopharmacol 2022; 37:e2819. [PMID: 34533841 PMCID: PMC9286668 DOI: 10.1002/hup.2819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The present study investigated the effects of biperiden, a muscarinic type 1 antagonist, on the recognition performance of pre-experimentally unfamiliar abstract figures and non-words in healthy young volunteers. The aim was to examine whether 4 mg biperiden could model the recognition memory impairment seen in healthy aging. METHODS A double-blind, placebo-controlled, two-way crossover study was conducted. We used a three-phase (deep memorization, shallow memorization, and recognition) old/new discrimination paradigm in which memory strength was manipulated. Strong memories were induced by deep encoding and repetition. Deep encoding was encouraged by redrawing the abstract figures and mentioning existing rhyme words for the non-words (semantic processing). Weak memories were created by merely instructing the participants to study the stimuli (shallow memorization). RESULTS Biperiden impaired recognition accuracy and prolonged reaction times of the drawn and the studied abstract figures. However, participants were biased towards "old" responses in the placebo condition. The recognition of the new abstract figures was unaffected by the drug. Biperiden did not affect the recognition of the non-words. CONCLUSIONS Although biperiden may model age-related deficits in episodic memory, the current findings indicate that biperiden does not mimic age-related deficits in recognition performance.
Collapse
Affiliation(s)
- Monika Toth
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityThe Netherlands
| | - Anke Sambeth
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityThe Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and PsychopharmacologyFaculty of Psychology and NeuroscienceMaastricht UniversityThe Netherlands
| |
Collapse
|
9
|
Hou M, Wang TH, Rugg MD. The effects of age on neural correlates of recognition memory: An fMRI study. Brain Cogn 2021; 153:105785. [PMID: 34419811 PMCID: PMC8429125 DOI: 10.1016/j.bandc.2021.105785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Studies examining the effects of age on the neural correlates of recognition memory have yielded mixed results. In the present study, we employed a modified remember-know paradigm to compare the fMRI correlates of recollection and familiarity in samples of healthy young and older adults. After studying a series of words, participants underwent fMRI scanning during a test phase in which they responded "remember" to a test word if any qualitative information could be recollected about the study event. When recollection failed, participants signaled how confident they were that the test item had been studied. Young and older adults demonstrated statistically equivalent estimates of recollection and familiarity strength, while recognition memory accuracy was significantly lower in the older adults. Robust, age-invariant fMRI effects were evident in two sets of a priori defined brain regions consistently reported in prior studies to be sensitive to recollection and familiarity respectively. In addition, the magnitudes of 'familiarity-attenuation effects' in perirhinal cortex demonstrated age-invariant correlations with estimates of familiarity strength and memory accuracy, replicating prior findings. Together, the present findings add to the evidence that the neural correlates of recognition memory are largely stable across much of the healthy human adult lifespan.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA.
| | - Tracy H Wang
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA; School of Psychology, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
10
|
Nie A, Jiang G. Does stimulus emotionality influence associative memory? Insights from directed forgetting. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-019-00449-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Hill PF, Horne ED, Koen JD, Rugg MD. Transcranial magnetic stimulation of right dorsolateral prefrontal cortex does not affect associative retrieval in healthy young or older adults. NEUROIMAGE. REPORTS 2021; 1:100027. [PMID: 35434691 PMCID: PMC9009824 DOI: 10.1016/j.ynirp.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We examined whether post-retrieval monitoring processes supporting memory performance are more resource limited in older adults than younger individuals. We predicted that older adults would be more susceptible to an experimental manipulation that reduced the neurocognitive resources available to support post-retrieval monitoring. Young and older adults received transcranial magnetic stimulation (TMS) to the right dorsolateral prefrontal cortex (DLPFC) or a vertex control site during an associative recognition task. The right DLPFC was selected as a TMS target because the region is held to be a key member of a network of regions engaged during retrieval monitoring and is readily accessible to administration of TMS. We predicted that TMS to the right DLPFC would lead to reduced associative recognition accuracy, and that this effect would be more prominent in older adults. The results did not support this prediction. Recognition accuracy was significantly reduced in older adults relative to their younger counterparts, but the magnitude of this age difference was unaffected following TMS to the right DLPFC or vertex. These findings suggest that TMS to the right DLPFC was insufficient to deplete the neurocognitive resources necessary to support post-retrieval monitoring.
Collapse
Affiliation(s)
- Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
| | - Erin D Horne
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
| | - Joshua D Koen
- Department of Psychology, University of Notre Dame, Notre Dame, IN 46556
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- School of Psychology, University of East Anglica, Norwich NR4 7TJ, UK
| |
Collapse
|
12
|
Failure of resting-state frontal-occipital connectivity in linking visual perception with reading fluency in Chinese children with developmental dyslexia. Neuroimage 2021; 233:117911. [PMID: 33711483 DOI: 10.1016/j.neuroimage.2021.117911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
It is widely accepted that impairment in visual perception impedes children's reading development, and further studies have demonstrated significant enhancement in reading fluency after visual perceptual training. However, the mechanism of the neural linkage between visual perception and reading is unclear. The purpose of this study was to examine the intrinsic functional relationship between visual perception (indexed by the texture discrimination task,TDT) and reading ability (character reading and reading fluency) in Chinese children with developmental dyslexia (DD) and those with typical development (TD). The resting-state functional connectivity (RSFC) between the primary visual cortex (V1, BA17) and the entire brain was analyzed. In addition, how RSFC maps are associated with TDT performance and reading ability in the DD and TD groups was examined. The results demonstrated that the strength of the RSFC between V1 and the left middle frontal gyrus (LMFG, BA9/BA46) was significantly correlated with both the threshold (SOA) of the TDT and reading fluency in TD children but not in DD children. Moreover, LMFG-V1 resting-state connectivity played a mediating role in the association of visual texture discrimination and reading fluency, but not in character reading, in TD children. In contrast, this mediation was absent in DD children, albeit their strengths of RSFC between V1 and the left middle frontal gyrus (LMFG) were comparable to those for the TD group. These findings indicate that typically developing children use the linkage of the RSFC between the V1 and LMFG for visual perception skills, which in turn promote fluent reading; in contrast, children with dyslexia, who had higher TDT thresholds than TD children, could not take advantage of their frontal-occipital connectivity to improve reading fluency abilities. These findings suggest that visual perception plays an important role in reading skills and that children with developmental dyslexia lack the ability to use their frontal-occipital connectivity to link visual perception with reading fluency.
Collapse
|
13
|
Hill PF, King DR, Rugg MD. Age Differences In Retrieval-Related Reinstatement Reflect Age-Related Dedifferentiation At Encoding. Cereb Cortex 2020; 31:106-122. [PMID: 32829396 DOI: 10.1093/cercor/bhaa210] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Age-related reductions in neural selectivity have been linked to cognitive decline. We examined whether age differences in the strength of retrieval-related cortical reinstatement could be explained by analogous differences in neural selectivity at encoding, and whether reinstatement was associated with memory performance in an age-dependent or an age-independent manner. Young and older adults underwent fMRI as they encoded words paired with images of faces or scenes. During a subsequent scanned memory test participants judged whether test words were studied or unstudied and, for words judged studied, also made a source memory judgment about the associated image category. Using multi-voxel pattern similarity analyses, we identified robust evidence for reduced scene reinstatement in older relative to younger adults. This decline was however largely explained by age differences in neural differentiation at encoding; moreover, a similar relationship between neural selectivity at encoding and retrieval was evident in young participants. The results suggest that, regardless of age, the selectivity with which events are neurally processed at the time of encoding can determine the strength of retrieval-related cortical reinstatement.
Collapse
Affiliation(s)
- Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Danielle R King
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX 75235.,School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080.,Department of Psychiatry, University of Texas Southwestern Medical Center, 6363 Forest Park Rd 7th floor suite 749, Dallas TX 75235.,School of Psychology, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
14
|
Hou M, de Chastelaine M, Jayakumar M, Donley BE, Rugg MD. Recollection-related hippocampal fMRI effects predict longitudinal memory change in healthy older adults. Neuropsychologia 2020; 146:107537. [PMID: 32569610 DOI: 10.1016/j.neuropsychologia.2020.107537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Prior fMRI studies have reported relationships between memory-related activity in the hippocampus and in-scanner memory performance, but whether such activity is predictive of longitudinal memory change remains unclear. Here, we administered a neuropsychological test battery to a sample of cognitively healthy older adults on three occasions, the second and third sessions occurring one month and three years after the first session. Structural and functional MRI data were acquired between the first two sessions. The fMRI data were derived from an associative recognition procedure and allowed estimation of hippocampal effects associated with both successful associative encoding and successful associative recognition (recollection). Baseline memory performance and memory change were evaluated using memory component scores derived from a principal components analysis of the neuropsychological test scores. Across participants, right hippocampal encoding effects correlated significantly with baseline memory performance after controlling for chronological age. Additionally, both left and right hippocampal associative recognition effects correlated negatively with longitudinal memory decline after controlling for age, and the relationship with the left hippocampal effect remained after also controlling for left hippocampal volume. Thus, in cognitively healthy older adults, the magnitude of hippocampal recollection effects appears to be a robust predictor of future memory change.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Manasi Jayakumar
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Brian E Donley
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA; School of Psychology, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
15
|
Lancaster C, Koychev I, Blane J, Chinner A, Chatham C, Taylor K, Hinds C. Gallery Game: Smartphone-based assessment of long-term memory in adults at risk of Alzheimer's disease. J Clin Exp Neuropsychol 2020; 42:329-343. [PMID: 31973659 DOI: 10.1080/13803395.2020.1714551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Gallery Game, deployed within the Mezurio smartphone app, targets the processes of episodic memory hypothesized to be first vulnerable to neurofibrillary tau-related degeneration in Alzheimer's Disease, prioritizing both perirhinal and entorhinal cortex/hippocampal demands.Methods: Thirty-five healthy adults (aged 40-59 years), biased toward those at elevated familial risk of dementia, completed daily Gallery Game tasks for a month. Assessments consisted of cross-modal paired-associate learning, with subsequent tests of recognition and free recall following delays ranging from one to 13 days.Results: Retention intervals of at least three days were needed to evidence significant forgetting at both recognition and paired-associate recall test. The association between Gallery Game outcomes and established in-clinic memory assessments were small but numerically in the anticipated direction. In addition, there was preliminary support for utilizing the perirhinal-dependent pattern of semantic false alarms during object recognition as a marker of early impairment.Conclusions: These results support the need for tests of longer-term memory to sensitively record behavioral differences in adults with no diagnosis of cognitive impairment. Aggregate behavioral outcomes promote Gallery Game's utility as a digital assessment of episodic memory, aligning with established theoretical models of object memory and showing small yet uniform associations with existing in-clinic tests. Initial support for the discriminatory value of perirhinal-targeted outcomes justifies ongoing large-sample validation against traditional biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jasmine Blane
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Amy Chinner
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Kirsten Taylor
- Roche Innovation Centre, F.Hoffmann-La Roche Ltd., Basel, Switzerland.,Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Chris Hinds
- Big Data Institute, University of Oxford, Oxford, UK.,Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
16
|
Hill PF, King DR, Lega BC, Rugg MD. Comparison of fMRI correlates of successful episodic memory encoding in temporal lobe epilepsy patients and healthy controls. Neuroimage 2019; 207:116397. [PMID: 31770638 PMCID: PMC7238288 DOI: 10.1016/j.neuroimage.2019.116397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Intra-cranial electroencephalographic brain recordings (iEEG) provide a powerful tool for investigating the neural processes supporting episodic memory encoding and form the basis of experimental therapies aimed at improving memory dysfunction. However, given the invasiveness of iEEG, investigations are constrained to patients with drug-resistant epilepsy for whom such recordings are clinically indicated. Particularly in the case of temporal lobe epilepsy (TLE), neuropathology and the possibility of functional reorganization are potential constraints on the generalizability of intra-cerebral findings and pose challenges to the development of therapies for memory disorders stemming from other etiologies. Here, samples of TLE (N = 16; all of whom had undergone iEEG) and age-matched healthy control (N = 19) participants underwent fMRI as they studied lists of concrete nouns. fMRI BOLDresponses elicited by the study words were segregated according to subsequent performance on tests of delayed free recall and recognition memory. Subsequent memory effects predictive of both successful recall and recognition memory were evident in several neural regions, most prominently in the left inferior frontal gyrus, and did not demonstrate any group differences. Behaviorally, the groups did not differ in overall recall performance or in the strength of temporal contiguity effects. However, group differences in serial position effects and false alarm rates were evident during the free recall and recognition memory tasks, respectively. Despite these behavioral differences, neuropathology associated with temporal lobe epilepsy was apparently insufficient to give rise to detectable differences in the functional neuroanatomy of episodic memory encoding relative to neurologically healthy controls. The findings provide reassurance that iEEG findings derived from experimental paradigms similar to those employed here generalize to the neurotypical population.
Collapse
Affiliation(s)
- Paul F Hill
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Danielle R King
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern Medical Center, 5303 Harry Hines Blvd 6th Floor Suite 108, Dallas, TX, 75390, USA
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, 1600 Viceroy Dr. #800, Dallas, TX, 75235, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, 6363 Forest Park Rd 7th Floor Suite 749, Dallas, TX, 75235, USA
| |
Collapse
|
17
|
Age moderates the relationship between cortical thickness and cognitive performance. Neuropsychologia 2019; 132:107136. [PMID: 31288025 DOI: 10.1016/j.neuropsychologia.2019.107136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022]
Abstract
Findings from cross-sectional and longitudinal magnetic resonance imaging (MRI) studies indicate that cortical thickness declines across the adult lifespan, with regional differences in rate of decline. Global and regional thickness have also been found to co-vary with cognitive performance. Here we examined the relationships between age, mean cortical thickness, and associative recognition performance across three age groups (younger, middle-aged and older adults; total n = 133). Measures of cortical thickness were obtained using a semi-automated method. Older age was associated with decreased memory performance and a reduction in mean cortical thickness. After controlling for the potentially confounding effects of head motion, mean cortical thickness was negatively associated with associative memory performance in the younger participants, but was positively correlated with performance in older participants. A similar but weaker pattern was evident in the relationships between cortical thickness and scores on four cognitive constructs derived from a neuropsychological test battery. This pattern is consistent with prior findings indicating that the direction of the association between cortical thickness and cognitive performance reverses between early and later adulthood. In addition, head motion was independently and negatively correlated with associative recognition performance in younger and middle-aged, but not older, participants, suggesting that variance in head motion is determined by multiple factors that vary in their relative influences with age.
Collapse
|
18
|
Novelty processing and memory impairment in Alzheimer's disease: A review. Neurosci Biobehav Rev 2019; 100:237-249. [DOI: 10.1016/j.neubiorev.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/24/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
|
19
|
Koen JD, Thakral PP, Rugg MD. Transcranial magnetic stimulation of the left angular gyrus during encoding does not impair associative memory performance. Cogn Neurosci 2018; 9:127-138. [PMID: 29870300 DOI: 10.1080/17588928.2018.1484723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The left angular gyrus (AG) is thought to play a critical role in episodic retrieval and has been implicated in the recollection of specific details of prior episodes. Motivated by recent fMRI studies in which it was reported that elevated neural activity in left AG during study is predictive of subsequent associative memory, the present study investigated whether the region plays a causal role in associative memory encoding. Participants underwent online transcranial magnetic stimulation (TMS) while encoding word pairs prior to an associative memory test. We predicted that TMS to left AG during encoding would result in reduced subsequent memory accuracy, especially for estimates of recollection. The results did not support this prediction: estimates of both recollection and familiarity-driven recognition were essentially identical for words pairs encoded during TMS to left AG relative to a vertex control site. These results suggest that the left AG may not play a necessary role in associative memory encoding. TMS to left AG did however affect confidence for incorrect 'intact' judgments to rearranged pairs and incorrect 'rearranged' judgments to intact pairs. These findings suggest that the left AG supports encoding processes that contribute to aspects of subjective mnemonic experience.
Collapse
Affiliation(s)
- Joshua D Koen
- a Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas , USA
| | | | - Michael D Rugg
- a Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas , Dallas , USA
| |
Collapse
|
20
|
Kafkas A, Montaldi D. How do memory systems detect and respond to novelty? Neurosci Lett 2018; 680:60-68. [PMID: 29408218 PMCID: PMC6565889 DOI: 10.1016/j.neulet.2018.01.053] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/22/2022]
Abstract
The efficiency of the memory system lies not only in its readiness to detect and retrieve old stimuli but also in its ability to detect and integrate novel information. In this review, we discuss recent evidence suggesting that the neural substrates sensitive to detecting familiarity and novelty are not entirely overlapping. Instead, these partially distinct familiarity and novelty signals are integrated to support recognition memory decisions. We propose here that the mediodorsal thalamus is critical for familiarity detection, and for combining novelty signals from the medial temporal lobe cortex with the relative familiarity outputs of computations performed in other cortical structures, especially the prefrontal cortex. Importantly, we argue that the anterior hippocampus has a prominent role in detecting novelty and in communicating this with midbrain and striatal structures. We argue that different types of novelty (absolute or contextual) engage different neurotransmitter systems that converge in the hippocampus. We suggest that contextual or unexpected novelty triggers dopaminergic hippocampal-midbrain coupling and noradrenergic-mediated pupil dilation. In contrast, absolute novelty triggers cholinergic-mediated hippocampal encoding accompanied by diminished pupil dilation. These two, distinct hippocampal encoding mechanisms both lead to later recollection but are sensitive to different types of novelty. We conclude that this neurotransmitter-mediated hippocampal encoding establishes the hippocampus in an encoding mode that briefly prevents the engagement of retrieval.
Collapse
Affiliation(s)
- Alex Kafkas
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, UK.
| | - Daniela Montaldi
- Memory Research Unit, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, University of Manchester, UK
| |
Collapse
|
21
|
King DR, de Chastelaine M, Rugg MD. Recollection-related increases in functional connectivity across the healthy adult lifespan. Neurobiol Aging 2018; 62:1-19. [PMID: 29101898 PMCID: PMC5753578 DOI: 10.1016/j.neurobiolaging.2017.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/24/2022]
Abstract
In young adults, recollection-sensitive brain regions exhibit enhanced connectivity with a widely distributed set of other regions during successful versus unsuccessful recollection, and the magnitude of connectivity change correlates with individual differences in recollection accuracy. Here, we examined whether recollection-related changes in connectivity and their relationship with performance varied across samples of young, middle-aged, and older adults. Psychophysiological interaction analyses identified recollection-related increases in connectivity both with recollection-sensitive seed regions and among regions distributed throughout the whole brain. The seed-based approach failed to identify age-related differences in recollection-related connectivity change. However, the whole-brain analysis revealed a number of age-related effects. Numerous pairs of regions exhibited a main effect of age on connectivity change, mostly due to decreased change with increasing age. After controlling for recollection accuracy, however, these effects of age were for the most part no longer significant, and those effects that were detected now reflected age-related increases in connectivity change. A subset of pairs of regions also exhibited an age by performance interaction, driven mostly by a weaker relationship between connectivity change and recollection accuracy with increasing age. We conjecture that these effects reflect age-related differences in neuromodulation.
Collapse
Affiliation(s)
- Danielle R King
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
22
|
Dissociation between the neural correlates of recollection and familiarity in the striatum and hippocampus: Across-study convergence. Behav Brain Res 2017; 354:1-7. [PMID: 28803854 DOI: 10.1016/j.bbr.2017.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023]
Abstract
In tests of recognition memory, neural activity in the striatum has consistently been reported to differ according to the study status of the test item. A full understanding of the functional significance of striatal 'retrieval success' effects is impeded by a paucity of evidence concerning whether the effects differ according to the nature of the memory signal supporting the recognition judgment (recollection vs. familiarity). Here, we address this issue through an analysis of retrieval-related striatal activity in three independent fMRI studies (total N = 88). Recollection and familiarity were operationalized in a different way in each study, allowing the identification of test-independent, generic recollection- and familiarity-related effects. While activity in a bilateral dorsal striatal region, mainly encompassing the caudate nucleus, was enhanced equally by recollected and 'familiar only' test items, activity in bilateral ventral striatum and adjacent subgenual frontal cortex was enhanced only in response to items that elicited successful recollection. By contrast, relative to familiar items, activity in anterior hippocampus was enhanced for both recollected and novel test items. Thus, recollection- and familiarity-driven recognition memory judgments are associated with anatomically distinct patterns of retrieval-related striatal activity, and these patterns are at least partially independent of recollection and novelty effects in the hippocampus.
Collapse
|
23
|
Madan CR. Advances in Studying Brain Morphology: The Benefits of Open-Access Data. Front Hum Neurosci 2017; 11:405. [PMID: 28824407 PMCID: PMC5543094 DOI: 10.3389/fnhum.2017.00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
|
24
|
Rugg MD, King DR. Ventral lateral parietal cortex and episodic memory retrieval. Cortex 2017; 107:238-250. [PMID: 28802589 DOI: 10.1016/j.cortex.2017.07.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 01/21/2023]
Abstract
With the advent of functional neuroimaging it quickly became apparent that successful episodic memory retrieval was consistently associated with enhanced activity in ventral lateral parietal cortex (VLPC), especially the left angular gyrus. Here, we selectively review recent neuropsychological and functional neuroimaging evidence relevant to the question of the functional significance of this activity. We argue that the balance of the evidence suggests that the angular gyrus supports the representation of retrieved episodic information, and that this likely reflects a more general role for the region in representing multi-modal and multi-domain information.
Collapse
Affiliation(s)
- Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy, Dallas, TX, USA.
| | - Danielle R King
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy, Dallas, TX, USA
| |
Collapse
|