1
|
Engelhardt M, Kern G, Karhu J, Picht T. Protocol for mapping of the supplementary motor area using repetitive navigated transcranial magnetic stimulation. Front Neurosci 2023; 17:1185483. [PMID: 37332876 PMCID: PMC10272366 DOI: 10.3389/fnins.2023.1185483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Damage to the supplementary motor area (SMA) can lead to impairments of motor and language function. A detailed preoperative mapping of functional boarders of the SMA could therefore aid preoperative diagnostics in these patients. Objective The aim of this study was the development of a repetitive nTMS protocol for non-invasive functional mapping of the SMA while assuring effects are caused by SMA rather than M1 activation. Methods The SMA in the dominant hemisphere of 12 healthy subjects (28.2 ± 7.7 years, 6 females) was mapped using repetitive nTMS at 20 Hz (120% RMT), while subjects performed a finger tapping task. Reductions in finger taps were classified in three error categories (≤15% = no errors, 15-30% = mild, >30% significant). The location and category of induced errors was marked in each subject's individual MRI. Effects of SMA stimulation were then directly compared to effects of M1 stimulation in four different tasks (finger tapping, writing, line tracing, targeting circles). Results Mapping of the SMA was possible for all subjects, yet effect sizes varied. Stimulation of the SMA led to a significant reduction of finger taps compared to baseline (BL: 45taps, SMA: 35.5taps; p < 0.01). Line tracing, writing and targeting of circles was less accurate during SMA compared to M1 stimulation. Conclusion Mapping of the SMA using repetitive nTMS is feasible. While errors induced in the SMA are not entirely independent of M1, disruption of the SMA induces functionally distinct errors. These error maps can aid preoperative diagnostics in patients with SMA related lesions.
Collapse
Affiliation(s)
- Melina Engelhardt
- Department of Neurosurgery, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- International Graduate Program Medical Neurosciences, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giulia Kern
- Department of Neurosurgery, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jari Karhu
- Department of Physiology, University of Eastern Finland, Kuopio, Finland
| | - Thomas Picht
- Department of Neurosurgery, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences, Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Barhoun P, Fuelscher I, Do M, He JL, Cerins A, Bekkali S, Youssef GJ, Corp D, Major BP, Meaney D, Enticott PG, Hyde C. The role of the primary motor cortex in motor imagery: A theta burst stimulation study. Psychophysiology 2022; 59:e14077. [PMID: 35503930 PMCID: PMC9540768 DOI: 10.1111/psyp.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/06/2022] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
While mentally simulated actions activate similar neural structures to overt movement, the role of the primary motor cortex (PMC) in motor imagery remains disputed. The aim of the study was to use continuous theta burst stimulation (cTBS) to modulate corticospinal activity to investigate the putative role of the PMC in implicit motor imagery in young adults with typical and atypical motor ability. A randomized, double blind, sham-controlled, crossover, offline cTBS protocol was applied to 35 young adults. During three separate sessions, adults with typical and low motor ability (developmental coordination disorder [DCD]), received active cTBS to the PMC and supplementary motor area (SMA), and sham stimulation to either the PMC or SMA. Following stimulation, participants completed measures of motor imagery (i.e., hand rotation task) and visual imagery (i.e., letter number rotation task). Although active cTBS significantly reduced corticospinal excitability in adults with typical motor ability, neither task performance was altered following active cTBS to the PMC or SMA, compared to performance after sham cTBS. These results did not differ across motor status (i.e., typical motor ability and DCD). These findings are not consistent with our hypothesis that the PMC (and SMA) is directly involved in motor imagery. Instead, previous motor cortical activation observed during motor imagery may be an epiphenomenon of other neurophysiological processes and/or activity within brain regions involved in motor imagery. This study highlights the need to consider multi-session theta burst stimulation application and its neural effects when probing the putative role of motor cortices in motor imagery.
Collapse
Affiliation(s)
- Pamela Barhoun
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Michael Do
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Jason L. He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational NeurodevelopmentInstitute of Psychiatry, Psychology, and Neuroscience, King’s College LondonLondonUK
| | - Andris Cerins
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Soukayna Bekkali
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - George J. Youssef
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Murdoch Children’s Research Institute, Centre for Adolescent HealthRoyal Children’s HospitalMelbourneVictoriaAustralia
| | - Daniel Corp
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Brendan P. Major
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Dwayne Meaney
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
3
|
Gann MA, King BR, Dolfen N, Veldman MP, Davare M, Swinnen SP, Mantini D, Robertson EM, Albouy G. Prefrontal stimulation prior to motor sequence learning alters multivoxel patterns in the striatum and the hippocampus. Sci Rep 2021; 11:20572. [PMID: 34663890 PMCID: PMC8523553 DOI: 10.1038/s41598-021-99926-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Motor sequence learning (MSL) is supported by dynamical interactions between hippocampal and striatal networks that are thought to be orchestrated by the prefrontal cortex. In the present study, we tested whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex (DLPFC) prior to MSL can modulate multivoxel response patterns in the stimulated cortical area, the hippocampus and the striatum. Response patterns were assessed with multivoxel correlation structure analyses of functional magnetic resonance imaging data acquired during task practice and during resting-state scans before and after learning/stimulation. Results revealed that, across stimulation conditions, MSL induced greater modulation of task-related DLPFC multivoxel patterns than random practice. A similar learning-related modulatory effect was observed on sensorimotor putamen patterns under inhibitory stimulation. Furthermore, MSL as well as inhibitory stimulation affected (posterior) hippocampal multivoxel patterns at post-intervention rest. Exploratory analyses showed that MSL-related brain patterns in the posterior hippocampus persisted into post-learning rest preferentially after inhibitory stimulation. These results collectively show that prefrontal stimulation can alter multivoxel brain patterns in deep brain regions that are critical for the MSL process. They also suggest that stimulation influenced early offline consolidation processes as evidenced by a stimulation-induced modulation of the reinstatement of task pattern into post-learning wakeful rest.
Collapse
Affiliation(s)
- Mareike A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nina Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Menno P Veldman
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Marco Davare
- Department of Clinical Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PN, UK
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, 3001, Leuven, Belgium.
- LBI - KU Leuven Brain Institute, KU Leuven, 3001, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Intermittent Theta Burst Stimulation to the Primary Motor Cortex Reduces Cortical Inhibition: A TMS-EEG Study. Brain Sci 2021; 11:brainsci11091114. [PMID: 34573136 PMCID: PMC8472376 DOI: 10.3390/brainsci11091114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The aim of this study was to reveal the effects of intermittent theta burst stimulation (iTBS) in modulating cortical networks using transcranial magnetic stimulation and electroencephalography (TMS-EEG) recording. Methods: Eighteen young adults participated in our study and received iTBS to the primary motor cortex (M1), supplementary motor area, and the primary visual cortex in three separate sessions. A finger tapping task and ipsilateral single-pulse TMS-EEG recording for the M1 were administrated before and after iTBS in each session. The effects of iTBS in motor performance and TMS-evoked potentials (TEPs) were investigated. Results: The results showed that iTBS to the M1, but not supplementary motor area or the primary visual cortex, significantly reduced the N100 amplitude of M1 TEPs in bilateral hemispheres (p = 0.019), with a more prominent effect in the contralateral hemisphere than in the stimulated hemisphere. Moreover, only iTBS to the M1 decreased global mean field power (corrected ps < 0.05), interhemispheric signal propagation (t = 2.53, p = 0.030), and TMS-induced early α-band synchronization (p = 0.020). Conclusion: Our study confirmed the local and remote after-effects of iTBS in reducing cortical inhibition in the M1. TMS-induced oscillations after iTBS for changed cortical excitability in patients with various neurological and psychiatric conditions are worth further exploration.
Collapse
|
5
|
Gabitov E, Lungu O, Albouy G, Doyon J. Weaker Inter-hemispheric and Local Functional Connectivity of the Somatomotor Cortex During a Motor Skill Acquisition Is Associated With Better Learning. Front Neurol 2019; 10:1242. [PMID: 31827459 PMCID: PMC6890719 DOI: 10.3389/fneur.2019.01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, an increasing interest in investigating interactions between brain regions using functional connectivity (FC) methods has shifted the initial focus of cognitive neuroimaging research from localizing functional circuits based on task activation to mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages of the latter approach, it has been shown that despite primarily invariant intrinsic organization of the large-scale functional networks, interactions between and within these networks significantly differ between various behavioral and cognitive states. These differences presumably indicate transient reconfiguration of functional connections-an instantaneous process that flexibly mediates and calibrates human behavior according to momentary demands of the environment. Nevertheless, the specificity of these reconfigured FC patterns to the task at hand and their relevance to adaptive processes during learning remain elusive. To address this knowledge gap, we investigated (1) to what extent FC within the somatomotor network is reconfigured during motor skill practice, and (2) how these changes are related to learning. We applied a seed-driven FC approach to data collected during a continuous task-free condition, so-called resting state, and during a motor sequence learning task using functional magnetic resonance imaging. During the task, participants repeatedly performed a short five-element sequence with their non-dominant (left) hand. As predicted, such unimanual sequence production was associated with lateralized activation of the right somatomotor cortex (SMC). Using this "active" region as a seed, here we show that unimanual performance of the motor sequence relies on functional segregation between the two SMC and selective integration between the "active" SMC and supplementary motor area. Whereas, greater segregation between the two SMC was associated with gains in performance rate, greater segregation within the "active" SMC itself was associated with more consistent performance by the end of training. Nether the resting-state FC patterns within the somatomotor network nor their relative modulation by the task state predicted these behavioral benefits of learning. Our results suggest that task-induced FC changes reflect reconfiguration of the connectivity patterns within the somatomotor network rather than a simple amplification or silencing of its intrinsic dynamics. Such reconfiguration not only supports motor behavior but may also predict learning.
Collapse
Affiliation(s)
- Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
6
|
Derosiere G, Thura D, Cisek P, Duque J. Motor cortex disruption delays motor processes but not deliberation about action choices. J Neurophysiol 2019; 122:1566-1577. [PMID: 31411932 DOI: 10.1152/jn.00163.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decisions about actions typically involve a period of deliberation that ends with the commitment to a choice and the motor processes overtly expressing that choice. Previous studies have shown that neural activity in sensorimotor areas, including the primary motor cortex (M1), correlates with deliberation features during action selection. However, the causal contribution of these areas to the decision process remains unclear. Here, we investigated whether M1 determines choice commitment or whether it simply reflects decision signals coming from upstream structures and instead mainly contributes to the motor processes that follow commitment. To do so, we tested the impact of a disruption of M1 activity, induced by continuous theta burst stimulation (cTBS), on the behavior of human subjects in 1) a simple reaction time (SRT) task allowing us to estimate the duration of the motor processes and 2) a modified version of the tokens task (Cisek P, Puskas GA, El-Murr S. J Neurosci 29: 11560-11571, 2009), which allowed us to estimate subjects' time of commitment as well as accuracy criterion. The efficiency of cTBS was attested by a reduction in motor evoked potential amplitudes following M1 disruption compared with those following a sham stimulation. Furthermore, M1 cTBS lengthened SRTs, indicating that motor processes were perturbed by the intervention. Importantly, all of the behavioral results in the tokens task were similar following M1 disruption and sham stimulation, suggesting that the contribution of M1 to the deliberation process is potentially negligible. Taken together, these findings favor the view that M1 contribution is downstream of the decision process.NEW & NOTEWORTHY Decisions between actions are ubiquitous in the animal realm. Deliberation during action choices entails changes in the activity of the sensorimotor areas controlling those actions, but the causal role of these areas is still often debated. With the use of continuous theta burst stimulation, we show that disrupting the primary motor cortex (M1) delays the motor processes that follow instructed commitment but does not alter volitional deliberation, suggesting that M1 contribution may be downstream of the decision process.
Collapse
Affiliation(s)
- Gerard Derosiere
- Laboratory of Neurophysiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - David Thura
- Lyon Neuroscience Research Center - IMPACT Team, INSERM U1028 - CNRS UMR 5292, Bron, France
| | - Paul Cisek
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Julie Duque
- Laboratory of Neurophysiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Welniarz Q, Gallea C, Lamy JC, Méneret A, Popa T, Valabregue R, Béranger B, Brochard V, Flamand-Roze C, Trouillard O, Bonnet C, Brüggemann N, Bitoun P, Degos B, Hubsch C, Hainque E, Golmard JL, Vidailhet M, Lehéricy S, Dusart I, Meunier S, Roze E. The supplementary motor area modulates interhemispheric interactions during movement preparation. Hum Brain Mapp 2019; 40:2125-2142. [PMID: 30653778 DOI: 10.1002/hbm.24512] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/01/2019] [Indexed: 01/25/2023] Open
Abstract
The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.
Collapse
Affiliation(s)
- Quentin Welniarz
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Cécile Gallea
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Jean-Charles Lamy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Traian Popa
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Romain Valabregue
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Vanessa Brochard
- Centre d'Investigation Clinique 14-22, INSERM/AP-HP, Paris, France
| | - Constance Flamand-Roze
- IFPPC, Centre CAMKeys, 7 rue des Cordelières, Paris, France.,Service de Neurologie, Unité Cardiovasculaire, Centre Hospitalier Sud-Francilien, Université Paris-Sud, Corbeille-Essonne, France
| | - Oriane Trouillard
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Cécilia Bonnet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Bertrand Degos
- Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cécile Hubsch
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elodie Hainque
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Louis Golmard
- Département de biostatistiques, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| | - Marie Vidailhet
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Centre de NeuroImagerie de Recherche CENIR, Institut du Cerveau et de la Moelle - ICM, Paris, France
| | - Isabelle Dusart
- Faculté des sciences, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Sabine Meunier
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Emmanuel Roze
- Faculté de Médecine, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.,Département de Neurologie, Assistance Publique - Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
8
|
Zénon A, Solopchuk O, Pezzulo G. An information-theoretic perspective on the costs of cognition. Neuropsychologia 2018; 123:5-18. [PMID: 30268880 DOI: 10.1016/j.neuropsychologia.2018.09.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 08/10/2018] [Accepted: 09/19/2018] [Indexed: 01/06/2023]
Abstract
In statistics and machine learning, model accuracy is traded off with complexity, which can be viewed as the amount of information extracted from the data. Here, we discuss how cognitive costs can be expressed in terms of similar information costs, i.e. as a function of the amount of information required to update a person's prior knowledge (or internal model) to effectively solve a task. We then examine the theoretical consequences that ensue from this assumption. This framework naturally explains why some tasks - for example, unfamiliar or dual tasks - are costly and permits to quantify these costs using information-theoretic measures. Finally, we discuss brain implementation of this principle and show that subjective cognitive costs can originate either from local or global capacity limitations on information processing or from increased rate of metabolic alterations. These views shed light on the potential adaptive value of cost-avoidance mechanisms.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| | - Oleg Solopchuk
- Institut de Neuroscience Cognitive et Intégrative d'Aquitaine, Université de Bordeaux, France; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| |
Collapse
|