1
|
Shen X, Caverzasi E, Yang Y, Liu X, Green A, Henry RG, Emir U, Larson PEZ. 3D balanced SSFP UTE MRI for multiple contrasts whole brain imaging. Magn Reson Med 2024; 92:702-714. [PMID: 38525680 DOI: 10.1002/mrm.30093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.
Collapse
Affiliation(s)
- Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Yang Yang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Ari Green
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Roland G Henry
- Neurology, University of California San Francisco, San Francisco, California, USA
| | - Uzay Emir
- School of Health Science, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peder E Z Larson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Shin SH, Moazamian D, Suprana A, Zeng C, Athertya JS, Carl M, Ma Y, Jang H, Du J. Yet more evidence that non-aqueous myelin lipids can be directly imaged with ultrashort echo time (UTE) MRI on a clinical 3T scanner: a lyophilized red blood cell membrane lipid study. Neuroimage 2024; 296:120666. [PMID: 38830440 PMCID: PMC11380916 DOI: 10.1016/j.neuroimage.2024.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
3
|
Baadsvik EL, Weiger M, Froidevaux R, Schildknecht CM, Ineichen BV, Pruessmann KP. Myelin bilayer mapping in the human brain in vivo. Magn Reson Med 2024; 91:2332-2344. [PMID: 38171541 DOI: 10.1002/mrm.29998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To quantitatively map the myelin lipid-protein bilayer in the live human brain. METHODS This goal was pursued by integrating a multi-TE acquisition approach targeting ultrashort T2 signals with voxel-wise fitting to a three-component signal model. Imaging was performed at 3 T in two healthy volunteers using high-performance RF and gradient hardware and the HYFI sequence. The design of a suitable imaging protocol faced substantial constraints concerning SNR, imaging volume, scan time, and RF power deposition. Model fitting to data acquired using the proposed protocol was made feasible through simulation-based optimization, and filtering was used to condition noise presentation and overall depiction fidelity. RESULTS A multi-TE protocol (11 TEs of 20-780 μs) for in vivo brain imaging was developed in adherence with applicable safety regulations and practical scan time limits. Data acquired using this protocol produced accurate model fitting results, validating the suitability of the protocol for this purpose. Structured, grainy texture of myelin bilayer maps was observed and determined to be a manifestation of correlated image noise resulting from the employed acquisition strategy. Map quality was significantly improved by filtering to uniformize the k-space noise distribution and simultaneously extending the k-space support. The final myelin bilayer maps provided selective depiction of myelin, reconciling competitive resolution (1.4 mm) with adequate SNR and benign noise texture. CONCLUSION Using the proposed technique, quantitative maps of the myelin bilayer can be obtained in vivo. These maps offer unique information content with potential applications in basic research, diagnosis, disease monitoring, and drug development.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | | | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Searleman AC, Ma Y, Sampath S, Sampath S, Bussell R, Chang EY, Deaton L, Schumacher AM, Du J. 3D inversion recovery ultrashort echo time MRI can detect demyelination in cuprizone-treated mice. FRONTIERS IN NEUROIMAGING 2024; 3:1356713. [PMID: 38783990 PMCID: PMC11111995 DOI: 10.3389/fnimg.2024.1356713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Purpose To test the ability of inversion-recovery ultrashort echo time (IR-UTE) MRI to directly detect demyelination in mice using a standard cuprizone mouse model. Methods Non-aqueous myelin protons have ultrashort T2s and are "invisible" with conventional MRI sequences but can be detected with UTE sequences. The IR-UTE sequence uses an adiabatic inversion-recovery preparation to suppress the long T2 water signal so that the remaining signal is from the ultrashort T2 myelin component. In this study, eight 8-week-old C57BL/6 mice were fed cuprizone (n = 4) or control chow (n = 4) for 5 weeks and then imaged by 3D IR-UTE MRI. The differences in IR-UTE signal were compared in the major white matter tracts in the brain and correlated with the Luxol Fast Blue histochemical marker of myelin. Results IR-UTE signal decreased in cuprizone-treated mice in white matter known to be sensitive to demyelination in this model, such as the corpus callosum, but not in white matter known to be resistant to demyelination, such as the internal capsule. These findings correlated with histochemical staining of myelin content. Conclusions 3D IR-UTE MRI was sensitive to cuprizone-induced demyelination in the mouse brain, and is a promising noninvasive method for measuring brain myelin content.
Collapse
Affiliation(s)
- Adam C. Searleman
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Srihari Sampath
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Srinath Sampath
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Robert Bussell
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Lisa Deaton
- Novartis Institutes for BioMedical Research, San Diego, CA, United States
| | | | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Quantitative magnetic resonance mapping of the myelin bilayer reflects pathology in multiple sclerosis brain tissue. SCIENCE ADVANCES 2023; 9:eadi0611. [PMID: 37566661 PMCID: PMC10421026 DOI: 10.1126/sciadv.adi0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by loss of myelin (demyelination) and, to a certain extent, subsequent myelin repair (remyelination). To better understand the pathomechanisms underlying de- and remyelination and to monitor the efficacy of treatments aimed at regenerating myelin, techniques offering noninvasive visualizations of myelin are warranted. Magnetic resonance (MR) imaging has long been at the forefront of efforts to visualize myelin, but it has only recently become feasible to access the rapidly decaying resonance signals stemming from the myelin lipid-protein bilayer itself. Here, we show that direct MR mapping of the bilayer yields highly specific myelin maps in brain tissue from patients with MS. Furthermore, examination of the bilayer signal behavior is found to reveal pathological alterations in normal-appearing white and gray matter. These results indicate promise for in vivo implementations of the myelin bilayer mapping technique, with prospective applications in basic research, diagnostics, disease monitoring, and drug development.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
- Institut Curie, Immunity and Cancer Unit 932, Paris, France
| | - Benjamin V. Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Stellingwerff MD, Pouwels PJW, Roosendaal SD, Barkhof F, van der Knaap MS. Quantitative MRI in leukodystrophies. Neuroimage Clin 2023; 38:103427. [PMID: 37150021 PMCID: PMC10193020 DOI: 10.1016/j.nicl.2023.103427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Leukodystrophies constitute a large and heterogeneous group of genetic diseases primarily affecting the white matter of the central nervous system. Different disorders target different white matter structural components. Leukodystrophies are most often progressive and fatal. In recent years, novel therapies are emerging and for an increasing number of leukodystrophies trials are being developed. Objective and quantitative metrics are needed to serve as outcome measures in trials. Quantitative MRI yields information on microstructural properties, such as myelin or axonal content and condition, and on the chemical composition of white matter, in a noninvasive fashion. By providing information on white matter microstructural involvement, quantitative MRI may contribute to the evaluation and monitoring of leukodystrophies. Many distinct MR techniques are available at different stages of development. While some are already clinically applicable, others are less far developed and have only or mainly been applied in healthy subjects. In this review, we explore the background, current status, potential and challenges of available quantitative MR techniques in the context of leukodystrophies.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Petra J W Pouwels
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefan D Roosendaal
- Amsterdam UMC Location University of Amsterdam, Department of Radiology, Meibergdreef 9, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, UK
| | - Marjo S van der Knaap
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Child Neurology, Emma Children's Hospital, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, De Boelelaan 1105, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Zhou Z, Li Q, Liao C, Cao X, Liang H, Chen Q, Pu R, Ye H, Tong Q, He H, Zhong J. Optimized three-dimensional ultrashort echo time: Magnetic resonance fingerprinting for myelin tissue fraction mapping. Hum Brain Mapp 2023; 44:2209-2223. [PMID: 36629336 PMCID: PMC10028641 DOI: 10.1002/hbm.26203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
Quantitative assessment of brain myelination has gained attention for both research and diagnosis of neurological diseases. However, conventional pulse sequences cannot directly acquire the myelin-proton signals due to its extremely short T2 and T2* values. To obtain the myelin-proton signals, dedicated short T2 acquisition techniques, such as ultrashort echo time (UTE) imaging, have been introduced. However, it remains challenging to isolate the myelin-proton signals from tissues with longer T2. In this article, we extended our previous two-dimensional ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) with dual-echo acquisition to three dimensional (3D). Given a relatively low proton density (PD) of myelin-proton, we utilized Cramér-Rao Lower Bound to encode myelin-proton with the maximal SNR efficiency for optimizing the MR fingerprinting design, in order to improve the sensitivity of the sequence to myelin-proton. In addition, with a second echo of approximately 3 ms, myelin-water component can be also captured. A myelin-tissue (myelin-proton and myelin-water) fraction mapping can be thus calculated. The optimized 3D UTE-MRF with dual-echo acquisition is tested in simulations, physical phantom and in vivo studies of both healthy subjects and multiple sclerosis patients. The results suggest that the rapidly decayed myelin-proton and myelin-water signal can be depicted with UTE signals of our method at clinically relevant resolution (1.8 mm isotropic) in 15 min. With its good sensitivity to myelin loss in multiple sclerosis patients demonstrated, our method for the whole brain myelin-tissue fraction mapping in clinical friendly scan time has the potential for routine clinical imaging.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qing Li
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- MR Collaborations, Siemens Healthineers Ltd, Shanghai, China
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Hui Liang
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Quan Chen
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Run Pu
- Neusoft Medical Systems, Shanghai, China
| | - Huihui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
9
|
Reynolds LA, Morris SR, Vavasour IM, Barlow L, Laule C, MacKay AL, Michal CA. Nonaqueous magnetization following adiabatic and selective pulses in brain: T1 and cross-relaxation dynamics. NMR IN BIOMEDICINE 2023:e4936. [PMID: 36973767 DOI: 10.1002/nbm.4936] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Inversion pulses are commonly employed in MRI for T 1 $$ {T}_1 $$ -weighted contrast and relaxation measurements. In the brain, it is often assumed that adiabatic pulses saturate the nonaqueous magnetization. We investigated this assumption using solid-state NMR to monitor the nonaqueous signal directly following adiabatic inversion and compared this with signals following hard and soft inversion pulses. The effects of the different preparations on relaxation dynamics were explored. Inversion recovery experiments were performed on ex vivo bovine and porcine brains using 360-MHz (8.4 T) and 200-MHz (4.7 T) NMR spectrometers, respectively, using broadband rectangular, adiabatic, and sinc inversion pulses as well as a long rectangular saturation pulse. Analogous human brain MRI experiments were performed at 3 T using single-slice echo-planar imaging. Relaxation data were fitted by mono- and biexponential decay models. Further fitting analysis was performed using only two inversion delay times. Adiabatic and sinc inversion left much of the nonaqueous magnetization along B 0 $$ {B}_0 $$ and resulted in biexponential relaxation. Saturation of both aqueous and nonaqueous magnetization components led to effectively monoexponential T 1 $$ {T}_1 $$ relaxation. Typical adiabatic inversion pulses do not, as has been widely assumed, saturate the nonaqueous proton magnetization in white matter. Unequal magnetization states in aqueous and nonaqueous 1 H reservoirs prepared by soft and adiabatic pulses result in biexponential T 1 $$ {T}_1 $$ relaxation. Both pools must be prepared in the same magnetization state (e.g., saturated or inverted) in order to observe consistent monoexponential relaxation.
Collapse
Affiliation(s)
- Luke A Reynolds
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Sarah R Morris
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
| | - Irene M Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Laura Barlow
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Blusson Spinal Cord Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex L MacKay
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Carl A Michal
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Baadsvik EL, Weiger M, Froidevaux R, Faigle W, Ineichen BV, Pruessmann KP. Mapping the myelin bilayer with short-T 2 MRI: Methods validation and reference data for healthy human brain. Magn Reson Med 2023; 89:665-677. [PMID: 36253953 PMCID: PMC10091754 DOI: 10.1002/mrm.29481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore the properties of short-T2 signals in human brain, investigate the impact of various experimental procedures on these properties and evaluate the performance of three-component analysis. METHODS Eight samples of non-pathological human brain tissue were subjected to different combinations of experimental procedures including D2 O exchange and frozen storage. Short-T2 imaging techniques were employed to acquire multi-TE (33-2067 μs) data, to which a three-component complex model was fitted in two steps to recover the properties of the underlying signal components and produce amplitude maps of each component. For validation of the component amplitude maps, the samples underwent immunohistochemical myelin staining. RESULTS The signal component representing the myelin bilayer exhibited super-exponential decay with T2,min of 5.48 μs and a chemical shift of 1.07 ppm, and its amplitude could be successfully mapped in both white and gray matter in all samples. These myelin maps corresponded well to myelin-stained tissue sections. Gray matter signals exhibited somewhat different components than white matter signals, but both tissue types were well represented by the signal model. Frozen tissue storage did not alter the signal components but influenced component amplitudes. D2 O exchange was necessary to characterize the non-aqueous signal components, but component amplitude mapping could be reliably performed also in the presence of H2 O signals. CONCLUSIONS The myelin mapping approach explored here produced reasonable and stable results for all samples. The extensive tissue and methodological investigations performed in this work form a basis for signal interpretation in future studies both ex vivo and in vivo.
Collapse
Affiliation(s)
- Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Shen X, Özen AC, Sunjar A, Ilbey S, Sawiak S, Shi R, Chiew M, Emir U. Ultra-short T 2 components imaging of the whole brain using 3D dual-echo UTE MRI with rosette k-space pattern. Magn Reson Med 2023; 89:508-521. [PMID: 36161728 PMCID: PMC9712161 DOI: 10.1002/mrm.29451] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.
Collapse
Affiliation(s)
- Xin Shen
- Weldon School of Biomedical Engineering, Purdue University
| | - Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Antonia Sunjar
- Weldon School of Biomedical Engineering, Purdue University
| | - Serhat Ilbey
- Department of Radiology, Medical Physics, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stephen Sawiak
- Department of Clinical Neurosciences, University of Cambridge, UK,Department of Psychology, University of Cambridge, UK
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University,College of Veterinary Medicine, Purdue University
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| | - Uzay Emir
- Weldon School of Biomedical Engineering, Purdue University,Health Science Department, Purdue University
| |
Collapse
|
12
|
Borreguero J, Galve F, Algarín JM, Benlloch JM, Alonso J. Low field slice-selective ZTE imaging of ultra-short [Formula: see text] tissues based on spin-locking. Sci Rep 2023; 13:1662. [PMID: 36717649 PMCID: PMC9886919 DOI: 10.1038/s41598-023-28640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Magnetic Resonance Imaging of hard biological tissues is very challenging due to small proton abundance and ultra-short [Formula: see text] decay times, especially at low magnetic fields, where sample magnetization is weak. While several pulse sequences, such as Ultra-short Echo Time (UTE), Zero Echo Time (ZTE) and SWeep Imaging with Fourier Transformation (SWIFT), have been developed to cope with ultra-short lived MR signals, only the latter two hold promise of imaging tissues with sub-millisecond [Formula: see text] times at low fields. All these sequences are intrinsically volumetric, thus 3D, because standard slice selection using a long soft radio-frequency pulse is incompatible with ultra-short lived signals. The exception is UTE, where double half pulses can perform slice selection, although at the cost of doubling the acquisition time. Here we demonstrate that spin-locking is a versatile and robust method for slice selection for ultra-short lived signals, and present three ways of combining this pulse sequence with ZTE imaging of the selected slice. With these tools, we demonstrate slice-selected 2D ex vivo imaging of the hardest tissues in the body at low field (260 mT) within clinically acceptable times.
Collapse
Affiliation(s)
| | - Fernando Galve
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José M. Algarín
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José M. Benlloch
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Joseba Alonso
- Institute for Molecular Imaging and Instrumentation, Spanish National Research Council, 46022 Valencia, Spain
- Institute for Molecular Imaging and Instrumentation, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
13
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
14
|
Borreguero Morata J, González JM, Pallás E, Rigla JP, Algarín JM, Bosch R, Galve F, Grau‐Ruiz D, Pellicer R, Ríos A, Benlloch JM, Alonso J. Prepolarized MRI of hard tissues and solid-state matter. NMR IN BIOMEDICINE 2022; 35:e4737. [PMID: 35384092 PMCID: PMC9540585 DOI: 10.1002/nbm.4737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
Prepolarized MRI (PMRI) is a long-established technique conceived to counteract the loss in signal-to-noise ratio (SNR) inherent to low-field MRI systems. When it comes to hard biological tissues and solid-state matter, PMRI is severely restricted by their ultra-short characteristic relaxation times. Here we demonstrate that efficient hard-tissue prepolarization is within reach with a special-purpose 0.26 T scanner designed for ex vivo dental MRI and equipped with suitable high-power electronics. We have characterized the performance of a 0.5 T prepolarizer module, which can be switched on and off in 200 μs. To this end, we have used resin, dental and bone samples, all with T 1 times of the order of 20 ms at our field strength. The measured SNR enhancement is in good agreement with a simple theoretical model, and deviations in extreme regimes can be attributed to mechanical vibrations due to the magnetic interaction between the prepolarization and main magnets.
Collapse
Affiliation(s)
| | | | - Eduardo Pallás
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - José M. Algarín
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - Fernando Galve
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | | | - Rubén Pellicer
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Asociación de investigación MPCSan SebastiánSpain
| | | | - José M. Benlloch
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| | - Joseba Alonso
- MRILab, Institute for Molecular Imaging and Instrumentation (i3M)Spanish National Research Council (CSIC) and Universitat Politècnica de València (UPV)ValenciaSpain
- Instituto de Instrumentación para Imagen MolecularCentro Mixto CSIC–Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
15
|
Müller M, Egger N, Sommer S, Wilferth T, Meixner CR, Laun FB, Mennecke A, Schmidt M, Huhn K, Rothhammer V, Uder M, Dörfler A, Nagel AM. Direct imaging of white matter ultrashort T 2∗ components at 7 Tesla. Magn Reson Imaging 2021; 86:107-117. [PMID: 34906631 DOI: 10.1016/j.mri.2021.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To demonstrate direct imaging of the white matter ultrashort T2∗ components at 7 Tesla using inversion recovery (IR)-enhanced ultrashort echo time (UTE) MRI. To investigate its characteristics, potentials and limitations, and to establish a clinical protocol. MATERIAL AND METHODS The IR UTE technique suppresses long T2∗ signals within white matter by using adiabatic inversion in combination with dual-echo difference imaging. Artifacts arising at 7 T from long T2∗ scalp fat components were reduced by frequency shifting the IR pulse such that those frequencies were inverted likewise. For 8 healthy volunteers, the T2∗ relaxation times of white matter were then quantified. In 20 healthy volunteers, the UTE difference and fraction contrast were evaluated. Finally, in 6 patients with multiple sclerosis (MS), the performance of the technique was assessed. RESULTS A frequency shift of -1.2 ppm of the IR pulse (i.e. towards the fat frequency) provided a good suppression of artifacts. With this, an ultrashort compartment of (68 ± 6) % with a T2∗ time of (147 ± 58) μs was quantified with a chemical shift of (-3.6 ± 0.5) ppm from water. Within healthy volunteers' white matter, a stable ultrashort T2∗ fraction contrast was calculated. For the MS patients, a significant fraction reduction in the identified lesions as well as in the normal-appearing white matter was observed. CONCLUSIONS The quantification results indicate that the observed ultrashort components arise primarily from myelin tissue. Direct IR UTE imaging of the white matter ultrashort T2∗ components is thus feasible at 7 T with high quantitative inter-subject repeatability and good detection of signal loss in MS.
Collapse
Affiliation(s)
- Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan Sommer
- Siemens Healthcare, Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian R Meixner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
16
|
Holikova K, Laakso H, Salo R, Shatillo A, Nurmi A, Bares M, Vanicek J, Michaeli S, Mangia S, Sierra A, Gröhn O. RAFF-4, Magnetization Transfer and Diffusion Tensor MRI of Lysophosphatidylcholine Induced Demyelination and Remyelination in Rats. Front Neurosci 2021; 15:625167. [PMID: 33746698 PMCID: PMC7969884 DOI: 10.3389/fnins.2021.625167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Remyelination is a naturally occurring response to demyelination and has a central role in the pathophysiology of multiple sclerosis and traumatic brain injury. Recently we demonstrated that a novel MRI technique entitled Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) achieved exceptional sensitivity in detecting the demyelination processes induced by lysophosphatidylcholine (LPC) in rat brain. In the present work, our aim was to test whether RAFF4, along with magnetization transfer (MT) and diffusion tensor imaging (DTI), would be capable of detecting the changes in the myelin content and microstructure caused by modifications of myelin sheets around axons or by gliosis during the remyelination phase after LPC-induced demyelination in the corpus callosum of rats. We collected MRI data with RAFF4, MT and DTI at 3 days after injection (demyelination stage) and at 38 days after injection (remyelination stage) of LPC (n = 12) or vehicle (n = 9). Cell density and myelin content were assessed by histology. All MRI metrics detected differences between LPC-injected and control groups of animals in the demyelination stage, on day 3. In the remyelination phase (day 38), RAFF4, MT parameters, fractional anisotropy, and axial diffusivity detected signs of a partial recovery consistent with the remyelination evident in histology. Radial diffusivity had undergone a further increase from day 3 to 38 and mean diffusivity revealed a complete recovery correlating with the histological assessment of cell density attributed to gliosis. The combination of RAFF4, MT and DTI has the potential to differentiate between normal, demyelinated and remyelinated axons and gliosis and thus it may be able to provide a more detailed assessment of white matter pathologies in several neurological diseases.
Collapse
Affiliation(s)
- Klara Holikova
- Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Martin Bares
- First Department of Neurology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, Untied States
| | - Jiri Vanicek
- Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, Untied States
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, Untied States
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Manning AP, MacKay AL, Michal CA. Understanding aqueous and non-aqueous proton T 1 relaxation in brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106909. [PMID: 33453678 DOI: 10.1016/j.jmr.2020.106909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A full picture of longitudinal relaxation in complex heterogeneous environments like white matter brain tissue remains elusive. In tissue, successive approximations, from the solvation layer model to the two pool model, have highlighted how longitudinal magnetization evolution depends on both inter-compartmental exchange and spin-lattice relaxation. In white matter, however, these models fail to capture the behaviour of the two distinct aqueous pools, myelin water and intra/extra-cellular water. A challenge with testing more comprehensive multi-pool models lies in directly observing all pools, both aqueous and non-aqueous. In this work, we advance these efforts by integrating three main experimental and analytical elements: direct observation of the longitudinal relaxation of both the aqueous and the non-aqueous protons in white matter, a wide range of different initial conditions, and application of an analysis pipeline which includes lineshape, CPMG, and fitting of a four pool model. An eigenvector interpretation of the four pool model highlights how longitudinal relaxation in white matter depends on initial conditions. We find that a single set of model parameters is able to describe the entire range of relaxation behaviour observed in all the separable aqueous and non-aqueous pools in experiments involving six different initial conditions. Understanding of the nature and connectedness of the tissue components is crucial in the design and interpretation of many MRI measurements, especially those based on magnetization transfer and longitudinal relaxation. In particular, the dependency of relaxation behaviour on initial conditions is likely the basis for understanding method-dependent discrepancies in in vivo T1.
Collapse
Affiliation(s)
- Alan P Manning
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Alex L MacKay
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada; Department of Radiology, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Carl A Michal
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
18
|
Ma YJ, Jang H, Wei Z, Wu M, Chang EY, Corey-Bloom J, Bydder GM, Du J. Brain ultrashort T 2 component imaging using a short TR adiabatic inversion recovery prepared dual-echo ultrashort TE sequence with complex echo subtraction (STAIR-dUTE-ES). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106898. [PMID: 33429170 PMCID: PMC7855631 DOI: 10.1016/j.jmr.2020.106898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 05/15/2023]
Abstract
Long T2 water contamination is a major challenge with direct in vivo UTE imaging of ultrashort T2 components in the brain since water contributes most of the signal detected from white and gray matter. The Short TR Adiabatic Inversion Recovery prepared Ultrashort TE (STAIR-UTE) sequence can significantly suppress water signals and simultaneously image ultrashort T2 components. However, the TR used may not be sufficiently short to allow the STAIR preparation to completely suppress all the water signals in the brain due to specific absorption rate (SAR) limitations on clinical MR scanners. In this study, we describe a STAIR prepared dual-echo UTE sequence with complex Echo Subtraction (STAIR-dUTE-ES) which improves water suppression for selective ultrashort T2 imaging compared with that achieved with the STAIR-UTE sequence. Numerical simulations showed that the STAIR-dUTE-ES technique can effectively suppress water signals and allow accurate quantification of ultrashort T2 protons. Volunteer and Multiple Sclerosis (MS) patient studies demonstrated the feasibility of the STAIR-dUTE-ES technique for selective imaging and quantification of ultrashort T2 components in vivo. A significantly lower mean UltraShort T2 Proton Fraction (USPF) was found in lesions in MS patients (5.7 ± 0.7%) compared with that in normal white matter of healthy volunteers (8.9 ± 0.6%). The STAIR-dUTE-ES sequence provides robust water suppression for volumetric imaging and quantitation of ultrashort T2 component. The reduced USPF in MS lesions shows the clinical potential of the sequence for diagnosis and monitoring treatment in MS.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Mei Wu
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Graeme M Bydder
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
19
|
Jang H, Ma Y, Carl M, Lombardi AF, Chang EY, Du J. Feasibility of an Inversion Recovery-Prepared Fat-Saturated Zero Echo Time Sequence for High Contrast Imaging of the Osteochondral Junction. Front Endocrinol (Lausanne) 2021; 12:777080. [PMID: 35002964 PMCID: PMC8739813 DOI: 10.3389/fendo.2021.777080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The osteochondral junction (OCJ) region-commonly defined to include the deep radial uncalcified cartilage, tidemark, calcified cartilage, and subchondral bone plate-functions to absorb mechanical stress and is commonly associated with the pathogenesis of osteoarthritis. However, magnetic resonance imaging of the OCJ region is difficult due to the tissues' short transverse relaxation times (i.e., short T2 or T2*), which result in little or no signal with conventional MRI. The goal of this study is to develop a 3D adiabatic inversion recovery prepared fat saturated zero echo time (IR-FS-ZTE) sequence for high-contrast imaging of the OCJ. METHOD An IR-FS-ZTE MR sequence was developed to image the OCJ on a clinical 3T MRI scanner. The IR-FS-ZTE sequence employed an adiabatic inversion pulse followed by a fat saturation pulse that suppressed signals from the articular cartilage and fat. At an inversion time (TI) that was matched to the nulling point of the articular cartilage, continuous ZTE imaging was performed with a smoothly rotating readout gradient, which enabled time-efficient encoding of the OCJ region's short T2 signal with a minimal echo time (TE) of 12 μs. An ex vivo experiment with six cadaveric knee joints, and an in vivo experiment with six healthy volunteers and three patients with OA were performed to evaluate the feasibility of the proposed approach for high contrast imaging of the OCJ. Contrast-to-noise ratios (CNRs) between the OCJ and its neighboring femoral and tibial cartilage were measured. RESULTS In the ex vivo experiment, IR-FS-ZTE produced improved imaging of the OCJ region over the clinical sequences, and significantly improved the contrast compared to FS-ZTE without IR preparation (p = 0.0022 for tibial cartilage and p = 0.0019 for femoral cartilage with t-test). We also demonstrated the feasibility of high contrast imaging of the OCJ region in vivo using the proposed IR-FS-ZTE sequence, thereby providing more direct information on lesions in the OCJ. Clinical MRI did not detect signal from OCJ due to the long TE (>20 ms). CONCLUSION IR-FS-ZTE allows direct imaging of the OCJ region of the human knee and may help in elucidating the role of the OCJ in cartilage degeneration.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, United States
| | | | - Alecio F. Lombardi
- Department of Radiology, University of California, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, United States
- *Correspondence: Jiang Du,
| |
Collapse
|
20
|
Ma YJ, Searleman AC, Jang H, Fan SJ, Wong J, Xue Y, Cai Z, Chang EY, Corey-Bloom J, Du J. Volumetric imaging of myelin in vivo using 3D inversion recovery-prepared ultrashort echo time cones magnetic resonance imaging. NMR IN BIOMEDICINE 2020; 33:e4326. [PMID: 32691472 PMCID: PMC7952008 DOI: 10.1002/nbm.4326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 05/02/2020] [Indexed: 05/28/2023]
Abstract
Direct myelin imaging is promising for characterization of multiple sclerosis (MS) brains at diagnosis and in response to therapy. In this study, a 3D inversion recovery-prepared ultrashort echo time cones (IR-UTE-Cones) sequence was used for both morphological and quantitative imaging of myelin on a clinical 3 T scanner. Myelin powder phantoms with different myelin concentrations were imaged with the 3D UTE-Cones sequence and it showed a strong correlation between concentrations and UTE-Cones signals, demonstrating the ability of the UTE-Cones sequence to directly image myelin in the brain. Quantitative myelin imaging with multi-echo IR-UTE-Cones sequences show similar T2 * values for a D2 O-exchanged myelin phantom (T2 * = 0.33 ± 0.04 ms), ex vivo brain specimens (T2 * = 0.20 ± 0.04 ms) and in vivo healthy volunteers (T2 * = 0.254 ± 0.023 ms), further confirming the feasibility of 3D IR-UTE-Cones sequences for direct myelin imaging in vivo. In ex vivo MS brain study, signal loss is observed in MS lesions, which was confirmed with histology. For the in vivo study, the lesions in MS patients also show myelin signal loss using the proposed direct myelin imaging method, demonstrating the clinical potential for MS diagnosis. Furthermore, the measured IR-UTE-Cones signal intensities show a significant difference between normal-appearing white matter in MS patients and normal white matter in volunteers, which cannot be found in clinical used T2 -FLAIR sequences. Thus, the proposed 3D IR-UTE-Cones sequence showed clinical potential for MS diagnosis with the capability of direct myelin detection of the whole brain.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Adam C. Searleman
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Shu-Juan Fan
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jonathan Wong
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Yanping Xue
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Zhenyu Cai
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Lee H, Zhao X, Song HK, Wehrli FW. Self-Navigated Three-Dimensional Ultrashort Echo Time Technique for Motion-Corrected Skull MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2869-2880. [PMID: 32149683 PMCID: PMC7484857 DOI: 10.1109/tmi.2020.2978405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrashort echo time (UTE) MRI is capable of detecting signals from protons with very short T2 relaxation times, and thus has potential for skull-selective imaging as a radiation-free alternative to computed tomography. However, relatively long scan times make the technique vulnerable to artifacts from involuntary subject motion. Here, we developed a self-navigated, three-dimensional (3D) UTE pulse sequence, which builds on dual-RF, dual-echo UTE imaging, and a retrospective motion correction scheme for motion-resistant skull MRI. Full echo signals in the second readout serve as a self-navigator that yields a time-course of center of mass, allowing for adaptive determination of motion states. Furthermore, golden-means based k-space trajectory was employed to achieve a quasi-uniform distribution of sampling views on a spherical k-space surface for any subset of the entire data collected, thereby allowing reconstruction of low-resolution images pertaining to each motion state for subsequent estimation of rigid-motion parameters. Finally, the extracted trajectory of the head was used to make the whole k-space datasets motion-consistent, leading to motion-corrected, high-resolution images. Additionally, we posit that hardware-related k-space trajectory errors, if uncorrected, result in obscured bone contrast. Thus, a calibration scan was performed once to measure k-space encoding locations, subsequently used during image reconstruction of actual imaging data. In vivo studies were performed to evaluate the effectiveness of the proposed correction schemes in combination with approaches to accelerated bone-selective imaging. Results illustrating effective removal of motion artifacts and clear depiction of skull bone voxels suggest that the proposed method is robust to intermittent head motions during scanning.
Collapse
|
22
|
Ma YJ, Jang H, Wei Z, Cai Z, Xue Y, Lee RR, Chang EY, Bydder GM, Corey-Bloom J, Du J. Myelin Imaging in Human Brain Using a Short Repetition Time Adiabatic Inversion Recovery Prepared Ultrashort Echo Time (STAIR-UTE) MRI Sequence in Multiple Sclerosis. Radiology 2020; 297:392-404. [PMID: 32779970 DOI: 10.1148/radiol.2020200425] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Water signal contamination is a major challenge for direct ultrashort echo time (UTE) imaging of myelin in vivo because water contributes most of the signals detected in white matter. Purpose To validate a new short repetition time (TR) adiabatic inversion recovery (STAIR) prepared UTE (STAIR-UTE) sequence designed to suppress water signals and to allow imaging of ultrashort T2 protons of myelin in white matter using a clinical 3-T scanner. Materials and Methods In this prospective study, an optimization framework was used to obtain the optimal inversion time for nulling water signals using STAIR-UTE imaging at different TRs. Numeric simulation and phantom studies were performed. Healthy volunteers and participants with multiple sclerosis (MS) underwent MRI between November 2018 and October 2019 to compare STAIR-UTE and a clinical T2-weighted fluid-attenuated inversion recovery sequence for assessment of MS lesions. UTE measures of myelin were also performed to allow comparison of signals in lesions and with those in normal-appearing white matter (NAWM) in patients with MS and in normal white matter (NWM) in healthy volunteers. Results Simulation and phantom studies both suggest that the proposed STAIR-UTE technique can effectively suppress long T2 tissues with a broad range of T1s. Ten healthy volunteers (mean age, 33 years ± 8 [standard deviation]; six women) and 10 patients with MS (mean age, 51 years ± 16; seven women) were evaluated. The three-dimensional STAIR-UTE sequence effectively suppressed water components in white matter and selectively imaged myelin, which had a measured T2* value of 0.21 msec ± 0.04 in the volunteer study. A much lower mean UTE measure of myelin proton density was found in MS lesions (3.8 mol/L ± 1.5), and a slightly lower mean UTE measure was found in NAWM (7.2 mol/L ± 0.8) compared with that in NWM (8.0 mol/L ± 0.8) in the healthy volunteers (P < .001 for both comparisons). Conclusion The short repetition time adiabatic inversion recovery-prepared ultrashort echo time sequence provided efficient water signal suppression for volumetric imaging of myelin in the brain and showed excellent myelin signal contrast as well as marked ultrashort echo time signal reduction in multiple sclerosis lesions and a smaller reduction in normal-appearing white matter compared with normal white matter in volunteers. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Messina and Port in this issue.
Collapse
Affiliation(s)
- Ya-Jun Ma
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Hyungseok Jang
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Zhao Wei
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Zhenyu Cai
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Yanping Xue
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Roland R Lee
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Eric Y Chang
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Graeme M Bydder
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Jody Corey-Bloom
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| | - Jiang Du
- From the Departments of Radiology (Y.J.M., H.J., Z.W., Z.C., Y.X., R.R.L., E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.B.) University of California San Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, Calif (E.Y.C.)
| |
Collapse
|
23
|
Ma YJ, Jang H, Chang EY, Hiniker A, Head BP, Lee RR, Corey-Bloom J, Bydder GM, Du J. Ultrashort echo time (UTE) magnetic resonance imaging of myelin: technical developments and challenges. Quant Imaging Med Surg 2020; 10:1186-1203. [PMID: 32550129 PMCID: PMC7276362 DOI: 10.21037/qims-20-541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Brian P. Head
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| | - Roland R. Lee
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Graeme M. Bydder
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
24
|
On the merits of non-invasive myelin imaging in epilepsy, a literature review. J Neurosci Methods 2020; 338:108687. [DOI: 10.1016/j.jneumeth.2020.108687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
|
25
|
Jang H, Carl M, Ma Y, Searleman AC, Jerban S, Chang EY, Corey-Bloom J, Du J. Inversion recovery zero echo time (IR-ZTE) imaging for direct myelin detection in human brain: a feasibility study. Quant Imaging Med Surg 2020; 10:895-906. [PMID: 32489915 DOI: 10.21037/qims.2020.04.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Myelin alteration is closely associated with neurological diseases such as multiple sclerosis (MS). Unfortunately, due to myelin's extremely short T2* (~0.3 ms or shorter at 3T), it cannot be directly imaged with conventional MR imaging techniques. Recently, ultrashort echo time (UTE) imaging-based methods have been proposed for direct imaging of myelin. In this study, we explore the feasibility and efficacy of inversion recovery prepared zero echo time (IR-ZTE) imaging for direct volumetric imaging of myelin in white matter of the brain in vivo. Methods In the proposed method, an adiabatic IR preparation pulse is used to suppress long T2 white matter signal, followed by dual echo ZTE imaging where the remaining long T2 components, including gray matter, are suppressed by dual echo subtraction. In the implementation of ZTE, the sampling strategy introduced in Water- and Fat-Suppressed Proton Projection MRI (WASPI) was incorporated to acquire the k-space data missing due to the radiofrequency (RF) transmit/receiver switching time. The IR-ZTE sequence was implemented on a 3T clinical MR system and evaluated using a myelin phantom composed of six different myelin concentrations (0% to 20%), a cadaveric human brain, four healthy volunteers, and seven MS patients. Results In the myelin phantom experiment, the ZTE signal intensity showed high linearity to the myelin concentrations (R2=0.98). In the ex vivo and in vivo experiments, the IR-ZTE sequence provided high contrast volumetric imaging of myelin in human brains. The IR-ZTE sequence was able to detect demyelinated foci lesions in all MS patients. Conclusions Adiabatic IR prepared dual echo ZTE imaging allows for direct, volumetric imaging of myelin in white matter of the brain in vivo.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Adam C Searleman
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, CA, USA.,Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
26
|
Weiger M, Froidevaux R, Baadsvik EL, Brunner DO, Rösler MB, Pruessmann KP. Advances in MRI of the myelin bilayer. Neuroimage 2020; 217:116888. [PMID: 32360688 DOI: 10.1016/j.neuroimage.2020.116888] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Myelin plays a key role in the function of the central nervous system and is involved in many neurodegenerative diseases. Hence, depiction of myelin is desired for both research and diagnosis. However, MRI of the lipid bilayer constituting the myelin membrane is hampered by extremely rapid signal decay and cannot be accomplished with conventional sequences. Dedicated short-T2 techniques have therefore been employed, yet with extended sequence timings not well matched to the rapid transverse relaxation in the bilayer, which leads to signal loss and blurring. In the present work, capture and encoding of the ultra-short-T2 signals in the myelin bilayer is considerably improved by employing advanced short-T2 methodology and hardware, in particular a high-performance human-sized gradient insert. The approach is applied to tissue samples excised from porcine brain and in vivo in a human volunteer. It is found that the rapidly decaying non-aqueous components in the brain can indeed be depicted with MRI at useful resolution. As a considerable fraction of these signals is related to the myelin bilayer, the presented approach has strong potential to contribute to myelin research and diagnosis.
Collapse
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Romain Froidevaux
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Emily Louise Baadsvik
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - David Otto Brunner
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Manuela Barbara Rösler
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Lee J, Hyun JW, Lee J, Choi EJ, Shin HG, Min K, Nam Y, Kim HJ, Oh SH. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J Magn Reson Imaging 2020; 53:360-373. [PMID: 32009271 DOI: 10.1002/jmri.27059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Myelin water imaging (MWI) is an MRI imaging biomarker for myelin. This method can generate an in vivo whole-brain myelin water fraction map in approximately 10 minutes. It has been applied in various applications including neurodegenerative disease, neurodevelopmental, and neuroplasticity studies. In this review we start with a brief introduction of myelin biology and discuss the contributions of myelin in conventional MRI contrasts. Then the MRI properties of myelin water and four different MWI methods, which are categorized as T2 -, T2 *-, T1 -, and steady-state-based MWI, are summarized. After that, we cover more practical issues such as availability, interpretation, and validation of these methods. To illustrate the utility of MWI as a clinical research tool, MWI studies for two diseases, multiple sclerosis and neuromyelitis optica, are introduced. Additional topics about imaging myelin in gray matter and non-MWI methods for myelin imaging are also included. Although technical and physiological limitations exist, MWI is a potent surrogate biomarker of myelin that carries valuable and useful information of myelin. Evidence Level: 5 Technical Efficacy: 1 J. MAGN. RESON. IMAGING 2021;53:360-373.
Collapse
Affiliation(s)
- Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Jieun Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Eun-Jung Choi
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul Saint Mary's Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang-si, Korea
| | - Se-Hong Oh
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, Korea.,Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Ma YJ, Searleman AC, Jang H, Wong J, Chang EY, Corey-Bloom J, Bydder GM, Du J. Whole-Brain Myelin Imaging Using 3D Double-Echo Sliding Inversion Recovery Ultrashort Echo Time (DESIRE UTE) MRI. Radiology 2020; 294:362-374. [PMID: 31746689 PMCID: PMC6996715 DOI: 10.1148/radiol.2019190911] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/11/2022]
Abstract
Background Signal contamination from long T2 water is a major challenge in direct imaging of myelin with MRI. Nulling of the unwanted long T2 signals can be achieved with an inversion recovery (IR) preparation pulse to null long T2 white matter within the brain. The remaining ultrashort T2 signal from myelin can be detected with an ultrashort echo time (UTE) sequence. Purpose To develop patient-specific whole-brain myelin imaging with a three-dimensional double-echo sliding inversion recovery (DESIRE) UTE sequence. Materials and Methods The DESIRE UTE sequence generates a series of IR images with different inversion times during a single scan. The optimal inversion time for nulling long T2 signal is determined by finding minimal signal on the second echo. Myelin images are generated by subtracting the second echo image from the first UTE image. To validate this method, a prospective study was performed in phantoms, cadaveric brain specimens, healthy volunteers, and patients with multiple sclerosis (MS). A total of 20 healthy volunteers (mean age, 40 years ± 13 [standard deviation], 10 women) and 20 patients with MS (mean age, 58 years ± 8; 15 women) who underwent MRI between November 2017 and February 2019 were prospectively included. Analysis of variance was performed to evaluate the signal difference between MS lesions and normal-appearing white matter in patients with MS. Results High signal intensity and corresponding T2* and T1 of the extracted myelin vesicles provided evidence for direct imaging of ultrashort-T2 myelin protons using the UTE sequence. Gadobenate dimeglumine phantoms with a wide range of T1 values were selectively suppressed with DESIRE UTE. In the ex vivo brain study of MS lesions, signal loss was observed in MS lesions and was conformed with histologic analysis. In the human study, there was a significant reduction in normalized signal intensity in MS lesions compared with that in normal-appearing white matter (0.19 ± 0.10 vs 0.76 ± 0.11, respectively; P < .001). Conclusion The double-echo sliding inversion recovery ultrashort echo time sequence can generate whole-brain myelin images specifically with a clinical 3-T scanner. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Port in this issue.
Collapse
Affiliation(s)
- Ya-Jun Ma
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Adam C. Searleman
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Hyungseok Jang
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Jonathan Wong
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Eric Y. Chang
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Jody Corey-Bloom
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Graeme M. Bydder
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| | - Jiang Du
- From the Departments of Radiology (Y.J.M., A.C.S., H.J., J.W.,
E.Y.C., G.M.B., J.D.) and Neurosciences (J.C.), University of California San
Diego, 9452 Medical Center Dr, La Jolla, CA 92037; and Radiology Service, VA San
Diego Healthcare System, San Diego, Calif (J.W., E.Y.C.)
| |
Collapse
|
29
|
Eliav U, Wehrli FW, Navon G. New insight into the organization of myelin water using deuterium NMR. Magn Reson Med 2020; 84:535-541. [DOI: 10.1002/mrm.28170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Uzi Eliav
- School of Chemistry Tel Aviv University Tel Aviv Israel
| | - Felix W. Wehrli
- Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gil Navon
- School of Chemistry Tel Aviv University Tel Aviv Israel
| |
Collapse
|
30
|
Weiger M, Pruessmann KP. Short-T 2 MRI: Principles and recent advances. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:237-270. [PMID: 31779882 DOI: 10.1016/j.pnmrs.2019.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Among current modalities of biomedical and diagnostic imaging, MRI stands out by virtue of its versatile contrast obtained without ionizing radiation. However, in various cases, e.g., water protons in tissues such as bone, tendon, and lung, MRI performance is limited by the rapid decay of resonance signals associated with short transverse relaxation times T2 or T2*. Efforts to address this shortcoming have led to a variety of specialized short-T2 techniques. Recent progress in this field expands the choice of methods and prompts fresh considerations with regard to instrumentation, data acquisition, and signal processing. In this review, the current status of short-T2 MRI is surveyed. In an attempt to structure the growing range of techniques, the presentation highlights overarching concepts and basic methodological options. The most frequently used approaches are described in detail, including acquisition strategies, image reconstruction, hardware requirements, means of introducing contrast, sources of artifacts, limitations, and applications.
Collapse
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Jang H, Ma Y, Searleman AC, Carl M, Corey-Bloom J, Chang EY, Du J. Inversion recovery UTE based volumetric myelin imaging in human brain using interleaved hybrid encoding. Magn Reson Med 2019; 83:950-961. [PMID: 31532032 DOI: 10.1002/mrm.27986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Direct myelin imaging can improve the characterization of myelin-related diseases such as multiple sclerosis. In this study, we explore a novel method to directly image myelin using inversion recovery-prepared hybrid encoding (IR-HE) UTE MRI. METHODS The IR-HE sequence uses an adiabatic inversion pulse to suppress the long T2 white matter signal, followed by 3D dual-echo HE utilizing both single point imaging and radial frequency encoding, for which the subtraction image between 2 echoes reveals the myelin signal with high contrast. To reduce scan time, it is common to obtain multiple spokes per IR. Here, we invented a novel method to improve the HE, adapted for the multi-spoke IR imaging-termed interleaved HE-for which single point imaging encoding is interleaved between radial frequency encodings near nulling point to allow more efficient IR-signal suppression. To evaluate the proposed approach, a computer simulation, myelin phantom experiment, an ex vivo experiment with a cadaveric multiple sclerosis brain, and an in vivo experiment with 8 healthy volunteers and 13 multiple sclerosis patients were performed. RESULTS The computer simulation showed that IR-interleaved HE allows for improved contrast of myelin signal with reduced imaging artifacts. The myelin phantom experiment showed IR-interleaved HE allows direct imaging of myelin lipid with excellent suppression of water signal. In the ex vivo and in vivo experiments, the proposed method demonstrated highly specific imaging of myelin in white matter of the brain. CONCLUSION IR-interleaved HE allows for time-efficient, high-contrast direct myelin imaging and can detect demyelinated lesions in multiple sclerosis patients.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California San Diego, San Diego, California
| | - Adam C Searleman
- Department of Radiology, University of California San Diego, San Diego, California
| | | | - Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, California.,Radiology Service, VA San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, California
| |
Collapse
|
32
|
Lee HM, Weiger M, Giehr C, Froidevaux R, Brunner DO, Rösler MB, Pruessmann KP. Long‐T
2
‐suppressed zero echo time imaging with weighted echo subtraction and gradient error correction. Magn Reson Med 2019; 83:412-426. [DOI: 10.1002/mrm.27925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hyo Min Lee
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - Markus Weiger
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - Caspar Giehr
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - Romain Froidevaux
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - David Otto Brunner
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - Manuela Barbara Rösler
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering ETH Zurich and University of Zurich Zurich Switzerland
| |
Collapse
|
33
|
Drenthen GS, Backes WH, Aldenkamp AP, Jansen JF. Applicability and reproducibility of 2D multi-slice GRASE myelin water fraction with varying acquisition acceleration. Neuroimage 2019; 195:333-339. [DOI: 10.1016/j.neuroimage.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
|
34
|
Seifert AC, Umphlett M, Hefti M, Fowkes M, Xu J. Formalin tissue fixation biases myelin-sensitive MRI. Magn Reson Med 2019; 82:1504-1517. [PMID: 31125149 DOI: 10.1002/mrm.27821] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Chemical fixatives such as formalin form cross-links between proteins and affect the relaxation times and diffusion properties of tissue. These fixation-induced changes likely also affect myelin density measurements produced by quantitative magnetization transfer and myelin water imaging. In this work, we evaluate these myelin-sensitive MRI methods for fixation-induced biases. METHODS We perform quantitative magnetization transfer, myelin water imaging, and deuterium oxide-exchanged zero TE imaging on unfixed human spinal cord tissue at 9.4 Tesla and repeat these measurements after 1 day and 31 days of formalin fixation. RESULTS The quantitative magnetization-transfer bound pool fraction increased by 30.7% ± 21.1% after 1 day of fixation and by 42.6% ± 33.9% after 31 days of fixation. Myelin water fraction increased by 39.7% ± 15.5% and 37.0% ± 15.9% at these same time points, and mean T2 of the myelin water pool nearly doubled. Reference-normalized deuterium oxide-exchanged zero TE signal intensity increased by 8.17% ± 6.03% after 31 days of fixation but did not change significantly after 1 day of fixation. After fixation, specimen cross-sectional area decreased by approximately 5%; after correction for shrinkage, changes in deuterium oxide-exchanged zero TE intensity were nearly eliminated. CONCLUSION Bound pool fraction and myelin water fraction are significantly increased by formalin fixation, whereas deuterium oxide-exchanged zero TE intensity is minimally affected. Changes in quantitative magnetization transfer and myelin water imaging may be due in part to delamination and formation of vacuoles in the myelin sheath. Deuterium oxide-exchanged signal intensity may be altered by fixation-induced changes in myelin lipid solid-state 1 H T1 . We urge caution in the comparison of these measurements across subjects or specimens in different states, especially unfixed versus fixed tissue.
Collapse
Affiliation(s)
- Alan C Seifert
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marco Hefti
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Junqian Xu
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Drenthen GS, Backes WH, Aldenkamp AP, Op 't Veld GJ, Jansen JFA. A new analysis approach for T 2 relaxometry myelin water quantification: Orthogonal Matching Pursuit. Magn Reson Med 2018; 81:3292-3303. [PMID: 30444019 PMCID: PMC6587563 DOI: 10.1002/mrm.27600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
Abstract
Purpose In vivo myelin quantification can provide valuable noninvasive information on neuronal maturation and development, as well as insights into neurological disorders. Multiexponential analysis of multiecho T2 relaxation is a powerful and widely applied method for the quantification of the myelin water fraction (MWF). In recent literature, the MWF is most commonly estimated using a regularized nonnegative least squares algorithm. Methods The orthogonal matching pursuit algorithm is proposed as an alternative method for the estimation of the MWF. The orthogonal matching pursuit is a greedy sparse reconstruction algorithm with a low computation complexity. For validation, both methods are compared to a ground truth using numerical simulations and a phantom model using comparable computation times. The numerical simulations were used to measure the theoretical errors, as well as the effects of varying the SNR, strength of the regularization, and resolution of the basis set. Additionally, a phantom model was used to estimate the performance of the 2 methods while including errors occurring due to the MR measurement. Lastly, 4 healthy subjects were scanned to evaluate the in vivo performance. Results The results in simulations and phantoms demonstrate that the MWFs determined with the orthogonal matching pursuit are 1.7 times more accurate as compared to the nonnegative least squares, with a comparable precision. The remaining bias of the MWF is shown to be related to the regularization of the nonnegative least squares algorithm and the Rician noise present in magnitude MR images. Conclusion The orthogonal matching pursuit algorithm provides a more accurate alternative for T2 relaxometry myelin water quantification.
Collapse
Affiliation(s)
- Gerhard S Drenthen
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Sterkselseweg 65, Heeze, the Netherlands
| | - Giel J Op 't Veld
- School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Station 14, Lausanne, Switzerland
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, the Netherlands
| |
Collapse
|