1
|
Li M, Wang Z, Yu X, Zhou X. Single-trial interindividual correlation shows semantic and visuospatial networks are fundamental for advanced mathematical learning. Eur J Neurosci 2024; 60:5189-5202. [PMID: 39138595 DOI: 10.1111/ejn.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Mathematical learning and ability are crucial for individual and national economic and technological development, but the neural mechanisms underlying advanced mathematical learning remain unclear. The current study used functional magnetic resonance imaging (fMRI) to investigate how brain networks were involved in advanced mathematical learning and transfer. We recorded fMRI data from 24 undergraduate students as they learned the advanced mathematical concept of a commutative mathematical group. After learning, participants were required to complete learning and transfer behavioural tests. Results of single-trial interindividual brain-behaviour correlation analysis found that brain activity in the semantic and visuospatial networks, and the functional connectivity within the semantic network during advanced mathematical learning were positively correlated with learning and transfer effects. Additionally, the functional connectivity between the semantic and visuospatial networks was negatively correlated with the learning and transfer effects. These findings suggest that advanced mathematical learning relies on both semantic and visuospatial networks.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, China
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Zilong Wang
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, China
- Department of Education, Ocean University of China, Qingdao, Shandong, China
- Information Technology Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong, China
| | - Xiaodan Yu
- Department of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Zhu C, Zhang Z, Lyu X, Wang Y, Liu D, Luo W. Mathematical problem solving is modulated by word priming. Psych J 2024; 13:465-476. [PMID: 38298154 PMCID: PMC11169762 DOI: 10.1002/pchj.732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
This study aimed to explore the influence of word priming on mathematical problem solving. In two experiments, participants were required to finish multiplication estimation tasks with a specified estimation strategy under different word priming conditions (Experiment 1: concrete words vs. Experiment 2: abstract words). The results showed that: (1) under the concrete word priming condition, in comparison to neutral, positive word priming improved accuracies (ACCs) when using a down-up strategy (e.g., doing 40 × 80 = 3200 for 43 × 78), while both positive and negative word priming reduced reaction time (RT); (2) under the abstract word priming condition, both positive and negative (vs. neutral) abstract word priming reduced RTs, while individuals' ACCs of completing the estimation task were not influenced by valence. The present study showed that whether concrete words or abstract words were adopted as experimental stimuli, participants' performance of completing mathematical problems was modulated by the valence of the priming word, which led us to develop a better understanding of how arithmetic performance is influenced by word processing.
Collapse
Affiliation(s)
- Chuanlin Zhu
- School of Educational ScienceYangzhou UniversityYangzhouChina
| | - Zhao Zhang
- Institute of PsychologyWeifang Medical UniversityWeifangChina
| | - Xiaoli Lyu
- Affiliated WuTaiShan Hospital of Medical College of Yangzhou UniversityYangzhouChina
| | - Yun Wang
- School of Foreign LanguagesSuzhou University of Science and TechnologySuzhouChina
| | - Dianzhi Liu
- School of EducationSoochow UniversitySuzhouChina
| | - Wenbo Luo
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceDalianChina
| |
Collapse
|
3
|
Sirota M, Navarrete G, Juanchich M. When intuitive Bayesians need to be good readers: The problem-wording effect on Bayesian reasoning. Cognition 2024; 245:105722. [PMID: 38309041 DOI: 10.1016/j.cognition.2024.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Are humans intuitive Bayesians? It depends. People seem to be Bayesians when updating probabilities from experience but not when acquiring probabilities from descriptions (i.e., Bayesian textbook problems). Decades of research on textbook problems have focused on how the format of the statistical information (e.g., the natural frequency effect) affects such reasoning. However, it pays much less attention to the wording of these problems. Mathematical problem-solving literature indicates that wording is critical for performance. Wording effects (the wording varied across the problems and manipulations) can also have far-reaching consequences. These may have confounded between-format comparisons and moderated within-format variability in prior research. Therefore, across seven experiments (N = 4909), we investigated the impact of the wording of medical screening problems and statistical formats on Bayesian reasoning in a general adult population. Participants generated more Bayesian answers with natural frequencies than with single-event probabilities, but only with the improved wording. The improved wording of the natural frequencies consistently led to more Bayesian answers than the natural frequencies with standard wording. The improved wording effect occurred mainly due to a more efficient description of the statistical information-cueing required mathematical operations, an unambiguous association of numbers with their reference class and verbal simplification. The wording effect extends the current theoretical explanations of Bayesian reasoning and bears methodological and practical implications. Ultimately, even intuitive Bayesians must be good readers when solving Bayesian textbook problems.
Collapse
Affiliation(s)
- Miroslav Sirota
- Department of Psychology, University of Essex, United Kingdom.
| | - Gorka Navarrete
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Marie Juanchich
- Department of Psychology, University of Essex, United Kingdom
| |
Collapse
|
4
|
Cui J, Wang L, Li D, Zhou X. Verbalized arithmetic principles correlate with mathematics achievement. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2024; 94:41-57. [PMID: 37574834 DOI: 10.1111/bjep.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND When mathematical knowledge is expressed in general language, it is called verbalized mathematics. Previous studies on verbalized mathematics typically paid attention to mathematical vocabulary or educational practice. However, these studies did not exclude the role of symbolic mathematics ability, and almost no research has focused on verbalized mathematical principles. AIMS This study is aimed to investigate whether verbalized mathematics ability independently predicts mathematics achievement. The current study hypothesized that verbalized mathematics ability supports mathematics achievement independent of general language, related cognitive abilities and even symbolic mathematical ability. SAMPLE A sample of 241 undergraduates (136 males, 105 females, mean age = 21.95, SD = 2.38) in Beijing, China. METHODS A total of 12 tests were used, including a verbalized arithmetic principle test, a mathematics achievement test, and tests on general language (sentence completion test), symbolic mathematical ability (including symbolic arithmetic principles test, simple arithmetic computation and complex arithmetic computation), approximate number sense ability (numerosity comparison test) and several related cognitive covariates (including the non-verbal matrix reasoning, the syllogism reasoning, mental rotation, figure matching and choice reaction time). RESULTS Results showed that the processing of verbalized arithmetic principles displayed a significant role in mathematics achievement after controlling for general language, related cognitive abilities, approximate number sense ability and symbolic mathematics ability. CONCLUSIONS The results suggest that verbalized mathematics ability was an independent predictor and provided empirical evidence supporting the verbalized mathematics role on achievement as an independent component in three-component mathematics model.
Collapse
Affiliation(s)
- Jiaxin Cui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
- College of Education, Hebei Normal University, Shijiazhuang, China
| | - Li Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
- Faculty of Education, Beijing Normal University, Beijing, China
| | - Dawei Li
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, USA
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, China
| |
Collapse
|
5
|
Li M, Cheng D, Chen C, Zhou X. High-definition transcranial direct current stimulation (HD-tDCS) of the left middle temporal gyrus (LMTG) improves mathematical reasoning. Brain Topogr 2023; 36:890-900. [PMID: 37540333 DOI: 10.1007/s10548-023-00996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The role of the visuospatial network in mathematical processing has been established, but the role of the semantic neural network in mathematical processing is still poorly understood. The current study used high-definition transcranial direct current stimulation (HD-tDCS) to examine whether the semantic network supports mathematical processing. Using a single-blind, randomized, sham-controlled experimental design, 48 participants were randomly assigned to receive either anodal or sham HD-tDCS on the left middle temporal gyrus (LMTG), a core region of the semantic network. A number series completion task was used to measure mathematical reasoning and an arithmetical computation task was used as a control condition. Both tasks were administered before and after the 20 min HD-tDCS. The results showed that anodal HD-tDCS on the LMTG enhanced performance on the number series completion task, but not on the arithmetical computation task. Trial-level analysis further showed greater improvement at the more difficult problems of the number series completion task. These results demonstrate that the semantic network plays an important role in mathematical processing.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, 100875, China
| | - Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, 100875, China
- School of Psychology, Capital Normal University, Beijing, 100073, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697-7085, USA
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Research association for brain and mathematical learning, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Ren T, Li Z, Wang C, Li BM. Early Gray Matter Structural Covariance Predicts Longitudinal Gain in Arithmetic Ability in Children. Dev Neurosci 2023; 46:119-135. [PMID: 37279707 DOI: 10.1159/000531419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/29/2023] [Indexed: 06/08/2023] Open
Abstract
Previous neuroimaging studies on arithmetic development have mainly focused on functional activation or functional connectivity between brain regions. It remains largely unknown how brain structures support arithmetic development. The present study investigated whether early gray matter structural covariance contributes to later gain in arithmetic ability in children. We used a public longitudinal sample comprising 63 typically developing children. The participants received structural magnetic resonance imaging scanning when they were 11 years old and were tested with a multiplication task at 11 years old (time 1) and 13 years old (time 2), respectively. Mean gray matter volumes were extracted from eight brain regions of interest to anchor salience network (SN), frontal-parietal network (FPN), motor network (MN), and default mode network (DMN) at time 1. We found that longitudinal gain in arithmetic ability was associated with stronger structural covariance of the SN seed with frontal and parietal regions and stronger structural covariance of the FPN seed with insula, but weaker structural covariance of the FPN seed with motor and temporal regions, weaker structural covariance of the MN seed with frontal and motor regions, and weaker structural covariance of the DMN seed with temporal region. However, we did not detect correlation between longitudinal gain in arithmetic ability and behavioral measure or regional gray matter volume at time 1. Our study provides novel evidence for a specific contribution of gray matter structural covariance to longitudinal gain in arithmetic ability in childhood.
Collapse
Affiliation(s)
- Tian Ren
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China,
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China,
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China,
| | - Zheng Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Bao-Ming Li
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
7
|
Li M, Lu Y, Zhou X. The involvement of the semantic neural network in rule identification of mathematical processing. Cortex 2023; 164:11-20. [PMID: 37148824 DOI: 10.1016/j.cortex.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
The role of the visuospatial network in mathematical processing has been established, but the involvement of the semantic network in mathematical processing is still poorly understood. The current study utilized a number series completion paradigm with the event-related potential (ERP) technique to examine whether the semantic network supports mathematical processing and to find the corresponding spatiotemporal neural marker. In total, 32 right-handed undergraduate students were recruited and asked to complete the number series completion as well as the arithmetical computation task in which numbers were presented in sequence. The event-related potential and multi-voxel pattern analysis showed that the rule identification process involves more semantic processing when compared with the arithmetical computation processes, and it elicited higher amplitudes for the late negative component (LNC) in left frontal and temporal lobes. These results demonstrated that the semantic network supports the rule identification in mathematical processing, with the LNC acting as the neural marker.
Collapse
Affiliation(s)
- Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China
| | - Yujie Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Research Association for Brain and Mathematical Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
8
|
Alatorre-Cruz JM, Carreño-López R, Alatorre-Cruz GC, Paredes-Esquivel LJ, Santiago-Saenz YO, Nieva-Vázquez A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods 2023; 12:foods12061233. [PMID: 36981159 PMCID: PMC10048498 DOI: 10.3390/foods12061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Phenolic compounds have a positive effect on obesity, diabetes, and cardiovascular diseases because of their antioxidant and anti-inflammatory capacity. The prevalence of these diseases has increased in the last years in the Mexican population. Therefore, the Mexican diet must be assessed as provider of phenolic compounds. To assess this, a survey of phenolic compound intake was validated and applicated to 973 adults (798 females) between 18 and 79 years old. We compared the phenolic compound intake of 324 participants with more diseases (239 females) and 649 participants with healthier condition (559 females). The groups differed in sex, age, and scholarship. Males, older participants, and those with lower schooling reported suffering from more diseases. Regarding phenolic compound intake analyses, the participants with healthier conditions displayed a higher phenolic compound intake than the other group in all foods assessed. In addition, the regression model showed that the phenolic compounds intake of Mexican dishes, such as arroz con frijol or enchiladas, positively affected health status, suggesting that this traditional food is beneficial for the participant’s health condition. However, the weight effect of PCI was different for each disease. We conclude that, although PCI of Mexican food positively affects health conditions, this effect depends on sex, age, and participants’ diseases.
Collapse
Affiliation(s)
| | - Ricardo Carreño-López
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: ; Tel.: +52-2222295500 (ext. 2526)
| | | | | | - Yair Olovaldo Santiago-Saenz
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, San Agustín Tlaxiaca 42160, Mexico
| | - Adriana Nieva-Vázquez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla-Complejo Regional Sur, Puebla 72420, Mexico
| |
Collapse
|
9
|
Lin P, Zhou X, Zang S, Zhu Y, Zhang L, Bai Y, Wang H. Early neural markers for individual difference in mathematical achievement determined from rational number processing. Neuropsychologia 2023; 181:108493. [PMID: 36707024 DOI: 10.1016/j.neuropsychologia.2023.108493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The neural markers for individual differences in mathematical achievement have been studied extensively using magnetic resonance imaging; however, high temporal resolution electrophysiological evidence for individual differences in mathematical achievement require further elucidation. This study evaluated the event-related potential (ERP) when 48 college students with high or low mathematical achievement (HA vs. LA) matched non-symbolic and symbolic rational numbers. Behavioral results indicated that HA students had better performance in the discretized non-symbolic matching, although the two groups showed similar performances in the continuous matching. ERP data revealed that even before non-symbolic stimulus presentation, HA students had greater Bereitschaftspotential (BP) amplitudes over posterior central electrodes. After the presentation of non-symbolic numbers, HA students had larger N1 amplitudes at 160 ms post-stimulus, over left-lateralized parieto-occipital electrodes. After the presentation of symbolic numbers, HA students displayed more profound P1 amplitudes at 100 ms post-stimulus, over left parietal electrodes. Furthermore, larger BP and N1 amplitudes were associated with the shorter reaction times, and larger P1 amplitudes corresponded to lower error rates. The BP effect could indicate preparation processing, and early left-lateralized N1 and P1 effects could reflect the non-symbolic and symbolic number processing along the dorsal neural pathways. These results suggest that the left-lateralized P1 and N1 components elicited by matching non-symbolic and symbolic rational numbers can be considered as neurocognitive markers for individual differences in mathematical achievement.
Collapse
Affiliation(s)
- Pingting Lin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Shiyi Zang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Yanmei Zhu
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Li Zhang
- School for Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, PR China
| | - Yi Bai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China
| | - Haixian Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, PR China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, 210096, Jiangsu, PR China; Research Center for Learning Science, Southeast University, Nanjing, 210096, Jiangsu, PR China.
| |
Collapse
|
10
|
Nakai T, Nishimoto S. Quantitative modelling demonstrates format-invariant representations of mathematical problems in the brain. Eur J Neurosci 2023; 57:1003-1017. [PMID: 36710081 DOI: 10.1111/ejn.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Mathematical problems can be described in either symbolic form or natural language. Previous studies have reported that activation overlaps exist for these two types of mathematical problems, but it is unclear whether they are based on similar brain representations. Furthermore, quantitative modelling of mathematical problem solving has yet to be attempted. In the present study, subjects underwent 3 h of functional magnetic resonance experiments involving math word and math expression problems, and a read word condition without any calculations was used as a control. To evaluate the brain representations of mathematical problems quantitatively, we constructed voxel-wise encoding models. Both intra- and cross-format encoding modelling significantly predicted brain activity predominantly in the left intraparietal sulcus (IPS), even after subtraction of the control condition. Representational similarity analysis and principal component analysis revealed that mathematical problems with different formats had similar cortical organization in the IPS. These findings support the idea that mathematical problems are represented in the brain in a format-invariant manner.
Collapse
Affiliation(s)
- Tomoya Nakai
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, Bron, France.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Shinji Nishimoto
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Andin J, Elwér Å, Mäki‐Torkko E. Arithmetic in the signing brain: Differences and similarities in arithmetic processing between deaf signers and hearing non-signers. J Neurosci Res 2023; 101:172-195. [PMID: 36259315 PMCID: PMC9828253 DOI: 10.1002/jnr.25138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
Deaf signers and hearing non-signers have previously been shown to recruit partially different brain regions during simple arithmetic. In light of the triple code model, the differences were interpreted as relating to stronger recruitment of the verbal system of numerical processing, that is, left angular and inferior frontal gyrus, in hearing non-signers, and of the quantity system of numerical processing, that is, right horizontal intraparietal sulcus, for deaf signers. The main aim of the present study was to better understand similarities and differences in the neural correlates supporting arithmetic in deaf compared to hearing individuals. Twenty-nine adult deaf signers and 29 hearing non-signers were enrolled in an functional magnetic resonance imaging study of simple and difficult subtraction and multiplication. Brain imaging data were analyzed using whole-brain analysis, region of interest analysis, and functional connectivity analysis. Although the groups were matched on age, gender, and nonverbal intelligence, the deaf group performed generally poorer than the hearing group in arithmetic. Nevertheless, we found generally similar networks to be involved for both groups, the only exception being the involvement of the left inferior frontal gyrus. This region was activated significantly stronger for the hearing compared to the deaf group but showed stronger functional connectivity with the left superior temporal gyrus in the deaf, compared to the hearing, group. These results lend no support to increased recruitment of the quantity system in deaf signers. Perhaps the reason for performance differences is to be found in other brain regions not included in the original triple code model.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Åsa Elwér
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Elina Mäki‐Torkko
- Audiological Research Center, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
12
|
Ventura-Campos N, Ferrando-Esteve L, Epifanio I. The underlying neural bases of the reversal error while solving algebraic word problems. Sci Rep 2022; 12:21654. [PMID: 36522380 PMCID: PMC9755259 DOI: 10.1038/s41598-022-25442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Problem solving is a core element in mathematical learning. The reversal error in problem solving occurs when students are able to recognize the information in the statement of comparison word problems, but they reverse the relationship between two variables when building the equations. Functional magnetic resonance images were acquired to identify for the first time the neural bases associated with the reversal error. The neuronal bases linked to this error have been used as inputs in 13 classifiers to discriminate between reversal error and non-reversal error groups. We found brain activation in bilateral fronto-parietal areas in the participants who committed reversal errors, and only left fronto-parietal activation in those who did not, suggesting that the reversal error group needed a greater cognitive demand. Instead, the non-reversal error group seems to show that they have developed solid algebraic knowledge. Additionally, the results showed brain activation in the right middle temporal gyrus when comparing the reversal error vs non-reversal error groups. This activation would be associated with the semantic processing which is required to understand the statement and build the equation. Finally, the classifier results show that the brain areas activated could be considered good biomarkers to help us identify competent solvers.
Collapse
Affiliation(s)
- Noelia Ventura-Campos
- Department of Education and Specific Didactics, Universitat Jaume I, Castellón de La Plana, Spain
- Neuropsychology and Functional Neuroimaging Group, Universitat Jaume I, Castellón de La Plana, Spain
| | - Lara Ferrando-Esteve
- Department of Education and Specific Didactics, Universitat Jaume I, Castellón de La Plana, Spain.
- Neuropsychology and Functional Neuroimaging Group, Universitat Jaume I, Castellón de La Plana, Spain.
| | - Irene Epifanio
- Department of Mathematics, Universitat Jaume I, Castellón de La Plana, Spain
| |
Collapse
|
13
|
An fMRI intervention study of creative mathematical reasoning: behavioral and brain effects across different levels of cognitive ability. Trends Neurosci Educ 2022; 29:100193. [PMID: 36470621 DOI: 10.1016/j.tine.2022.100193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Many learning methods of mathematical reasoning encourage imitative procedures (algorithmic reasoning, AR) instead of more constructive reasoning processes (creative mathematical reasoning, CMR). Recent research suggest that learning with CMR compared to AR leads to better performance and differential brain activity during a subsequent test. Here, we considered the role of individual differences in cognitive ability in relation to effects of CMR. METHODS We employed a within-subject intervention (N=72, MAge=18.0) followed by a brain-imaging session (fMRI) one week later. A battery of cognitive tests preceded the intervention. Participants were divided into three cognitive ability groups based on their cognitive score (low, intermediate and high). RESULTS On mathematical tasks previously practiced with CMR compared to AR we observed better performance, and higher brain activity in key regions for mathematical cognition such as left angular gyrus and left inferior/middle frontal gyrus. The CMR-effects did not interact with cognitive ability, albeit the effects on performance were driven by the intermediate and high cognitive ability groups. CONCLUSIONS Encouraging pupils to engage in constructive processes when learning mathematical reasoning confers lasting learning effects on brain activation, independent of cognitive ability. However, the lack of a CMR-effect on performance for the low cognitive ability group suggest future studies should focus on individualized learning interventions, allowing more opportunities for effortful struggle with CMR.
Collapse
|
14
|
Zhang Y, Ma Y, Zhou X. The association between non-symbolic number comparison and mathematical abilities depends on fluency. Cogn Process 2022; 23:423-439. [PMID: 35704131 DOI: 10.1007/s10339-022-01098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
Numerous studies have explored the correlation between non-symbolic number comparison and mathematical abilities in children, but the results have been inconsistent. The underlying mental processing featuring fluency may affect the correlation. The current study tested the fluency hypothesis that non-symbolic number comparison is associated with mathematical fluency in the development of mathematical ability. Non-symbolic number comparison, arithmetic computation, mathematical reasoning, non-symbolic number estimation, symbolic number comparison, and a series of basic cognitive processing tasks, including mental rotation, non-verbal matrix reasoning, and choice reaction time, were administered to 1072 first- to fourth-grade children. The results show that non-symbolic number comparison (measured via numerosity comparison) was the only independent predictor of arithmetic computation in higher grades, even after controlled for age, gender, basic cognitive processing, non-symbolic number estimation (measured via numerosity estimation), and symbolic number comparison (measured via digit comparison). However, it did not correlate with mathematical reasoning in any grade. These findings support the fluency hypothesis for developmental correlation between non-symbolic number comparison and mathematical abilities. That is, non-symbolic number comparison correlates with mathematical ability featuring fluency.
Collapse
Affiliation(s)
- Yiyun Zhang
- School of Psychology, Liaoning Normal University, Liaoning, China.,State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuanyuan Ma
- School of Psychology, Liaoning Normal University, Liaoning, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Research Associationion for Brain and Mathematical Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
15
|
Amalric M, Cantlon JF. Common Neural Functions during Children's Learning from Naturalistic and Controlled Mathematics Paradigms. J Cogn Neurosci 2022; 34:1164-1182. [PMID: 35303098 DOI: 10.1162/jocn_a_01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Two major goals of human neuroscience are to understand how the brain functions in the real world and to measure neural processes under conditions that are ecologically valid. A critical step toward these goals is understanding how brain activity during naturalistic tasks that mimic the real world relates to brain activity in more traditional laboratory tasks. In this study, we used intersubject correlations to locate reliable stimulus-driven cerebral processes among children and adults in a naturalistic video lesson and a laboratory forced-choice task that shared the same arithmetic concept. We show that relative to a control condition with grammatical content, naturalistic and laboratory arithmetic tasks evoked overlapping activation within brain regions previously associated with math semantics. The regions of specific functional overlap between the naturalistic mathematics lesson and laboratory mathematics task included bilateral intraparietal cortex, which confirms that this region processes mathematical content independently of differences in task mode. These findings suggest that regions of the intraparietal cortex process mathematical content when children are learning about mathematics in a naturalistic setting.
Collapse
|
16
|
Cheng D, Li M, Cui J, Wang L, Wang N, Ouyang L, Wang X, Bai X, Zhou X. Algebra dissociates from arithmetic in the brain semantic network. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:1. [PMID: 34996499 PMCID: PMC8740448 DOI: 10.1186/s12993-022-00186-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022]
Abstract
Background Mathematical expressions mainly include arithmetic (such as 8 − (1 + 3)) and algebra (such as a − (b + c)). Previous studies have shown that both algebraic processing and arithmetic involved the bilateral parietal brain regions. Although previous studies have revealed that algebra was dissociated from arithmetic, the neural bases of the dissociation between algebraic processing and arithmetic is still unclear. The present study uses functional magnetic resonance imaging (fMRI) to identify the specific brain networks for algebraic and arithmetic processing. Methods Using fMRI, this study scanned 30 undergraduates and directly compared the brain activation during algebra and arithmetic. Brain activations, single-trial (item-wise) interindividual correlation and mean-trial interindividual correlation related to algebra processing were compared with those related to arithmetic. The functional connectivity was analyzed by a seed-based region of interest (ROI)-to-ROI analysis. Results Brain activation analyses showed that algebra elicited greater activation in the angular gyrus and arithmetic elicited greater activation in the bilateral supplementary motor area, left insula, and left inferior parietal lobule. Interindividual single-trial brain-behavior correlation revealed significant brain-behavior correlations in the semantic network, including the middle temporal gyri, inferior frontal gyri, dorsomedial prefrontal cortices, and left angular gyrus, for algebra. For arithmetic, the significant brain-behavior correlations were located in the phonological network, including the precentral gyrus and supplementary motor area, and in the visuospatial network, including the bilateral superior parietal lobules. For algebra, significant positive functional connectivity was observed between the visuospatial network and semantic network, whereas for arithmetic, significant positive functional connectivity was observed only between the visuospatial network and phonological network. Conclusion These findings suggest that algebra relies on the semantic network and conversely, arithmetic relies on the phonological and visuospatial networks.
Collapse
Affiliation(s)
- Dazhi Cheng
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.,Lab for Educational Neuroscience, Center for Educational Science and Technology, Faculty of Education, Beijing Normal University, Beijing, 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, 100875, China.,Department of Pediatric Neurology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, 100875, China
| | - Jiaxin Cui
- College of Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Li Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, 100875, China
| | - Naiyi Wang
- Lab for Educational Neuroscience, Center for Educational Science and Technology, Faculty of Education, Beijing Normal University, Beijing, 100875, China
| | - Liangyuan Ouyang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaozhuang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Xuejun Bai
- Faculty of Psychology, Tianjin Normal University, Tianjin, 300387, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Institute of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China. .,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Affiliation(s)
- Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China
- Advanced Innovation Center for Future Education Beijing Normal University Beijing China
- Research Center for Brain and Mathematics Learning Beijing Normal University Beijing China
| | - Jieying Zeng
- Business School Beijing Wuzi University Beijing China
| |
Collapse
|
18
|
Xu S, Li Y, Liu J. The Neural Correlates of Computational Thinking: Collaboration of Distinct Cognitive Components Revealed by fMRI. Cereb Cortex 2021; 31:5579-5597. [PMID: 34255837 DOI: 10.1093/cercor/bhab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Recent technical advance attracts great attention to the promotion of programming skills, in particular, and computational thinking (CT), in general, as a new intellectual competency. However, the understanding of its cognitive substrates is limited. The present study used functional magnetic resonance imaging to examine the neural correlates of programming to understand the cognitive substrates of CT. Specifically, magnetic resonance imaging signals were collected while the participants were mentally solving programming problems, and we found that CT recruited distributed cortical regions, including the posterior parietal cortex, the medial frontal cortex, and the left lateral frontal cortex. These regions showed extensive univariate and multivariate resemblance with arithmetic, reasoning, and spatial cognition tasks. Based on the resemblance, clustering analyses revealed that cortical regions involved in CT can be divided into Reasoning, Calculation, Visuospatial, and Shared components. Further, connectivity increased during programming within the CT network constructed by these four components and decreased between the CT network and other cortical regions. In sum, our study revealed the cognitive components underlying CT and their neural correlates and further suggests that CT is not a simple sum of parallel cognitive processes, but a composite cognitive process integrating a set of intellectual abilities, particularly those in the science, technology, engineering, and math domains.
Collapse
Affiliation(s)
- Shan Xu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Yan Li
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100086, China
| |
Collapse
|
19
|
Wang L, Li M, Yang T, Wang L, Zhou X. Mathematics Meets Science in the Brain. Cereb Cortex 2021; 32:123-136. [PMID: 34247249 DOI: 10.1093/cercor/bhab198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 01/24/2023] Open
Abstract
Mathematics and science are highly integrated disciplines, but the brain association between mathematics and science remains unclear. The current study used functional magnetic resonance imaging (fMRI) scans of 34 undergraduates (17 males, mean age = 20.3±1.64 years old) while they completed mathematical, physical and chemical principles, arithmetic computation, and sentence comprehension. We examined neural activation level, neural activation pattern, and neural connectivity to investigate the neural associations between mathematics and science (including physics and chemistry). The results showed that mathematical, physical, and chemical principles elicited similar neural activation level and neural activation pattern in the visuospatial network (mainly in the middle frontal gyrus and inferior parietal lobule), which were different from those elicited by sentence comprehension; those three principles also elicited similar neural activation level and neural activation pattern in the semantic network (mainly in the middle temporal gyrus, angular gyrus, inferior frontal gyrus, and dorsomedial prefrontal cortex), in contrast to that elicited by arithmetic computation. Effective connectivity analyses showed stronger connectivity between the middle temporal gyrus and inferior parietal lobule for mathematical, physical, and chemical principles than for sentence comprehension. The results suggest that visuospatial and semantic networks were critical for processing both mathematics and science.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 102206, China.,Siegler center for Innovative Learning, Beijing Normal University, Beijing 100875, China.,Center for Brain and Mathematical learning, Beijing Normal University, Beijing 100875, China
| | - Mengyi Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 102206, China.,Siegler center for Innovative Learning, Beijing Normal University, Beijing 100875, China.,Center for Brain and Mathematical learning, Beijing Normal University, Beijing 100875, China
| | - Tao Yang
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Li Wang
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing 100875, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.,Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 102206, China.,Siegler center for Innovative Learning, Beijing Normal University, Beijing 100875, China.,Center for Brain and Mathematical learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Ng CT, Lung TC, Chang TT. Operation-Specific Lexical Consistency Effect in Fronto-Insular-Parietal Network During Word Problem Solving. Front Hum Neurosci 2021; 15:631438. [PMID: 33776671 PMCID: PMC7987662 DOI: 10.3389/fnhum.2021.631438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
The practice of mathematical word problem is ubiquitous and thought to impact academic achievement. However, the underlying neural mechanisms are still poorly understood. In this study, we investigate how lexical consistency of word problem description is modulated in adults' brain responses during word problem solution. Using functional magnetic resonance imaging methods, we examined compare word problems that included relational statements, such as "A dumpling costs 9 dollars. A wonton is 2 dollars less than a dumpling. How much does a wonton cost?" and manipulated lexical consistency (consistent: the relational term consistent with the operation to be performed, e.g., more-addition/inconsistent: e.g., less-addition) and problem operation (addition/subtraction). We found a consistency by operation interaction in the widespread fronto-insular-parietal activations, including the anterior insula, dorsoanterior cingulate cortex, middle frontal gyrus, and intraparietal sulcus, such that inconsistent problems engaged stronger activations than consistent problems for addition, whereas the consistency effect was inverse for subtraction. Critically, these results were more salient in the less successful problem solvers than their more successful peers. Our study is the first to demonstrate that lexical consistency effects on arithmetic neural networks are modulated during reading word problem that required distinct arithmetic operations. More broadly, our study has strong potentials to add linkage between neuroscience and education by remediating deficits and enhance instruction design in the school curriculum.
Collapse
Affiliation(s)
- Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Tzu-Chen Lung
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, United States
| | - Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain, and Learning, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
21
|
Middle temporal cortex is involved in processing fractions. Neurosci Lett 2020; 725:134901. [DOI: 10.1016/j.neulet.2020.134901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
|
22
|
The neurocognitive gains of diagnostic reasoning training using simulated interactive veterinary cases. Sci Rep 2019; 9:19878. [PMID: 31882714 PMCID: PMC6934513 DOI: 10.1038/s41598-019-56404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022] Open
Abstract
The present longitudinal study ascertained training-associated transformations in the neural underpinnings of diagnostic reasoning, using a simulation game named “Equine Virtual Farm” (EVF). Twenty participants underwent structural, EVF/task-based and resting-state MRI and diffusion tensor imaging (DTI) before and after completing their training on diagnosing simulated veterinary cases. Comparing playing veterinarian versus seeing a colorful image across training sessions revealed the transition of brain activity from scientific creativity regions pre-training (left middle frontal and temporal gyrus) to insight problem-solving regions post-training (right cerebellum, middle cingulate and medial superior gyrus and left postcentral gyrus). Further, applying linear mixed-effects modelling on graph centrality metrics revealed the central roles of the creative semantic (inferior frontal, middle frontal and angular gyrus and parahippocampus) and reward systems (orbital gyrus, nucleus accumbens and putamen) in driving pre-training diagnostic reasoning; whereas, regions implicated in inductive reasoning (superior temporal and medial postcentral gyrus and parahippocampus) were the main post-training hubs. Lastly, resting-state and DTI analysis revealed post-training effects within the occipitotemporal semantic processing region. Altogether, these results suggest that simulation-based training transforms diagnostic reasoning in novices from regions implicated in creative semantic processing to regions implicated in improvised rule-based problem-solving.
Collapse
|
23
|
Andin J, Elwér Å, Mäki-Torkko E. Arithmetic in the adult deaf signing brain. J Neurosci Res 2019; 98:643-654. [PMID: 31803973 DOI: 10.1002/jnr.24569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 11/05/2022]
Abstract
We have previously shown that deaf signers recruit partially different brain regions during simple arithmetic compared to a group of hearing non-signers, despite similar performance. Specifically, hearing individuals show more widespread activation in brain areas that have been related to the verbal system of numerical processing, i.e., the left angular and inferior frontal gyrus, whereas deaf individuals engaged brain areas that have been related to the quantity system of numerical processing, i.e., the right horizontal intraparietal sulcus. This indicates that compared to hearing non-signers, deaf signers can successfully make use of processes located in partially different brain areas during simple arithmetic. In this study, which is a conceptual replication and extension of the above-presented study, the main aim is to understand similarities and differences in neural correlates supporting arithmetic in deaf compared to hearing individuals. The primary objective is to investigate the role of the right horizontal intraparietal gyrus, the left inferior frontal gyrus, the hippocampus, and the left angular gyrus during simple and difficult arithmetic and how these regions are connected to each other. A second objective is to explore what other brain regions support arithmetic in deaf signers. Up to 34 adult deaf signers and the same amount of hearing non-signers will be enrolled in an functional magnetic resonance imaging study that will include simple and difficult subtraction and multiplication. Brain imaging data will be analyzed using whole-brain analysis, region of interest analysis and connectivity analysis. This is the first study to investigate neural underpinnings of arithmetic of different difficulties in deaf individuals.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden.,Swedish Institute for Disability Research, Örebro University, Örebro, Sweden
| | - Åsa Elwér
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Elina Mäki-Torkko
- Swedish Institute for Disability Research, Örebro University, Örebro, Sweden.,Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
24
|
Hu Z, Lam KF, Xiang YT, Yuan Z. Causal Cortical Network for Arithmetic Problem-Solving Represents Brain's Planning Rather than Reasoning. Int J Biol Sci 2019; 15:1148-1160. [PMID: 31223276 PMCID: PMC6567809 DOI: 10.7150/ijbs.33400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Arithmetic problem-solving whose components mainly involve the calculation, planning and reasoning, is an important mathematical skill. To date, the neural mechanism underlying arithmetic problem-solving remains unclear. In this study, a scheme that combined a novel 24 points game paradigm, conditional Granger causality analysis, and near-infrared spectroscopy (fNIRS) neuroimaging technique was developed to examine the differences in brain activation and effective connectivity between the calculation, planning, and reasoning. We discovered that the performance of planning was correlated with the activation in frontal cortex, whereas the performance of reasoning showed the relationship with the activation in parietal cortex. In addition, we also discovered that the directional effective connectivity between the anterior frontal and posterior parietal cortex was more closely related to planning rather than reasoning. It is expected that this work will pave a new avenue for an improved understanding of the neural underpinnings underlying arithmetic problem-solving, which also provides a novel indicator to evaluate the efficacy of mathematical education.
Collapse
Affiliation(s)
- Zhishan Hu
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Keng-Fong Lam
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
25
|
Chang TT, Lung TC, Ng CT, Metcalfe AWS. Fronto-insular-parietal network engagement underlying arithmetic word problem solving. Hum Brain Mapp 2018; 40:1927-1941. [PMID: 30565340 DOI: 10.1002/hbm.24502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/05/2023] Open
Abstract
Mathematical word problems are ubiquitous and standard for teaching and evaluating generalization of mathematical knowledge for real-world contexts. It is therefore concerning that the neural mechanisms of word problem solving are not well understood, as these insights represent strong potential for improving education and remediating deficits in this domain. Here, we investigate neural response to word problems via functional magnetic resonance imaging (fMRI). Healthy adults performed sentence judgment tasks on word problems that either contained one-step mathematical operations, or nonarithmetic judgments on parallel narratives without any numerical information. Behavioral results suggested that the composite efficiency measurement of combining accuracy and RT did not differ between the two problem types. Arithmetic sentence judgments elicited greater activation in the fronto-insular-parietal network including intraparietal sulcus (IPS), dorsolateral prefrontal cortex (PFC), and anterior insula (AI) than narrative sentence judgment. Narrative sentence judgments, conversely, resulted in greater activation predominantly in the left ventral PFC, angular gyrus and perisylvian cortex compared with reading arithmetic sentences. Moreover, task-dependent functional connectivity analyses showed the AI circuits were more strongly coupled with IPS during arithmetic sentence judgments than nonarithmetic sentences. Finally, activations in the IPS during arithmetic were highly correlated with out-of-scanner performance on a distinct set of problems with the same characteristics. These results show arithmetic word problem performance differences may rely more heavily on fronto-insular-parietal circuits for mathematical model building than narrative text comprehension of similar difficulty. More broadly, our study suggests that quantitative measurements of brain mechanisms can provide pivotal role for uncovering crucial arithmetic skills.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Tzu-Chen Lung
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | | |
Collapse
|
26
|
Lin MY, Tseng YJ, Cheng CH. Age Effects on Spatiotemporal Dynamics of Response Inhibition: An MEG Study. Front Aging Neurosci 2018; 10:386. [PMID: 30515093 PMCID: PMC6255792 DOI: 10.3389/fnagi.2018.00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/02/2018] [Indexed: 11/13/2022] Open
Abstract
Inhibition, the ability to suppress irrelevant information, thoughts or movements, is crucial for humans to perform context-appropriate behaviors. It was suggested that declined cognitive performance in older adults might be attributed to inhibitory deficiencies. Although previous studies have shown an age-associated reduction in inhibitory ability, the understanding regarding its cortical spatiotemporal maps remained limited. Thus, we used a whole-head magnetoencephalography (MEG) to elucidate the age effects on response inhibition, and to explore the brain activation differences in high- and low-performing seniors. We recruited 22 younger and 22 older adults to participate in the visual Go/No-go task. Both behavioral performance and neuromagnetic responses to No-go stimuli were analyzed. The behavioral results showed that the older adults made more false alarm (FA) errors than the younger adults did. The MEG results showed that the seniors exhibited declined cortical activities in middle temporal gyrus (MTG) and delayed activation in MTG, prefrontal cortex (PFC) and pre-supplementary motor area (pre-SMA). Furthermore, among the older adults, more recruitment of the left PFC was found in the high-performers than in the lower-performers. In conclusion, age-related deficiencies in response inhibition were observed in both behavioral performance and neurophysiological measurement. Our results also suggested that frontal recruitment plays a compensatory role in successful inhibition.
Collapse
Affiliation(s)
- Mei-Yin Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|