1
|
Dietrich O, Cai M, Tuladhar AM, Jacob MA, Drenthen GS, Jansen JFA, Marques JP, Topalis J, Ingrisch M, Ricke J, de Leeuw FE, Duering M, Backes WH. Integrated intravoxel incoherent motion tensor and diffusion tensor brain MRI in a single fast acquisition. NMR IN BIOMEDICINE 2023; 36:e4905. [PMID: 36637237 DOI: 10.1002/nbm.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/15/2023]
Abstract
The acquisition of intravoxel incoherent motion (IVIM) data and diffusion tensor imaging (DTI) data from the brain can be integrated into a single measurement, which offers the possibility to determine orientation-dependent (tensorial) perfusion parameters in addition to established IVIM and DTI parameters. The purpose of this study was to evaluate the feasibility of such a protocol with a clinically feasible scan time below 6 min and to use a model-selection approach to find a set of DTI and IVIM tensor parameters that most adequately describes the acquired data. Diffusion-weighted images of the brain were acquired at 3 T in 20 elderly participants with cerebral small vessel disease using a multiband echoplanar imaging sequence with 15 b-values between 0 and 1000 s/mm2 and six non-collinear diffusion gradient directions for each b-value. Seven different IVIM-diffusion models with 4 to 14 parameters were implemented, which modeled diffusion and pseudo-diffusion as scalar or tensor quantities. The models were compared with respect to their fitting performance based on the goodness of fit (sum of squared fit residuals, chi2 ) and their Akaike weights (calculated from the corrected Akaike information criterion). Lowest chi2 values were found using the model with the largest number of model parameters. However, significantly highest Akaike weights indicating the most appropriate models for the acquired data were found with a nine-parameter IVIM-DTI model (with isotropic perfusion modeling) in normal-appearing white matter (NAWM), and with an 11-parameter model (IVIM-DTI with additional pseudo-diffusion anisotropy) in white matter with hyperintensities (WMH) and in gray matter (GM). The latter model allowed for the additional calculation of the fractional anisotropy of the pseudo-diffusion tensor (with a median value of 0.45 in NAWM, 0.23 in WMH, and 0.36 in GM), which is not accessible with the usually performed IVIM acquisitions based on three orthogonal diffusion-gradient directions.
Collapse
Affiliation(s)
- Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Mengfei Cai
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anil Man Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald S Drenthen
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - José P Marques
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Topalis
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Walter H Backes
- Schools for Mental Health and Neuroscience (MHeNs) and Cardiovascular Diseases (CARIM), Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
2
|
Qiu Y, Li Q, Wu D, Zhang Y, Cheng J, Cao Z, Zhou Y. Altered mean apparent propagator-based microstructure and the corresponding functional connectivity of the parahippocampus and thalamus in Crohn’s disease. Front Neurosci 2022; 16:985190. [PMID: 36203806 PMCID: PMC9530355 DOI: 10.3389/fnins.2022.985190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) is a chronic and relapsing inflammatory bowel disorder that has been shown to generate neurological impairments, which has the potential to signify disease activity in an underlying neurological manner. The objective of this study was to investigate the abnormalities of brain microstructure and the corresponding functional connectivity (FC) in patients with CD, as well as their associations with disease condition. Twenty-two patients with CD and 22 age-, gender-, and education-matched healthy controls (HCs) were enrolled in this study. All subjects underwent mean apparent propagator (MAP)-MRI and resting-state functional magnetic resonance imaging (MRI) (rs-fMRI) data collection. Each patient was evaluated clinically for the condition and duration of the disease. The MAP metrics were extracted and compared between two groups. Pearson’s correlation analysis was conducted to determine the relationship between disease characteristics and significantly abnormal MAP metrics in the CD group. Regions of interest (ROIs) for ROI-wise FC analysis were selected based on their correlation with MAP metrics. Results showed that multiple brain regions, including the parahippocampus and thalamus, exhibited statistically significant differences in MAP metrics between CD patients and HCs. Additionally, CD patients exhibited decreased FC between the left parahippocampus and bilateral thalamus, as well as the right parahippocampus and bilateral thalamus. The findings of this work provide preliminary evidence that structural abnormalities in the parahippocampal gyrus (PHG) and thalamus, as well as decreased FC between them, may reflect the degree of inflammatory of the disease and serve as brain biomarkers for evaluating CD activity.
Collapse
Affiliation(s)
- Yage Qiu
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingshang Li
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University School of Physics and Electronics Science, Shanghai, China
| | - Yiming Zhang
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Cao
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhijun Cao,
| | - Yan Zhou
- Department of Radiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yan Zhou,
| |
Collapse
|
3
|
Huang H, Ma X, Yue X, Kang S, Li Y, Rao Y, Feng Y, Wu J, Long W, Chen Y, Lyu W, Tan X, Qiu S. White Matter Characteristics of Damage Along Fiber Tracts in Patients with Type 2 Diabetes Mellitus. Clin Neuroradiol 2022; 33:327-341. [DOI: 10.1007/s00062-022-01213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
The white matter (WM) of the brain of type 2 diabetes mellitus (T2DM) patients is susceptible to neurodegenerative processes, but the specific types and positions of microstructural lesions along the fiber tracts remain unclear.
Methods
In this study 61 T2DM patients and 61 healthy controls were recruited and underwent diffusion spectrum imaging (DSI). The results were reconstructed with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). WM microstructural abnormalities were identified using tract-based spatial statistics (TBSS). Pointwise WM tract differences were detected through automatic fiber quantification (AFQ). The relationships between WM tract abnormalities and clinical characteristics were explored with partial correlation analysis.
Results
TBSS revealed widespread WM lesions in T2DM patients with decreased fractional anisotropy and axial diffusivity and an increased orientation dispersion index (ODI). The AFQ results showed microstructural abnormalities in T2DM patients in specific portions of the right superior longitudinal fasciculus (SLF), right arcuate fasciculus (ARC), left anterior thalamic radiation (ATR), and forceps major (FMA). In the right ARC of T2DM patients, an aberrant ODI was positively correlated with fasting insulin and insulin resistance, and an abnormal intracellular volume fraction was negatively correlated with fasting blood glucose. Additionally, negative associations were found between blood pressure and microstructural abnormalities in the right ARC, left ATR, and FMA in T2DM patients.
Conclusion
Using AFQ, together with DTI and NODDI, various kinds of microstructural alterations in the right SLF, right ARC, left ATR, and FMA can be accurately identified and may be associated with insulin and glucose status and blood pressure in T2DM patients.
Collapse
|
4
|
Le H, Zeng W, Zhang H, Li J, Wu X, Xie M, Yan X, Zhou M, Zhang H, Wang M, Hong G, Shen J. Mean Apparent Propagator MRI Is Better Than Conventional Diffusion Tensor Imaging for the Evaluation of Parkinson's Disease: A Prospective Pilot Study. Front Aging Neurosci 2020; 12:563595. [PMID: 33192458 PMCID: PMC7541835 DOI: 10.3389/fnagi.2020.563595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Mean apparent propagator (MAP) MRI is a novel diffusion imaging method to map tissue microstructure. The purpose of this study was to evaluate the diagnostic value of the MAP MRI in Parkinson’s disease (PD) in comparison with conventional diffusion tensor imaging (DTI). Methods 23 PD patients and 22 age- and gender-matched healthy controls were included. MAP MRI and DTI were performed on a 3T MR scanner with a 20-channel head coil. The MAP metrics including mean square displacement (MSD), return to the origin probability (RTOP), return to the axis probability (RTAP), and return to the plane probability (RTPP), and DTI metrics including fractional anisotropy (FA), and mean diffusivity (MD), were measured in subcortical gray matter and compared between the two groups. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic performance of all the metrics. The association between the diffusion metrics and disease severity was assessed by Pearson correlation analysis. Results For MAP MRI, the mean values of MSD in the bilateral caudate, pallidum, putamen, thalamus and substantia nigra (SN) were higher in PD patients than in healthy controls (pFDR ≤ 0.001); the mean values of the zero displacement probabilities (RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus were lower in PD patients (pFDR < 0.001). For DTI, only FA in the bilateral SN was significantly higher in PD patients than those in the controls (pFDR < 0.001). ROC analysis showed that the areas under the curves of MAP MRI metrics (MSD, RTOP, RTAP, and RTPP) in the bilateral caudate, pallidum, putamen and thalamus (range, 0.85–0.94) were greater than those of FA and MD of DTI (range, 0.55–0.69) in discriminating between PD patients and healthy controls. RTAP in the ipsilateral pallidum (r = −0.56, pFDR = 0.027), RTOP in the bilateral and contralateral putamen (r = −0.58, pFDR = 0.019; r = −0.57, pFDR = 0.024) were negatively correlated with UPDRS III motor scores. Conclusion MAP MRI outperformed the conventional DTI in the diagnosis of PD and evaluation of the disease severity.
Collapse
Affiliation(s)
- Hongbo Le
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huihong Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianing Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingwei Xie
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Minxiong Zhou
- College of Medical Imaging, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Science, Shanghai, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Guobin Hong
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|