1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Martínez-Velázquez ES, Ponce-Juárez SP, Díaz Furlong A, Sequeira H. Cooperative behavior in adolescents: a contribution of empathy and emotional regulation? Front Psychol 2024; 15:1342458. [PMID: 38638520 PMCID: PMC11024332 DOI: 10.3389/fpsyg.2024.1342458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 04/20/2024] Open
Abstract
Aim This study aims to identify different levels of empathy and emotional regulation along adolescent years and their relationship with cooperative behavior. Methods Eighty healthy males were divided into four age groups: 20 Early Adolescents, 20 Middle Adolescents, 20 Late Adolescents and 20 Adults. Participants responded to empathic and emotional regulation scales, then were assigned to an unknown partner to perform the prisoner's dilemma paradigm. Results The statistical analyses allowed to distinguish the groups on the basis of the components making up the two scales: scores on the Perspective Taking component were higher for Adults and Late Adolescents participants than for Middle Adolescents and Early Adolescents groups (p < 0.05); scores on the Personal Distress component were higher for Early Adolescents group than for Late Adolescents and Middle Adolescents groups (p < 0.05); scores on the Difficulties engaging in goal directed behavior component were higher for Middle Adolescents and Early Adolescents groups than for Adults group (p < 0.05). We observed differences between groups (p < 0.001) with higher number of cooperation responses in Adults compared to Middle Adolescents (p < 0.05) and Early Adolescents groups (p < 0.001). Discussion These findings suggest that the cooperative behavior changes during the different stages of adolescence seem to be related to the development of empathy and emotional regulation components.
Collapse
Affiliation(s)
| | - Sandra Pamela Ponce-Juárez
- Laboratory of Psychophysiology, Faculty of Psychology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfonso Díaz Furlong
- Admissions Department and Academic Follow-Up, Vicerectory of Teaching, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Henrique Sequeira
- Laboratoire de Sciences Cognitives et Affectives (SCALab), CHU Lille, UMR CNRS 9193 – University of Lille, Lille, France
| |
Collapse
|
3
|
Chuang TM, Peng PC, Su YK, Lin SH, Tseng YL. Exploring Inter-Brain Electroencephalogram Patterns for Social Cognitive Assessment During Jigsaw Puzzle Solving. IEEE Trans Neural Syst Rehabil Eng 2024; 32:422-430. [PMID: 38198273 DOI: 10.1109/tnsre.2024.3352036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Social interaction enables the smooth progression of our daily lives. Mounting evidence from recent hyperscanning neuroimaging studies indicates that key components of social behavior can be evaluated using inter-brain oscillations and connectivity. However, mapping out inter-brain networks and developing neurocognitive theories that explain how humans co-create and share information during social interaction remains challenging. In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.
Collapse
|
4
|
Tamburro G, Fiedler P, De Fano A, Raeisi K, Khazaei M, Vaquero L, Bruña R, Oppermann H, Bertollo M, Filho E, Zappasodi F, Comani S. An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. Front Hum Neurosci 2023; 17:1305331. [PMID: 38125713 PMCID: PMC10730734 DOI: 10.3389/fnhum.2023.1305331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Antonio De Fano
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Lucia Vaquero
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Pschology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Department of Medicine and Sciences of Aging, “University G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
5
|
Xia L, Gu R, Lin Y, Qin J, Luo W, Luo YJ. Explaining reversal learning deficits in anxiety with electrophysiological evidence. J Psychiatr Res 2023; 164:270-280. [PMID: 37390622 DOI: 10.1016/j.jpsychires.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Reversal learning is a crucial aspect of behavioral flexibility that plays a significant role in environmental adaptation and development. While previous studies have established a link between anxiety and impaired reversal learning ability, the underlying mechanisms behind this association remain unclear. This study employed a probabilistic reversal learning task with electroencephalographic recording to investigate these mechanisms. Participants were divided into two groups based on their scores on Spielberger's State-Trait Anxiety Inventory: high trait-anxiety (HTA) and low trait-anxiety (LTA), consisting of 50 individuals in each group. The results showed that the HTA group had poorer reversal learning performance than the LTA group, including a lower tendency to shift to the new optimal option after rule reversals (reversal-shift). The study also examined event-related potentials elicited by reversals and found that although the N1 (related to attention allocation), feedback-related negativity (FRN: related to belief updating), and P3 (related to response inhibition) were all sensitive to the grouping factor, only the FRN elicited by reversal-shift mediated the relationship between anxiety and the number/reaction time of reversal-shift. From these findings, we suggest that abnormalities in belief updating may contribute to the impaired reversal learning performance observed in anxious individuals. In our opinion, this study sheds light on potential targets for interventions aimed at improving behavioral flexibility in anxious individuals.
Collapse
Affiliation(s)
- Lisheng Xia
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongling Lin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Jianqiang Qin
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China.
| | - Yue-Jia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; School of Social Development and Management, University of Health and Rehabilitation Sciences, Qingdao, 266113, China
| |
Collapse
|
6
|
Zhang D, Zhang S, Lei Z, Li Y, Li X, Gu R. Why people engage in corrupt collaboration: an observation at the multi-brain level. Cereb Cortex 2023; 33:8465-8476. [PMID: 37083271 PMCID: PMC10786094 DOI: 10.1093/cercor/bhad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Recent studies suggest that corrupt collaboration (i.e. acquiring private benefits with joint immoral acts) represents a dilemma between the honesty and reciprocity norms. In this study, we asked pairs of participants (labeled as A and B) to individually toss a coin and report their outcomes; their collective benefit could be maximized by dishonestly reporting (a corrupt behavior). As expected, the likelihood of corrupt behavior was high; this probability was negatively correlated with player A's moral judgment ability but positively correlated with player B's empathic concern (EC). Functional near-infrared spectroscopy data revealed that the brain-to-brain synchronization in the right dorsolateral prefrontal cortex was associated with fewer corrupt behaviors, and that it mediated the relationship between player A's moral judgment ability and corrupt collaboration. Meanwhile, the right temporal-parietal junction synchronization was associated with more corrupt behaviors, and that it mediated the relationship between player B's EC and corrupt collaboration. The roles of these 2 regions are interpreted according to the influence of the honesty and reciprocity norms on corrupt collaboration. In our opinion, these findings provide insight into the underlying mechanisms and modulating factors of corrupt collaboration.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Shen Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhen Lei
- China Center for Behavioral Economics and Finance & School of Economics, Southwestern University of Finance and Economics, Chengdu 611130, China
| | - Yiwei Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xianchun Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang LS, Cheng JT, Hsu IJ, Liou S, Kung CC, Chen DY, Weng MH. Distinct cerebral coherence in task-based fMRI hyperscanning: cooperation versus competition. Cereb Cortex 2022; 33:421-433. [PMID: 35266996 DOI: 10.1093/cercor/bhac075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/17/2023] Open
Abstract
This study features an functional magnetic resonance imaging (fMRI) hyperscanning experiment from 2 sites, 305 km apart. The experiment contains 2 conditions: the dyad collaborated to win and then split the reward in the cooperation condition, whereas the winner took all the reward in the competition condition, thereby resulting in dynamic strategic interactions. To calculate the cerebral coherence in such jittered event-related fMRI tasks, we first iteratively estimated the feedback-related blood oxygenation level-dependent responses of each trial, using 8 finite impulse response functions (16 s) and then concatenated the beta volume series. With the right temporal-parietal junction (rTPJ) as the seed, the interpersonal connected brain areas were separately identified: the right superior temporal gyrus (rSTG) (cooperation) and the left precuneus (lPrecuneus) (competition), both peaking at the designated frequency bin (1/16 s = 0.0625 Hz), but not in permuted pairs. In addition, the extended coherence analyses on shorter and longer concatenated volumes verified that only in the optimal trial frequency did the rTPJ-rSTG and rTPJ-lPrecuneus couplings peak. In sum, our approach both showcases a flexible analysis method that widens the applicability of interpersonal coherence in the rapid event-related fMRI hyperscanning and reveals a context-based inter-brain coupling between interacting pairs during cooperation and during competition.
Collapse
Affiliation(s)
- Le-Si Wang
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), No. 1, University Road, Tainan City 701, Taiwan
| | - Jen-Tang Cheng
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| | - I-Jeng Hsu
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| | - Shyhnan Liou
- Institute of Creative Industries Design, National Cheng Kung University (NCKU), No. 1, University Road, Tainan City 701, Taiwan
| | - Chun-Chia Kung
- Department of Psychology, NCKU, No. 1, University Road, Tainan City 701, Taiwan.,Mind Research and Imaging (MRI) Center, No. 1, University Road, Tainan City 701, Taiwan
| | - Der-Yow Chen
- Department of Psychology, NCKU, No. 1, University Road, Tainan City 701, Taiwan.,Mind Research and Imaging (MRI) Center, No. 1, University Road, Tainan City 701, Taiwan
| | - Ming-Hung Weng
- Department of Economics, NCKU, No. 1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
8
|
A novel approach to measure brain-to-brain spatial and temporal alignment during positive empathy. Sci Rep 2022; 12:17282. [PMID: 36241665 PMCID: PMC9568657 DOI: 10.1038/s41598-022-18911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/22/2022] [Indexed: 01/06/2023] Open
Abstract
Empathy is defined as the ability to vicariously experience others' suffering (vicarious pain) or feeling their joy (vicarious reward). While most neuroimaging studies have focused on vicarious pain and describe similar neural responses during the observed and the personal negative affective involvement, only initial evidence has been reported for the neural responses to others' rewards and positive empathy. Here, we propose a novel approach, based on the simultaneous recording of multi-subject EEG signals and exploiting the wavelet coherence decomposition to measure the temporal alignment between ERPs in a dyad of interacting subjects. We used the Third-Party Punishment (TPP) paradigm to elicit the personal and vicarious experiences. During a positive experience, we observed the simultaneous presence in both agents of the Late Positive Potential (LPP), an ERP component related to emotion processing, as well as the existence of an inter-subject ERPs synchronization in the related time window. Moreover, the amplitude of the LPP synchronization was modulated by the presence of a human-agent. Finally, the localized brain circuits subtending the ERP-synchronization correspond to key-regions of personal and vicarious reward. Our findings suggest that the temporal and spatial ERPs alignment might be a novel and direct proxy measure of empathy.
Collapse
|
9
|
Zhang Q, Luo C, Ngetich R, Zhang J, Jin Z, Li L. Visual Selective Attention P300 Source in Frontal-Parietal Lobe: ERP and fMRI Study. Brain Topogr 2022; 35:636-650. [PMID: 36178537 DOI: 10.1007/s10548-022-00916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Visual selective attention can be achieved into bottom-up and top-down attention. Different selective attention tasks involve different attention control ways. The pop-out task requires more bottom-up attention, whereas the search task involves more top-down attention. P300, which is the positive potential generated by the brain in the latency of 300 ~ 600 ms after stimulus, reflects the processing of attention. There is no consensus on the P300 source. The aim of present study is to study the source of P300 elicited by different visual selective attention. We collected thirteen participants' P300 elicited by pop-out and search tasks with event-related potentials (ERP). We collected twenty-six participants' activation brain regions in pop-out and search tasks with functional magnetic resonance imaging (fMRI). And we analyzed the sources of P300 using the ERP and fMRI integration with high temporal resolution and high spatial resolution. ERP results indicated that the pop-out task induced larger P300 than the search task. P300 induced by the two tasks distributed at frontal and parietal lobes, with P300 induced by the pop-out task mainly at the parietal lobe and that induced by the search task mainly at the frontal lobe. Further ERP and fMRI integration analysis showed that neural difference sources of P300 were the right precentral gyrus, left superior frontal gyrus (medial orbital), left middle temporal gyrus, left rolandic operculum, right postcentral gyrus, and left angular gyrus. Our study suggests that the frontal and parietal lobes contribute to the P300 component of visual selective attention.
Collapse
Affiliation(s)
- Qiuzhu Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cimei Luo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ronald Ngetich
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
10
|
Adolescent social anxiety undermines adolescent-parent interbrain synchrony during emotional processing: A hyperscanning study. Int J Clin Health Psychol 2022; 22:100329. [PMID: 36111264 PMCID: PMC9449656 DOI: 10.1016/j.ijchp.2022.100329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Social anxiety severely impacts adolescents’ social interactions with others; however, the underlying neural mechanism has not been revealed. This study examined how adolescent's social anxiety level influences the interbrain synchrony within adolescent-parent dyads during emotional processing by using electroencephalograph (EEG) hyperscanning. A sample of 25 adolescent-parent dyads completed the picture processing task. Adolescents’ ages ranged from 10 to 14 years old. The results showed that (1) at parietal areas, greater gamma interbrain synchrony was observed in the high social anxiety adolescent-parent dyads (HSAs) than the low social anxiety adolescent-parent dyads (LSAs) in the positive conditions. However, greater gamma interbrain synchrony of the picture processing task was observed in the LSAs than the HSAs in the negative conditions. (2) Compared with the neutral condition, LSAs induced greater interbrain synchronization in the negative condition than in the neutral condition at central and parietal areas. However, HSAs induced greater interbrain synchronization in the positive condition than in the negative condition at parietal areas. (3) HSAs induced greater interbrain synchronization at parietal areas than in the central areas in positive conditions. The results provide neurological evidence that the way parent and adolescent process different emotions in the same emotional episode could be affected by the adolescent's anxiety level.
Collapse
|
11
|
Snowden AW, Hancock AS, Buhusi CV, Warren CM. Event-related Correlates of Evolving Trust Evaluations. Soc Neurosci 2022; 17:154-169. [DOI: 10.1080/17470919.2022.2043935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mantas V, Pehlivanidis A, Kotoula V, Papanikolaou K, Vassiliou G, Papaiakovou A, Papageorgiou C. Factors of influence in prisoner's dilemma task: a review of medical literature. PeerJ 2022; 10:e12829. [PMID: 35174016 PMCID: PMC8802712 DOI: 10.7717/peerj.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The Prisoner's Dilemma (PD) is one of the most popular concepts amongst the scientific literature. The task is used in order to study different types of social interactions by giving participants the choice to defect or cooperate in a specific social setting/dilemma. This review focuses on the technical characteristics of the PD task as it is used in medical literature and describes how the different PD settings could influence the players' behaviour. We identify all the studies that have used the PD task in medical research with human participants and distinguish, following a heuristic approach, seven parameters that can differentiate a PD task, namely (a) the opponent parties' composition; (b) the type of the opponent as perceived by the players; (c) the interaction flow of the game; (d) the number of rounds; (e) the instructions narrative and options that are given to players; (f) the strategy and (g) the reward matrix and payoffs of the game. We describe how each parameter could influence the final outcome of the PD task and highlight the great variability concerning the settings of these parameters in medical research. Our aim is to point out the heterogeneity of such methods in the past literature and to assist future researchers with their methodology design.
Collapse
Affiliation(s)
- Vasileios Mantas
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemios Pehlivanidis
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bathesda, MD, USA
| | - Katerina Papanikolaou
- Department of Child Psychiatry, Agia Sophia Children’s Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Vassiliou
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthoula Papaiakovou
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Papageorgiou
- 1st Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Li J, Pan J, Zhu C, Wang Y. Inter-brain synchronization is weakened by the introduction of external punishment. Soc Cogn Affect Neurosci 2021; 17:625-633. [PMID: 34964895 PMCID: PMC9327410 DOI: 10.1093/scan/nsab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022] Open
Abstract
Punishment is a popular institution to enforce social norms in human society. However, how the punishment institution impacts the inter-brain neural signatures of two-person social interactions is still an open question. By performing electroencephalography recording of brain activity in two interacting parties as they simultaneously played both the revised repeated ultimatum game (rrUG) and the revised repeated dictator game (rrDG), this study focused on exploring how the introduction of external punishment influences inter-brain synchronization between the two parties. The data showed a significant negative effect of external punishment on inter-brain synchronization, with greater inter-brain synchronization observed in the rrDG than in the rrUG. We proposed a possible mechanism underlying this result. In the rrDG, the similar moral motivation of both proposers and responders results in inter-brain synchronization between them. However, in the rrUG, the introduction of external punishment crowds out the intrinsic moral motivation of the proposers, thereby undermining the inter-brain synchronization. Moreover, we found a significant positive correlation between the rejection rate from responders for disadvantageous inequal offer and inter-brain synchronization in the rrDG. These findings contribute to understanding the negative effect of punishment institution and shed light on the inter-brain mechanism underlying social interaction.
Collapse
Affiliation(s)
- Jianbiao Li
- School of Economics, Institute for Study of
Brain-Like Economics, Shandong University, Jinan 251000, China,China Academy of Corporate Governance, Reinhard
Selten Laboratory, Nankai University, Tianjin 300071, China,Nankai University Binhai College, Tianjin 300270, China
| | - Jingjing Pan
- China Academy of Corporate Governance, Reinhard
Selten Laboratory, Nankai University, Tianjin 300071, China
| | - Chengkang Zhu
- Correspondence should be addressed to Chengkang Zhu, School of
Economics, Institute for Study of Brain-Like Economics, Shandong University, Jinan 250100,
China. E-mail:
| | - Yiwen Wang
- School of Economics and Management, Fuzhou
University, Fuzhou 350108, China
| |
Collapse
|
14
|
Peng M, Wang X, Chen W, Chen T, Cai M, Sun X, Wang Y. Cooperate or aggress? An opponent's tendency to cooperate modulates the neural dynamics of interpersonal cooperation. Neuropsychologia 2021; 162:108025. [PMID: 34560141 DOI: 10.1016/j.neuropsychologia.2021.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Humans are social animals and need to cooperate to survive. However, individuals are not cooperative in every social interaction, and their cooperation may depend on social context. The present study used a social dilemma game to investigate whether an opponent's tendency to be cooperative over time influenced a player's behavior and neural response to outcomes in the game. University students ("players") thought they were playing against other students ("opponents") in the Chicken Game but were actually playing against a programmed computer. Participants were randomly assigned to play with an opponent who tended to be competitive (cooperative 20% of the time) or who tended to be cooperative (cooperative 80% of the time). The results showed that early in the game, participants in both groups adopted a "tit-for-tat" strategy. However, as the game progressed and the opponent's behavioral tendency became more noticeable, players in the competitive-opponent group became generally more cooperative to limit their losses. ERPs analyses indicated that players had a higher P300 and larger theta power in response to the opponent's aggression but not to the opponent's cooperation when their opponent showed a tendency to be cooperative vs. competitive. The results suggest that people adjust their cooperative behavior based on their opponent's behavior in social interaction, and aggression captures more attention than cooperation in this process.
Collapse
Affiliation(s)
- Ming Peng
- Key Laboratory of Adolescent Cyberpsychology and Behavior of the Ministry of Education and School of Psychology, Central China Normal University, Wuhan, China; School of Psychology, Central China Normal University, Wuhan, China
| | - Xiaohui Wang
- School of Psychology, Central China Normal University, Wuhan, China
| | - Wang Chen
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China; Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou, China
| | - Tianlong Chen
- School of Psychology, Central China Normal University, Wuhan, China
| | - Mengfei Cai
- Department of Psychology, Manhattanville College, New York, NY, USA
| | - Xiaojun Sun
- Key Laboratory of Adolescent Cyberpsychology and Behavior of the Ministry of Education and School of Psychology, Central China Normal University, Wuhan, China; School of Psychology, Central China Normal University, Wuhan, China
| | - Yiwen Wang
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China; Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou, China.
| |
Collapse
|
15
|
Wang W, Fu C, Kong X, Osinsky R, Hewig J, Wang Y. Neuro-Behavioral Dynamic Prediction of Interpersonal Cooperation and Aggression. Neurosci Bull 2021; 38:275-289. [PMID: 34628592 PMCID: PMC8975956 DOI: 10.1007/s12264-021-00777-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022] Open
Abstract
How to quickly predict an individual's behavioral choices is an important issue in the field of human behavior research. Using noninvasive electroencephalography, we aimed to identify neural markers in the prior outcome-evaluation stage and the current option-assessment stage of the chicken game that predict an individual's behavioral choices in the subsequent decision-output stage. Hierarchical linear modeling-based brain-behavior association analyses revealed that midfrontal theta oscillation in the prior outcome-evaluation stage positively predicted subsequent aggressive choices; also, beta oscillation in the current option-assessment stage positively predicted subsequent cooperative choices. These findings provide electrophysiological evidence for the three-stage theory of decision-making and strengthen the feasibility of predicting an individual's behavioral choices using neural oscillations.
Collapse
Affiliation(s)
- Wei Wang
- School of Psychology, Beijing Normal University, Beijing, 100875, China
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, 61801, USA
| | - Chao Fu
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China
| | - Xiangzeng Kong
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China
| | - Roman Osinsky
- Department of Differential Psychology, Institute of Psychology, Osnabruck University, 49074, Osnabrück, Germany
| | - Johannes Hewig
- Department of Psychology, University of Würzburg, 97070, Würzburg, Germany
| | - Yiwen Wang
- School of Psychology, Beijing Normal University, Beijing, 100875, China.
- School of Economics and Management, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
16
|
Liu H, Zhao C, Wang F, Zhang D. Inter-brain amplitude correlation differentiates cooperation from competition in a motion-sensing sports game. Soc Cogn Affect Neurosci 2021; 16:552-564. [PMID: 33693825 PMCID: PMC8138086 DOI: 10.1093/scan/nsab031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cooperation and competition are two basic modes of human interaction. Their underlying neural mechanisms, especially from an interpersonal perspective, have not been fully explored. Using the electroencephalograph-based hyperscanning technique, the present study investigated the neural correlates of both cooperation and competition within the same ecological paradigm using a classic motion-sensing tennis game. Both the inter-brain coupling (the inter-brain amplitude correlation and inter-brain phase-locking) and the intra-brain spectral power were analyzed. Only the inter-brain amplitude correlation showed a significant difference between cooperation and competition, with different spatial patterns at theta, alpha and beta frequency bands. Further inspection revealed distinct inter-brain coupling patterns for cooperation and competition; cooperation elicited positive inter-brain amplitude correlation at the delta and theta bands in extensive brain regions, while competition was associated with negative occipital inter-brain amplitude correlation at the alpha and beta bands. These findings add to our knowledge of the neural mechanisms of cooperation and competition and suggest the significance of adopting an inter-brain perspective in exploring the neural underpinnings of social interaction in ecological contexts.
Collapse
Affiliation(s)
- Huashuo Liu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Chenying Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Peng C, Peng W, Feng W, Zhang Y, Xiao J, Wang D. EEG Correlates of Sustained Attention Variability during Discrete Multi-finger Force Control Tasks. IEEE TRANSACTIONS ON HAPTICS 2021; 14:526-537. [PMID: 33523817 DOI: 10.1109/toh.2021.3055842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The neurophysiological characteristics of sustained attention states are unclear in discrete multi-finger force control tasks. In this article, we developed an immersive visuo-haptic task for conducting stimulus-response measurements. Visual cues were randomly provided to signify the required amplitude and tolerance of fingertip force. Participants were required to respond to the visual cues by pressing force transducers using their fingertips. Response time variation was taken as a behavioral measure of sustained attention states during the task. 50% low-variability trials were classified as the optimal state and the other high-variability trials were classified as the suboptimal state using z-scoring over time. A 64-channel electroencephalogram (EEG) acquisition system was used to collect brain activities during the tasks. The haptics-elicited potential amplitude at 20 ∼ 40 ms in latency and over the frontal-central region significantly decreased in the optimal state. Furthermore, the alpha-band power in the spectra of 8 ∼ 13 Hz was significantly suppressed in the frontal-central, right temporal, and parietal regions in the optimal state. Taken together, we have identified neuroelectrophysiological features that were associated with sustained attention during multi-finger force control tasks, which would be potentially used in the development of closed-loop attention detection and training systems exploiting haptic interaction.
Collapse
|
18
|
Wang Y, Lin Y, Fu C, Huang Z, Yu R, Xiao S. Effortless Retaliation: the Neural Dynamics of Interpersonal Intentions in a Chicken Game Using Brain-Computer Interface. Soc Cogn Affect Neurosci 2021; 16:1138-1149. [PMID: 33978758 PMCID: PMC8599291 DOI: 10.1093/scan/nsab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
The desire for retaliation is a common response across a majority of human societies. However, the neural mechanisms underlying aggression and retaliation remain unclear. Previous studies on social intentions are confounded by a low-level response-related brain activity. Using an Electroencephalogram (EEG)-based brain–computer interface combined with the Chicken Game, our study examined the neural dynamics of aggression and retaliation after controlling for nonessential response-related neural signals. Our results show that aggression is associated with reduced alpha event-related desynchronization (alpha-ERD), indicating reduced mental effort. Moreover, retaliation and tit-for-tat strategy use are also linked with smaller alpha-ERD. Our study provides a novel method to minimize motor confounds and demonstrates that choosing aggression and retaliation is less effortful in social conflicts.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Economics and Management, Fuzhou University, Fuzhou 350108, China.,Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou 350108, China
| | - Yuxiao Lin
- College of Management and Economics, Tianjin University, Tianjin 300072, China
| | - Chao Fu
- School of Economics and Management, Fuzhou University, Fuzhou 350108, China.,Institute of Psychological and Cognitive Sciences, Fuzhou University, Fuzhou 350108, China
| | - Zhihua Huang
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shaobei Xiao
- School of Psychology, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
19
|
Cervantes Constantino F, Garat S, Nicolaisen-Sobesky E, Paz V, Martínez-Montes E, Kessel D, Cabana Á, Gradin VB. Neural processing of iterated prisoner's dilemma outcomes indicates next-round choice and speed to reciprocate cooperation. Soc Neurosci 2020; 16:103-120. [PMID: 33297873 DOI: 10.1080/17470919.2020.1859410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The iterated prisoner's dilemma (iPD) game is a well-established model for testing how people cooperate, and the neural processes that unfold after its distinct outcomes have been partly described. Recent theoretical models suggest evolution favors intuitive cooperation, which raises questions on the behavioral but also neural timelines involved. We studied the outcome/feedback stage of iPD rounds with electroencephalography (EEG) methods. Results showed that neural signals associated with this stage also relate to future choice, in an outcome-dependent manner: (i) after zero-gain "sucker's payoffs" (unreciprocated cooperation), a participant's decision thereafter relates to changes to the feedback-related negativity (FRN); (ii) after one-sided non-cooperation (participant wins at co-player's expense), by the P3; (iii) after mutual cooperation, by late frontal delta-band modulations. Critically, faster reciprocation behavior towards a co-player's choice to cooperate was predicted, on a single-trial basis, by players' P3 and frontal delta modulations at the immediately preceding trial. Delta-band signaling is discussed in relation to homeostatic regulation processing in the literature. The findings relate the early outcome/feedback stage to subsequent decisional processes in the iPD, providing a first neural account of the brief timelines implied in heuristic modes of cooperation.
Collapse
|
20
|
Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196669] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to conduct a comprehensive review on hyperscanning research (measuring brain activity simultaneously from more than two people interacting) using an explicit systematic method, the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Data were searched from IEEE Xplore, PubMed, Engineering Village, Web of Science and Scopus databases. Inclusion criteria were journal articles written in English from 2000 to 19 June 2019. A total of 126 empirical studies were screened out to address three specific questions regarding the neuroimaging method, the application domain, and the experiment paradigm. Results showed that the most used neuroimaging method with hyperscanning was magnetoencephalography/electroencephalography (MEG/EEG; 47%), and the least used neuroimaging method was hyper-transcranial Alternating Current Stimulation (tACS) (1%). Applications in cognition accounted for almost half the studies (48%), while educational applications accounted for less than 5% of the studies. Applications in decision-making tasks were the second most common (26%), shortly followed by applications in motor synchronization (23%). The findings from this systematic review that were based on documented, transparent and reproducible searches should help build cumulative knowledge and guide future research regarding inter-brain neural synchrony during social interactions, that is, hyperscanning research.
Collapse
|
21
|
Impact of depression on cooperation: An fNIRS hyperscanning study. ACTA PSYCHOLOGICA SINICA 2020. [DOI: 10.3724/sp.j.1041.2020.00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|