1
|
Turker S, Kuhnke P, Jiang Z, Hartwigsen G. Disrupted network interactions serve as a neural marker of dyslexia. Commun Biol 2023; 6:1114. [PMID: 37923809 PMCID: PMC10624919 DOI: 10.1038/s42003-023-05499-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Dyslexia, a frequent learning disorder, is characterized by severe impairments in reading and writing and hypoactivation in reading regions in the left hemisphere. Despite decades of research, it remains unclear to date if observed behavioural deficits are caused by aberrant network interactions during reading and whether differences in functional activation and connectivity are directly related to reading performance. Here we provide a comprehensive characterization of reading-related brain connectivity in adults with and without dyslexia. We find disrupted functional coupling between hypoactive reading regions, especially between the left temporo-parietal and occipito-temporal cortices, and an extensive functional disruption of the right cerebellum in adults with dyslexia. Network analyses suggest that individuals with dyslexia process written stimuli via a dorsal decoding route and show stronger reading-related interaction with the right cerebellum. Moreover, increased connectivity within networks is linked to worse reading performance in dyslexia. Collectively, our results provide strong evidence for aberrant task-related connectivity as a neural marker for dyslexia that directly impacts behavioural performance. The observed differences in activation and connectivity suggest that one effective way to alleviate reading problems in dyslexia is through modulating interactions within the reading network with neurostimulation methods.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany.
| | - Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany
| | - Zhizhao Jiang
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
2
|
Syntax through the looking glass: A review on two-word linguistic processing across behavioral, neuroimaging and neurostimulation studies. Neurosci Biobehav Rev 2022; 142:104881. [DOI: 10.1016/j.neubiorev.2022.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
3
|
Holmer E, Schönström K, Andin J. Associations Between Sign Language Skills and Resting-State Functional Connectivity in Deaf Early Signers. Front Psychol 2022; 13:738866. [PMID: 35369269 PMCID: PMC8975249 DOI: 10.3389/fpsyg.2022.738866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The processing of a language involves a neural language network including temporal, parietal, and frontal cortical regions. This applies to spoken as well as signed languages. Previous research suggests that spoken language proficiency is associated with resting-state functional connectivity (rsFC) between language regions and other regions of the brain. Given the similarities in neural activation for spoken and signed languages, rsFC-behavior associations should also exist for sign language tasks. In this study, we explored the associations between rsFC and two types of linguistic skills in sign language: phonological processing skill and accuracy in elicited sentence production. Fifteen adult, deaf early signers were enrolled in a resting-state functional magnetic resonance imaging (fMRI) study. In addition to fMRI data, behavioral tests of sign language phonological processing and sentence reproduction were administered. Using seed-to-voxel connectivity analysis, we investigated associations between behavioral proficiency and rsFC from language-relevant nodes: bilateral inferior frontal gyrus (IFG) and posterior superior temporal gyrus (STG). Results showed that worse sentence processing skill was associated with stronger positive rsFC between the left IFG and left sensorimotor regions. Further, sign language phonological processing skill was associated with positive rsFC from right IFG to middle frontal gyrus/frontal pole although this association could possibly be explained by domain-general cognitive functions. Our findings suggest a possible connection between rsFC and developmental language outcomes in deaf individuals.
Collapse
Affiliation(s)
- Emil Holmer
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping, Sweden
- *Correspondence: Emil Holmer,
| | | | - Josefine Andin
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Caldwell HB. Sign and Spoken Language Processing Differences in the Brain: A Brief Review of Recent Research. Ann Neurosci 2022; 29:62-70. [PMID: 35875424 PMCID: PMC9305909 DOI: 10.1177/09727531211070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Background: It is currently accepted that sign languages and spoken languages have significant processing commonalities. The evidence supporting this often merely investigates frontotemporal pathways, perisylvian language areas, hemispheric lateralization, and event-related potentials in typical settings. However, recent evidence has explored beyond this and uncovered numerous modality-dependent processing differences between sign languages and spoken languages by accounting for confounds that previously invalidated processing comparisons and by delving into the specific conditions in which they arise. However, these processing differences are often shallowly dismissed as unspecific to language. Summary: This review examined recent neuroscientific evidence for processing differences between sign and spoken language modalities and the arguments against these differences’ importance. Key distinctions exist in the topography of the left anterior negativity (LAN) and with modulations of event-related potential (ERP) components like the N400. There is also differential activation of typical spoken language processing areas, such as the conditional role of the temporal areas in sign language (SL) processing. Importantly, sign language processing uniquely recruits parietal areas for processing phonology and syntax and requires the mapping of spatial information to internal representations. Additionally, modality-specific feedback mechanisms distinctively involve proprioceptive post-output monitoring in sign languages, contrary to spoken languages’ auditory and visual feedback mechanisms. The only study to find ERP differences post-production revealed earlier lexical access in sign than spoken languages. Themes of temporality, the validity of an analogous anatomical mechanisms viewpoint, and the comprehensiveness of current language models were also discussed to suggest improvements for future research. Key message: Current neuroscience evidence suggests various ways in which processing differs between sign and spoken language modalities that extend beyond simple differences between languages. Consideration and further exploration of these differences will be integral in developing a more comprehensive view of language in the brain.
Collapse
Affiliation(s)
- Hayley Bree Caldwell
- Cognitive and Systems Neuroscience Research Hub (CSN-RH), School of Justice and Society, University of South Australia Magill Campus, Magill, South Australia, Australia
| |
Collapse
|
5
|
Ma S, Hu Y, Liu Y, Pu Y, Zuo P, Hu Q, Yang Z, Chen F, Xie Z, Cun Y, Liu X, Yang M, Mo X. The Effect of Abnormal Regional Homogeneity and Spontaneous Low-Frequency Brain Activity on Lower Cognitive Ability: A Cross-Sectional Study on Postoperative Children With Tetralogy of Fallot. Front Neurosci 2022; 15:685372. [PMID: 35197816 PMCID: PMC8858977 DOI: 10.3389/fnins.2021.685372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/13/2021] [Indexed: 12/05/2022] Open
Abstract
Despite intracardiac malformation correction, children with Tetralogy of Fallot (TOF) may still suffer from brain injury. This cross-sectional study was primarily designed to determine the relationship between blood oxygenation level-dependent (BOLD) signal changes after surgery and cognition in school-aged children with TOF. To evaluate the differences between TOF children (n = 9) and healthy children (n = 9), resting-state functional magnetic resonance imaging (rs-fMRI) and the Wechsler Intelligence Scale for Children–Chinese revised edition (WISC-CR) were conducted in this study. The results showed that TOF children had a lower full-scale intelligence quotient (FSIQ, 95.444 ± 5.354, p = 0.022) and verbal intelligence quotient (VIQ, 92.444 ± 4.708, p = 0.003) than healthy children (FSIQ = 118.500 ± 4.330;VIQ = 124.250 ± 4.404), and that significant differences in regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) existed between the two groups. Besides, VIQ had significantly positive correlations with the decreased ALFF value of the middle inferior occipital gyrus (MIOG, beta = 0.908, p = 0.012) after fully adjusting for all covariates. In addition, elevated ReHo values of the left and right precuneus were positively related to ALFF in the MIOG. This study revealed that brain injury substantially influences neural activity and cognition in postoperative TOF children, providing direct evidence of an association between BOLD signal changes and the VIQ and prompting further attention to language development in TOF children.
Collapse
Affiliation(s)
- Siyu Ma
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanli Hu
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Liu
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiwei Pu
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengcheng Zuo
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghui Hu
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zongyun Xie
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yueshuang Cun
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxu Liu
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Yang
- Department of Radiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ming Yang,
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Xuming Mo,
| |
Collapse
|
6
|
Abstract
The first 40 years of research on the neurobiology of sign languages (1960-2000) established that the same key left hemisphere brain regions support both signed and spoken languages, based primarily on evidence from signers with brain injury and at the end of the 20th century, based on evidence from emerging functional neuroimaging technologies (positron emission tomography and fMRI). Building on this earlier work, this review focuses on what we have learned about the neurobiology of sign languages in the last 15-20 years, what controversies remain unresolved, and directions for future research. Production and comprehension processes are addressed separately in order to capture whether and how output and input differences between sign and speech impact the neural substrates supporting language. In addition, the review includes aspects of language that are unique to sign languages, such as pervasive lexical iconicity, fingerspelling, linguistic facial expressions, and depictive classifier constructions. Summary sketches of the neural networks supporting sign language production and comprehension are provided with the hope that these will inspire future research as we begin to develop a more complete neurobiological model of sign language processing.
Collapse
|
7
|
Wu YJ, Wu N, Huang X, Rao J, Yan L, Shi L, Huang H, Li SY, Zhou FQ, Wu XR. Evidence of cortical thickness reduction and disconnection in high myopia. Sci Rep 2020; 10:16239. [PMID: 33004887 PMCID: PMC7530748 DOI: 10.1038/s41598-020-73415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023] Open
Abstract
High myopia (HM) is associated with impaired long-distance vision. accumulating evidences reported that abnormal visual experience leads to dysfunction in brain activity in HM even corrected. However, whether the long-term of abnormal visual experience lead to neuroanatomical changes remain unknown, the aim at this study is to investigate the alternation of cortical surface thickness in HM patients. 82 patients with HM (HM groups), 57 healthy controls (HC groups) were recruited. All participants underwent high-resolution T1 and resting-state functional magnetic resonance imaging (MRI) scans. The cortical thickness analysis was preformed to investigate the neuroanatomical changes in HM patients using computational anatomy toolbox (CAT 12) toolbox. Compare with HCs, HM patients showed decreased the cortical surface thickness in the left middle occipital gyrus (MOG), left inferior parietal lobule (IPL), right inferior temporal gyrus (ITG), right precuneus, right primary visual area 1 (V1), right superior temporal gyrus (STG), right superior parietal lobule (SPL), right occipital pole, and right the primary motor cortex (M1), and increased to the parietal operculum (OP4) (P < 0.01, FWE-corrected), the mean cortical thickness of right orbitofrontal cortex (OFC), right dorsolateral prefrontal cortex (DLPFC) and right subcallosal cortex showed negatively correlation between clinical variables (axis length (ALM), the average macular thickness (AMT), keratometer (KER) 1, KER2, the mean KER, the mean macular fovea thickness (MFK), the refractive diopter) in HM patients. Our result mainly provided an evidence of cortical thickness reduction and disconnection in visual center and visual processing area, and cortical thickness increase in left multimodal integration region in HM patients. This may provide important significance of the study of the neural mechanism of HM.
Collapse
Affiliation(s)
- Ya-Jun Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Na Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Rao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|