1
|
Liu TT, Granovetter MC, Maallo AMS, Robert S, Fu JZ, Patterson C, Plaut DC, Behrmann M. Cross-sectional and longitudinal changes in category-selectivity in visual cortex following pediatric cortical resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627367. [PMID: 39713452 PMCID: PMC11661110 DOI: 10.1101/2024.12.08.627367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The topographic organization of category-selective responses in human ventral occipitotemporal cortex (VOTC) and its relationship to regions subserving language functions is remarkably uniform across individuals. This arrangement is thought to result from the clustering of neurons responding to similar inputs, constrained by intrinsic architecture and tuned by experience. We examined the malleability of this organization in individuals with unilateral resection of VOTC during childhood for the management of drug-resistant epilepsy. In cross-sectional and longitudinal functional imaging studies, we compared the topography and neural representations of 17 category-selective regions in individuals with a VOTC resection, a 'control patient' with resection outside VOTC, and typically developing matched controls. We demonstrated both adherence to and deviation from the standard topography and uncovered fine-grained competitive dynamics between word- and face-selectivity over time in the single, preserved VOTC. The findings elucidate the nature and extent of cortical plasticity and highlight the potential for remodeling of extrastriate architecture and function.
Collapse
Affiliation(s)
- Tina T. Liu
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA
| | - Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Pediatrics and Neurology, New York University, New York, NY, USA
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sophia Robert
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason Z. Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| |
Collapse
|
2
|
Li A, Chen C, Wu X, Feng Y, Yang J, Feng X, Hu R, Mei L. Processing demands modulate the activities and functional connectivity patterns of the posterior (VWFA-1) and anterior (VWFA-2) VWFA. Neuroimage 2024; 303:120923. [PMID: 39522790 DOI: 10.1016/j.neuroimage.2024.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Previous studies have shown that the visual word form area (VWFA) has structural and intrinsic functional connectivity with both language and attention networks. Nevertheless, it is still unclear how the functional connectivity pattern of the VWFA is regulated by processing demands induced by experimental tasks, and whether processing demands differentially regulate the posterior (VWFA-1) and anterior (VWFA-2) subregions of the VWFA. To address these questions, the present study adopted two tasks varying in processing demands (i.e., verbal and non-verbal tasks), and used generalized psychophysiological interaction (gPPI) and dynamic causal modeling (DCM) analyses to explore the task-dependent functional connectivity patterns of the two subregions of the VWFA. Activation analysis revealed that the VWFA-2 showed higher activation for the verbal task than the non-verbal task, while there were no activation differences in the VWFA-1 after controlling for the stimulus driven effects. Functional and effective connectivity analyses revealed that, for both VWFA-1 and VWFA-2, the verbal task enhanced connections from VWFAs to the ventral language regions (e.g., the left orbital frontal cortex), while the non-verbal task enhanced connections from VWFAs to the dorsal visuospatial regions (e.g., the left intraparietal sulcus). Results of the present study indicate that processing demands induced by tasks modulate both the local activity and functional connectivity patterns of the VWFA, providing new insights for understanding its domain-general function.
Collapse
Affiliation(s)
- Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
3
|
Hauw F, Béranger B, Cohen L. Subtitled speech: the neural mechanisms of ticker-tape synaesthesia. Brain 2024; 147:2530-2541. [PMID: 38620012 PMCID: PMC11224615 DOI: 10.1093/brain/awae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| | - Benoît Béranger
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| |
Collapse
|
4
|
Chauhan VS, McCook KC, White AL. Reading Reshapes Stimulus Selectivity in the Visual Word Form Area. eNeuro 2024; 11:ENEURO.0228-24.2024. [PMID: 38997142 DOI: 10.1523/eneuro.0228-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Reading depends on a brain region known as the "visual word form area" (VWFA) in the left ventral occipitotemporal cortex. This region's function is debated because its stimulus selectivity is not absolute, it is modulated by a variety of task demands, and it is inconsistently localized. We used fMRI to characterize the combination of sensory and cognitive factors that activate word-responsive regions that we precisely localized in 16 adult humans (4 male). We then presented three types of character strings: English words, pseudowords, and unfamiliar characters with matched visual features. Participants performed three different tasks while viewing those stimuli: detecting real words, detecting color in the characters, and detecting color in the fixation mark. There were three primary findings about the VWFA's response: (1) It preferred letter strings over unfamiliar characters even when the stimuli were ignored during the fixation task. (2) Compared with those baseline responses, engaging in the word reading task enhanced the response to words but suppressed the response to unfamiliar characters. (3) Attending to the stimuli to judge their color had little effect on the response magnitudes. Thus, the VWFA is uniquely modulated by a cognitive signal that is specific to voluntary linguistic processing and is not additive. Functional connectivity analyses revealed that communication between the VWFA and a left frontal language area increased when the participant engaged in the linguistic task. We conclude that the VWFA is inherently selective for familiar orthography, but it falls under control of the language network when the task demands it.
Collapse
Affiliation(s)
- Vassiki S Chauhan
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Krystal C McCook
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, New York 10027
| |
Collapse
|
5
|
Chauhan VS, McCook KC, White AL. Reading reshapes stimulus selectivity in the visual word form area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560764. [PMID: 38948708 PMCID: PMC11212929 DOI: 10.1101/2023.10.04.560764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Reading depends on a brain region known as the "visual word form area" (VWFA) in left ventral occipito-temporal cortex. This region's function is debated because its stimulus selectivity is not absolute, it is modulated by a variety of task demands, and it is inconsistently localized. We used fMRI to characterize the combination of sensory and cognitive factors that activate word-responsive regions that we precisely localized in 16 adult humans (4 male). We then presented three types of character strings: English words, pseudowords, and unfamiliar characters with matched visual features. Participants performed three different tasks while viewing those stimuli: detecting real words, detecting color in the characters, and detecting color in the fixation mark. There were three primary findings about the VWFA's response: (1) It preferred letter strings over unfamiliar characters even when the stimuli were ignored during the fixation task; (2) Compared to those baseline responses, engaging in the word reading task enhanced the response to words but suppressed the response to unfamiliar characters. (3) Attending to the stimuli to judge their font color had little effect on the response magnitudes. Thus, the VWFA is uniquely modulated by a cognitive signal that is specific to voluntary linguistic processing and is not additive. Functional connectivity analyses revealed that communication between the VWFA and a left frontal language area increased when the participant engaged in the linguistic task. We conclude that the VWFA is inherently selective for familiar orthography, but it falls under control of the language network when the task demands it.
Collapse
Affiliation(s)
- Vassiki S. Chauhan
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| | - Krystal C McCook
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| | - Alex L. White
- Department of Neuroscience & Behavior Barnard College, Columbia University 76 Claremont Ave New York, NY 10027 USA
| |
Collapse
|
6
|
Bathelt J, Rastle K, Taylor JSH. Relationship Between Resting State Functional Connectivity and Reading-Related Behavioural Measures in 69 Adults. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:589-607. [PMID: 38939731 PMCID: PMC11210933 DOI: 10.1162/nol_a_00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 06/29/2024]
Abstract
In computational models of reading, written words can be read using print-to-sound and/or print-to-meaning pathways. Neuroimaging data associate dorsal stream regions (left posterior occipitotemporal cortex, intraparietal cortex, dorsal inferior frontal gyrus [dIFG]) with the print-to-sound pathway and ventral stream regions (left anterior fusiform gyrus, middle temporal gyrus) with the print-to-meaning pathway. In 69 typical adults, we investigated whether resting state functional connectivity (RSFC) between the visual word form area (VWFA) and dorsal and ventral regions correlated with phonological (nonword reading, nonword repetition, spoonerisms), lexical-semantic (vocabulary, sensitivity to morpheme units in reading), and general literacy (word reading, spelling) skills. VWFA activity was temporally correlated with activity in both dorsal and ventral reading regions. In pre-registered whole-brain analyses, spoonerisms performance was positively correlated with RSFC between the VWFA and left dorsal regions (dIFG, superior parietal and intraparietal cortex). In exploratory region-of-interest analyses, VWFA-dIFG connectivity was also positively correlated with nonword repetition, spelling, and vocabulary. Connectivity between the VWFA and ventral stream regions was not associated with performance on any behavioural measure, either in whole-brain or region-of-interest analyses. Our results suggest that tasks such as spoonerisms and spellings, which are both complex (i.e., involve multiple subprocesses) and have high between-subject variability, provide greater opportunity for observing resting-state brain-behaviour associations. However, the complexity of these tasks limits the conclusions we can draw about the specific mechanisms that drive these associations. Future research would benefit from constructing latent variables from multiple tasks tapping the same reading subprocess.
Collapse
Affiliation(s)
- Joe Bathelt
- Department of Psychology, Royal Holloway University of London, UK
- Faculty of Social and Behavioural Sciences, University of Amsterdam, Netherlands
| | - Kathleen Rastle
- Department of Psychology, Royal Holloway University of London, UK
| | - J. S. H. Taylor
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
7
|
Perkins SC, Shaun Ho S, Evans GW, Liberzon I, Gopang M, Swain JE. Language processing following childhood poverty: Evidence for disrupted neural networks. BRAIN AND LANGUAGE 2024; 252:105414. [PMID: 38640643 DOI: 10.1016/j.bandl.2024.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Childhood poverty is related to deficits in multiple cognitive domains including adult language function. It is unknown if the brain basis of language is disrupted in adults with childhood poverty backgrounds, controlling for current functioning. Fifty-one adults (age 24) from an existing longitudinal study of childhood poverty, beginning at age 9, were examined on behavioral phonological awareness (LP) and completed an event-related fMRI speech/print processing LP task. Adults from childhood poverty backgrounds exhibited lower LP in adulthood. The middle-income group exhibited greater activation of the bilateral IFG and hippocampus during language processing. In psychophysiological interaction (PPI) analyses, the childhood poverty group exhibited greater coupling between ventral Broca's and the middle temporal gyrus (MTG) as well as coupling between Wernicke's region and bilateralization. Childhood poverty disrupts language processing neural networks in adulthood, after controlling for LP, suggesting that poverty in childhood influences the neurophysiological basis for language processing into adulthood.
Collapse
Affiliation(s)
- Suzanne C Perkins
- Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48106, United States.
| | - S Shaun Ho
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| | - Gary W Evans
- Departments of Human Centered Design and Psychology, Cornell University, Ithaca, NY 14853-4401, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX 77802, United States
| | - Meroona Gopang
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States; Program in Public Health, Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| | - James E Swain
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States; Psychology, Obstetrics, Gynecology & Reproductive Medicine, Program in Public Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8434, United States
| |
Collapse
|
8
|
Nitrini R. Why did humans surpass all other primates? Are our brains so different? Part 2. Dement Neuropsychol 2024; 18:e20240087P2. [PMID: 38628562 PMCID: PMC11019716 DOI: 10.1590/1980-5764-dn-2024-0087p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 04/19/2024] Open
Abstract
The second part of this review is an attempt to explain why only Homo sapiens developed language. It should be remarked that this review is based on the opinion of a clinical neurologist and does not intend to go beyond an overview of this complex topic. The progressive development of language was probably due to the expansion of the prefrontal cortex (PFC) and its networks. PFC is the largest area of the human cerebral cortex and is much more expanded in humans than in other primates. To achieve language, several other functions should have been attained, including abstraction, reasoning, expanded working memory, and executive functions. All these functions are strongly related to PFC and language had a profound retroactive impact on them all. Language and culture produce anatomic and physiological modifications in the brain. Learning to read is presented as an example of how culture modifies the brain.
Collapse
Affiliation(s)
- Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, São Paulo SP, Brazil
| |
Collapse
|
9
|
Yablonski M, Karipidis II, Kubota E, Yeatman JD. The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Hum Brain Mapp 2024; 45:e26655. [PMID: 38488471 PMCID: PMC10941549 DOI: 10.1002/hbm.26655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the visual word form area (VWFA). Recent findings suggest that this text-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions also exhibit different patterns of functional connectivity. To this end, we capitalize on two complementary datasets: Using the Natural Scenes Dataset (NSD), we identify text-selective responses in high-quality 7T adult data (N = 8), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN) database to assess whether these patterns replicate in a large developmental sample (N = 224; age 6-20 years), and whether they relate to reading development. In both datasets, we find that VWFA-1 is primarily correlated with bilateral visual regions. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly the bilateral inferior frontal gyrus. Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a specific relationship between VWFA-2 and the frontal language network. No correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and suggest that functional connectivity patterns in the ventral temporal cortex are consistent over a wide range of reading skills.
Collapse
Affiliation(s)
- Maya Yablonski
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
| | - Iliana I. Karipidis
- Department of Psychiatry and Behavioral SciencesStanford School of MedicineStanfordCaliforniaUSA
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry Zurich, University of ZurichZürichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETHZurichSwitzerland
| | - Emily Kubota
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
10
|
Vin R, Blauch NM, Plaut DC, Behrmann M. Visual word processing engages a hierarchical, distributed, and bilateral cortical network. iScience 2024; 27:108809. [PMID: 38303718 PMCID: PMC10831251 DOI: 10.1016/j.isci.2024.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Although the Visual Word Form Area (VWFA) in left temporal cortex is considered the pre-eminent region in visual word processing, other regions are also implicated. We examined the entire text-selective circuit, using functional MRI. Ten regions of interest (ROIs) per hemisphere were defined, which, based on clustering, grouped into early vision, high-level vision, and language clusters. We analyzed the responses of the ROIs and clusters to words, inverted words, and consonant strings using univariate, multivariate, and functional connectivity measures. Bilateral modulation by stimulus condition was evident, with a stronger effect in left hemisphere regions. Last, using graph theory, we observed that the VWFA was equivalently connected with early visual and language clusters in both hemispheres, reflecting its role as a mediator in the circuit. Although the individual ROIs and clusters bilaterally were flexibly altered by the nature of the input, stability held at the level of global circuit connectivity, reflecting the complex hierarchical distributed system serving visual text perception.
Collapse
Affiliation(s)
- Raina Vin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Nicholas M. Blauch
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David C. Plaut
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
11
|
Taran N, Farah R, Gashri C, Gitman E, Rosch K, Schlaggar BL, Horowitz-Kraus T. Executive functions-based reading training engages the cingulo-opercular and dorsal attention networks. Netw Neurosci 2023; 7:1452-1482. [PMID: 38144685 PMCID: PMC10727775 DOI: 10.1162/netn_a_00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/17/2023] [Indexed: 12/26/2023] Open
Abstract
The aim of this study was to determine the effect of a computerized executive functions (EFs)-based reading intervention on neural circuits supporting EFs and visual attention. Seed-to-voxel functional connectivity analysis was conducted focusing on large-scale attention system brain networks, during an fMRI reading fluency task. Participants were 8- to 12-year-old English-speaking children with dyslexia (n = 43) and typical readers (n = 36) trained on an EFs-based reading training (n = 40) versus math training (n = 39). Training duration was 8 weeks. After the EFs-based reading intervention, children with dyslexia improved their scores in reading rate and visual attention (compared to math intervention). Neurobiologically, children with dyslexia displayed an increase in functional connectivity strength after the intervention between the cingulo-opercular network and occipital and precentral regions. Noteworthy, the functional connectivity indices between these brain regions showed a positive correlation with speed of processing and visual attention scores in both pretest and posttest. The results suggest that reading improvement following an EFs-based reading intervention involves neuroplastic connectivity changes in brain areas related to EFs and primary visual processing in children with dyslexia. Our results highlight the need for training underlying cognitive abilities supporting reading, such as EFs and visual attention, in order to enhance reading abilities in dyslexia.
Collapse
Affiliation(s)
- Nikolay Taran
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Carmel Gashri
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Ester Gitman
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley L. Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, Israel
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Hauw F, El Soudany M, Rosso C, Daunizeau J, Cohen L. A single case neuroimaging study of tickertape synesthesia. Sci Rep 2023; 13:12185. [PMID: 37500762 PMCID: PMC10374523 DOI: 10.1038/s41598-023-39276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Reading acquisition is enabled by deep changes in the brain's visual system and language areas, and in the links subtending their collaboration. Disruption of those plastic processes commonly results in developmental dyslexia. However, atypical development of reading mechanisms may occasionally result in ticker-tape synesthesia (TTS), a condition described by Francis Galton in 1883 wherein individuals "see mentally in print every word that is uttered (…) as from a long imaginary strip of paper". While reading is the bottom-up translation of letters into speech, TTS may be viewed as its opposite, the top-down translation of speech into internally visualized letters. In a series of functional MRI experiments, we studied MK, a man with TTS. We showed that a set of left-hemispheric areas were more active in MK than in controls during the perception of normal than reversed speech, including frontoparietal areas involved in speech processing, and the Visual Word Form Area, an occipitotemporal region subtending orthography. Those areas were identical to those involved in reading, supporting the construal of TTS as upended reading. Using dynamic causal modeling, we further showed that, parallel to reading, TTS induced by spoken words and pseudowords relied on top-down flow of information along distinct lexical and phonological routes, involving the middle temporal and supramarginal gyri, respectively. Future studies of TTS should shed new light on the neurodevelopmental mechanisms of reading acquisition, their variability and their disorders.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France.
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France.
| | - Mohamed El Soudany
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Charlotte Rosso
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean Daunizeau
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France
| |
Collapse
|
13
|
Yablonski M, Karipidis II, Kubota E, Yeatman JD. The transition from vision to language: distinct patterns of functional connectivity for sub-regions of the visual word form area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537397. [PMID: 37131630 PMCID: PMC10153222 DOI: 10.1101/2023.04.18.537397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the Visual Word Form Area (VWFA). Recent findings suggest that this word-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions exhibit different patterns of functional connectivity, and whether these patterns have relevance for reading development. We address these questions using two complementary datasets: Using the Natural Scenes Datasets (NSD; Allen et al, 2022) we identify word-selective responses in high-quality 7T individual adult data (N=8; 6 females), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN; Alexander et al., 2017) database to assess whether these patterns a) replicate in a large developmental sample (N=224; 98 females, age 5-21y), and b) are related to reading development. In both datasets, we find that VWFA-1 is more strongly correlated with bilateral visual regions including ventral occipitotemporal cortex and posterior parietal cortex. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly bilateral inferior frontal gyrus (IFG). Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a unique relationship between VWFA-2 and the frontal language network. While connectivity patterns increased with age, no correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and portray the functional connectivity patterns of the reading circuitry as an intrinsic stable property of the brain.
Collapse
Affiliation(s)
- Maya Yablonski
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford School of Medicine
- Stanford University Graduate School of Education
| | - Iliana I Karipidis
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich
| | | | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford School of Medicine
- Stanford University Graduate School of Education
- Psychology Department, Stanford University
| |
Collapse
|
14
|
White AL, Kay KN, Tang KA, Yeatman JD. Engaging in word recognition elicits highly specific modulations in visual cortex. Curr Biol 2023; 33:1308-1320.e5. [PMID: 36889316 PMCID: PMC10089978 DOI: 10.1016/j.cub.2023.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
A person's cognitive state determines how their brain responds to visual stimuli. The most common such effect is a response enhancement when stimuli are task relevant and attended rather than ignored. In this fMRI study, we report a surprising twist on such attention effects in the visual word form area (VWFA), a region that plays a key role in reading. We presented participants with strings of letters and visually similar shapes, which were either relevant for a specific task (lexical decision or gap localization) or ignored (during a fixation dot color task). In the VWFA, the enhancement of responses to attended stimuli occurred only for letter strings, whereas non-letter shapes evoked smaller responses when attended than when ignored. The enhancement of VWFA activity was accompanied by strengthened functional connectivity with higher-level language regions. These task-dependent modulations of response magnitude and functional connectivity were specific to the VWFA and absent in the rest of visual cortex. We suggest that language regions send targeted excitatory feedback into the VWFA only when the observer is trying to read. This feedback enables the discrimination of familiar and nonsense words and is distinct from generic effects of visual attention.
Collapse
Affiliation(s)
- Alex L White
- Department of Neuroscience & Behavior, Barnard College, Columbia University, 76 Claremont Ave, New York, NY 10027, USA.
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Kenny A Tang
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| | - Jason D Yeatman
- Graduate School of Education and Department of Psychology, Stanford University, Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 520 Galvez Mall, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Church JA, Grigorenko EL, Fletcher JM. The Role of Neural and Genetic Processes in Learning to Read and Specific Reading Disabilities: Implications for Instruction. READING RESEARCH QUARTERLY 2023; 58:203-219. [PMID: 37456924 PMCID: PMC10348696 DOI: 10.1002/rrq.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/29/2021] [Indexed: 07/18/2023]
Abstract
To learn to read, the brain must repurpose neural systems for oral language and visual processing to mediate written language. We begin with a description of computational models for how alphabetic written language is processed. Next, we explain the roles of a dorsal sublexical system in the brain that relates print and speech, a ventral lexical system that develops the visual expertise for rapid orthographic processing at the word level, and the role of cognitive control networks that regulate attentional processes as children read. We then use studies of children, adult illiterates learning to read, and studies of poor readers involved in intervention, to demonstrate the plasticity of these neural networks in development and in relation to instruction. We provide a brief overview of the rapid increase in the field's understanding and technology for assessing genetic influence on reading. Family studies of twins have shown that reading skills are heritable, and molecular genetic studies have identified numerous regions of the genome that may harbor candidate genes for the heritability of reading. In selected families, reading impairment has been associated with major genetic effects, despite individual gene contributions across the broader population that appear to be small. Neural and genetic studies do not prescribe how children should be taught to read, but these studies have underscored the critical role of early intervention and ongoing support. These studies also have highlighted how structured instruction that facilitates access to the sublexical components of words is a critical part of training the brain to read.
Collapse
Affiliation(s)
| | - Elena L Grigorenko
- University of Houston, Texas, USA; Baylor College of Medicine, Houston, Texas, USA; and St. Petersburg State University, Russia
| | | |
Collapse
|
16
|
de Morais VAC, de Oliveira-Pinto AV, Mello Neto AF, Freitas JS, da Silva MM, Suemoto CK, Leite RP, Grinberg LT, Jacob-Filho W, Pasqualucci C, Nitrini R, Caramelli P, Lent R. Resilience of Neural Cellularity to the Influence of Low Educational Level. Brain Sci 2023; 13:brainsci13010104. [PMID: 36672086 PMCID: PMC9857353 DOI: 10.3390/brainsci13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Education is believed to contribute positively to brain structure and function, as well as to cognitive reserve. One of the brain regions most impacted by education is the medial temporal lobe (MTL), a region that houses the hippocampus, which has an important role in learning processes and in consolidation of memories, and is also known to undergo neurogenesis in adulthood. We aimed to investigate the influence of education on the absolute cell numbers of the MTL (comprised by the hippocampal formation, amygdala, and parahippocampal gyrus) of men without cognitive impairment. METHODS The Isotropic Fractionator technique was used to allow the anisotropic brain tissue to be transformed into an isotropic suspension of nuclei, and therefore assess the absolute cell composition of the MTL. We dissected twenty-six brains from men aged 47 to 64 years, with either low or high education. RESULTS A significant difference between groups was observed in brain mass, but not in MTL mass. No significant difference was found between groups in the number of total cells, number of neurons, and number of non-neuronal cells. Regression analysis showed that the total number of cells, number of neurons, and number of non-neuronal cells in MTL were not affected by education. CONCLUSIONS The results indicate a resilience of the absolute cellular composition of the MTL of typical men to low schooling, suggesting that the cellularity of brain regions is not affected by formal education.
Collapse
Affiliation(s)
- Viviane A. Carvalho de Morais
- Neuroplasticity Laboratory, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ana V. de Oliveira-Pinto
- Neuroplasticity Laboratory, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Arthur F. Mello Neto
- Neuroplasticity Laboratory, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Jaqueline S. Freitas
- Neuroplasticity Laboratory, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Magnólia M. da Silva
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Claudia Kimie Suemoto
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Renata P. Leite
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Lea T. Grinberg
- Memory and Aging Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wilson Jacob-Filho
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
- Laboratory of Medical Research in Aging (LIM-66), Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Carlos Pasqualucci
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, SP, Brazil
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Roberto Lent
- Neuroplasticity Laboratory, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- D’Or Institute of Research and Education, Rio de Janeiro 22281-100, RJ, Brazil
- Correspondence:
| |
Collapse
|
17
|
Li J, Liu Y, Wang Y, Wang N, Ji Y, Wei T, Bi H, Yang Y. Functional brain networks underlying the interaction between central and peripheral processes involved in Chinese handwriting in children and adults. Hum Brain Mapp 2023; 44:142-155. [PMID: 36005850 PMCID: PMC9783426 DOI: 10.1002/hbm.26055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The neural mechanisms that support handwriting, an important mode of human communication, are thought to be controlled by a central process (responsible for spelling) and a peripheral process (responsible for motor output). However, the relationship between central and peripheral processes has been debated. Using functional magnetic resonance imaging, this study examined the neural mechanisms underlying this relationship in Chinese handwriting in 36 children (mean age = 10.40 years) and 56 adults (mean age = 22.36 years) by manipulating character frequency (a central variable). Brain network analysis showed that character frequency reconfigured functional brain networks known to underlie motor processes, including the somatomotor and cerebellar network, in both children and adults, indicating that central processing cascades into peripheral processing. Furthermore, the network analysis characterized the interaction profiles between motor networks and linguistic-cognitive networks, fully mapping the neural architecture that supports the interaction of central and peripheral processes involved in handwriting. Taken together, these results reveal the neural interface underlying the interaction between central and peripheral processes involved in handwriting in a logographic writing system, advancing our understanding of the neural basis of handwriting.
Collapse
Affiliation(s)
- Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying Liu
- School of Medical HumanitiesCapital Medical UniversityBeijingChina
| | - Yi Wang
- School of Mechanical and Materials EngineeringNorth China University of TechnologyBeijingChina
| | - Nizhuan Wang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Artificial Intelligence and Neuro‐Informatics Engineering (ARINE) LaboratorySchool of Computer Engineering, Jiangsu Ocean UniversityLianyungangChina
| | - Yuzhu Ji
- Department of Psychology, College of EducationZhejiang University of TechnologyHangzhouChina
| | - Tongqi Wei
- Pan Shuh LibraryInstitute of Psychology, Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning DifficultiesInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Wang S, Planton S, Chanoine V, Sein J, Anton JL, Nazarian B, Dubarry AS, Pallier C, Pattamadilok C. Graph theoretical analysis reveals the functional role of the left ventral occipito-temporal cortex in speech processing. Sci Rep 2022; 12:20028. [PMID: 36414688 PMCID: PMC9681757 DOI: 10.1038/s41598-022-24056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
The left ventral occipito-temporal cortex (left-vOT) plays a key role in reading. Interestingly, the area also responds to speech input, suggesting that it may have other functions beyond written word recognition. Here, we adopt graph theoretical analysis to investigate the left-vOT's functional role in the whole-brain network while participants process spoken sentences in different contexts. Overall, different connectivity measures indicate that the left-vOT acts as an interface enabling the communication between distributed brain regions and sub-networks. During simple speech perception, the left-vOT is systematically part of the visual network and contributes to the communication between neighboring areas, remote areas, and sub-networks, by acting as a local bridge, a global bridge, and a connector, respectively. However, when speech comprehension is explicitly required, the specific functional role of the area and the sub-network to which the left-vOT belongs change and vary with the quality of speech signal and task difficulty. These connectivity patterns provide insightful information on the contribution of the left-vOT in various contexts of language processing beyond its role in reading. They advance our general understanding of the neural mechanisms underlying the flexibility of the language network that adjusts itself according to the processing context.
Collapse
Affiliation(s)
- Shuai Wang
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.5399.60000 0001 2176 4817Aix Marseille Univ, Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Samuel Planton
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.7429.80000000121866389Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Valérie Chanoine
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.5399.60000 0001 2176 4817Aix Marseille Univ, Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Julien Sein
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Jean-Luc Anton
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Bruno Nazarian
- grid.462486.a0000 0004 4650 2882Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED, Institut de Neurosciences de la Timone, UMR 7289 Marseille, France
| | - Anne-Sophie Dubarry
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France ,grid.4444.00000 0001 2112 9282 Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - Christophe Pallier
- grid.7429.80000000121866389Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Chotiga Pattamadilok
- grid.462776.60000 0001 2206 2382Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| |
Collapse
|
19
|
Stine-Morrow EAL, McCall GS, Manavbasi I, Ng S, Llano DA, Barbey AK. The Effects of Sustained Literacy Engagement on Cognition and Sentence Processing Among Older Adults. Front Psychol 2022; 13:923795. [PMID: 35898978 PMCID: PMC9309613 DOI: 10.3389/fpsyg.2022.923795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Considerable evidence suggests that language processing depends on memory processes, which are vulnerable to declines with aging. Yet little is known about the effects of language processing in the form of sustained literacy engagement on memory and other aspects of cognition. In the current study, adults (60-79 years of age) were randomly assigned to an 8-week program of leisure reading (n = 38) or to an active puzzle control (n = 38). Relative to the control, the experimental group showed differential improvement in verbal working memory and episodic memory. The experimental group also showed evidence of enhanced conceptual integration in sentence processing. These effects did not vary as a function of personality characteristics (e.g., openness) hypothesized to be compatible with literacy engagement. These findings support the idea that the exercise of cognitive capacities in the context of everyday life may offset age-related impairment in areas of cognition engaged by the activity, regardless of dispositional fit.
Collapse
Affiliation(s)
- Elizabeth A. L. Stine-Morrow
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Department of Educational Psychology, University of Illinois, Champaign, IL, United States
| | - Giavanna S. McCall
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Department of Educational Psychology, University of Illinois, Champaign, IL, United States
| | - Ilber Manavbasi
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Shukhan Ng
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Daniel A. Llano
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Aron K. Barbey
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Department of Psychology, University of Illinois, Champaign, IL, United States
| |
Collapse
|
20
|
Planton S, Wang S, Bolger D, Bonnard M, Pattamadilok C. Effective connectivity of the left-ventral occipito-temporal cortex during visual word processing: Direct causal evidence from TMS-EEG co-registration. Cortex 2022; 154:167-183. [DOI: 10.1016/j.cortex.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/19/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
|
21
|
Caffarra S, Karipidis II, Yablonski M, Yeatman JD. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct Funct 2021; 226:3051-3065. [PMID: 34636985 PMCID: PMC8639194 DOI: 10.1007/s00429-021-02384-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
Over the past 2 decades, researchers have tried to uncover how the human brain can extract linguistic information from a sequence of visual symbols. The description of how the brain's visual system processes words and enables reading has improved with the progressive refinement of experimental methodologies and neuroimaging techniques. This review provides a brief overview of this research journey. We start by describing classical models of object recognition in non-human primates, which represent the foundation for many of the early models of visual word recognition in humans. We then review functional neuroimaging studies investigating the word-selective regions in visual cortex. This research led to the differentiation of highly specialized areas, which are involved in the analysis of different aspects of written language. We then consider the corresponding anatomical measurements and provide a description of the main white matter pathways carrying neural signals crucial to word recognition. Finally, in an attempt to integrate structural, functional, and electrophysiological findings, we propose a view of visual word recognition, accounting for spatial and temporal facets of word-selective neural processes. This multi-modal perspective on the neural circuitry of literacy highlights the relevance of a posterior-anterior differentiation in ventral occipitotemporal cortex for visual processing of written language and lexical features. It also highlights unanswered questions that can guide us towards future research directions. Bridging measures of brain structure and function will help us reach a more precise understanding of the transformation from vision to language.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
- Basque Center on Cognition, Brain and Language, Mikeletegi 69, 20009, San Sebastian, Spain
- University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Iliana I Karipidis
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5717, USA.
| | - Maya Yablonski
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Distinct neural sources underlying visual word form processing as revealed by steady state visual evoked potentials (SSVEP). Sci Rep 2021; 11:18229. [PMID: 34521874 PMCID: PMC8440525 DOI: 10.1038/s41598-021-95627-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
EEG has been central to investigations of the time course of various neural functions underpinning visual word recognition. Recently the steady-state visual evoked potential (SSVEP) paradigm has been increasingly adopted for word recognition studies due to its high signal-to-noise ratio. Such studies, however, have been typically framed around a single source in the left ventral occipitotemporal cortex (vOT). Here, we combine SSVEP recorded from 16 adult native English speakers with a data-driven spatial filtering approach—Reliable Components Analysis (RCA)—to elucidate distinct functional sources with overlapping yet separable time courses and topographies that emerge when contrasting words with pseudofont visual controls. The first component topography was maximal over left vOT regions with a shorter latency (approximately 180 ms). A second component was maximal over more dorsal parietal regions with a longer latency (approximately 260 ms). Both components consistently emerged across a range of parameter manipulations including changes in the spatial overlap between successive stimuli, and changes in both base and deviation frequency. We then contrasted word-in-nonword and word-in-pseudoword to test the hierarchical processing mechanisms underlying visual word recognition. Results suggest that these hierarchical contrasts fail to evoke a unitary component that might be reasonably associated with lexical access.
Collapse
|
23
|
Brain-behavior dynamics between the left fusiform and reading. Brain Struct Funct 2021; 227:587-597. [PMID: 34510280 DOI: 10.1007/s00429-021-02372-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
The visual word form area (VWFA) plays a significant role in the development of reading skills. However, the developmental course and anatomical properties of the VWFA have only limitedly been investigated. The aim of the current longitudinal MRI study was to investigate dynamic, bidirectional relations between reading, and the structure of the left fusiform gyrus at the early-to-advanced reading stage. More specifically, by means of bivariate correlations and a cross-lagged panel model (CLPM), the interrelations between the size of the left fusiform gyrus and reading skills (an average score of a word and pseudo-word reading task) were studied in a longitudinal cohort of 43 Flemish children (29M, 14F) with variable reading skills in grade 2 (the early stage of reading) and grade 5 (the advanced stage of reading) of primary school. Results revealed that better reading skills at grade 2 lead to a larger size of the left fusiform gyrus at grade 5, whereas there are no directional effects between the size of the left fusiform gyrus at grade 2 and reading skills at grade 5. Hence, according to our results, there is behavior-driven brain plasticity and no brain-driven reading change between the early and advanced stage of reading. Together with pre-reading brain studies showing predictive relations to later reading scores, our results suggest that the direction of brain-behavioral influences changes throughout the course of reading development.
Collapse
|
24
|
Inhibitory Control of Adjacent Finger Movements while Performing a Modified Version of the Halstead Finger Tapping Test: Effects of Age, Education and Sex. J Int Neuropsychol Soc 2021; 27:813-824. [PMID: 33190661 DOI: 10.1017/s1355617720001101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Selective motor inhibition is known to decline with age. The purpose of this study was to determine the frequency of failures at inhibitory control of adjacent finger movements while performing a repetitive finger tapping task in young, middle-aged and older adults. Potential education and sex effects were also evaluated. METHODS Kinematic recordings of adjacent finger movements were obtained on 107 healthy adults (ages 20-80) while they performed a modified version of the Halstead Finger Tapping Test (HTFF). Study participants were instructed to inhibit all finger movements while tapping with the index finger. RESULTS Inability to inhibit adjacent finger movements while performing the task was infrequent in young adults (2.9% of individuals between 20 and 39 years of age) but increased with age (23.3% between the ages of 40 and 59; 31.0% between ages 60 and 80). Females and males did not differ in their inability to inhibit adjacent finger movements, but individuals with a college education showed a lower frequency of failure to inhibit adjacent finger movements (10.3%) compared to those with a high school education (28.6%). These findings were statistically significant only for the dominant hand. CONCLUSION Selective motor inhibition failures are most common in the dominant hand and occur primarily in older healthy adults while performing the modified version of the HFTT. Monitoring selective motor inhibition failures may have diagnostic significance.
Collapse
|
25
|
Cotosck KR, Meltzer JA, Nucci MP, Lukasova K, Mansur LL, Amaro E. Engagement of Language and Domain General Networks during Word Monitoring in a Native and Unknown Language. Brain Sci 2021; 11:brainsci11081063. [PMID: 34439682 PMCID: PMC8393423 DOI: 10.3390/brainsci11081063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Functional neuroimaging studies have highlighted the roles of three networks in processing language, all of which are typically left-lateralized: a ventral stream involved in semantics, a dorsal stream involved in phonology and speech production, and a more dorsal "multiple demand" network involved in many effortful tasks. As lateralization in all networks may be affected by life factors such as age, literacy, education, and brain pathology, we sought to develop a task paradigm with which to investigate the engagement of these networks, including manipulations to selectively emphasize semantic and phonological processing within a single task performable by almost anyone regardless of literacy status. In young healthy participants, we administered an auditory word monitoring task, in which participants had to note the occurrence of a target word within a continuous story presented in either their native language, Portuguese, or the unknown language, Japanese. Native language task performance activated ventral stream language networks, left lateralized but bilateral in the anterior temporal lobe. Unfamiliar language performance, being more difficult, activated left hemisphere dorsal stream structures and the multiple demand network bilaterally, but predominantly in the right hemisphere. These findings suggest that increased demands on phonological processing to accomplish word monitoring in the absence of semantic support may result in the bilateral recruitment of networks involved in speech perception under more challenging conditions.
Collapse
Affiliation(s)
- Kelly R. Cotosck
- FNI–Functional Neuroimaging, LIM 4–Laboratório de Investigação Médica 44 (Laboratory of Medical Investigation 44), Department of Radiology, Universidade de São Paulo, São Paulo 05403-000, Brazil; (M.P.N.); (K.L.); (E.A.J.)
- Correspondence: or ; Tel.: +55-11-95131-2225
| | | | - Mariana P. Nucci
- FNI–Functional Neuroimaging, LIM 4–Laboratório de Investigação Médica 44 (Laboratory of Medical Investigation 44), Department of Radiology, Universidade de São Paulo, São Paulo 05403-000, Brazil; (M.P.N.); (K.L.); (E.A.J.)
| | - Katerina Lukasova
- FNI–Functional Neuroimaging, LIM 4–Laboratório de Investigação Médica 44 (Laboratory of Medical Investigation 44), Department of Radiology, Universidade de São Paulo, São Paulo 05403-000, Brazil; (M.P.N.); (K.L.); (E.A.J.)
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Edson Amaro
- FNI–Functional Neuroimaging, LIM 4–Laboratório de Investigação Médica 44 (Laboratory of Medical Investigation 44), Department of Radiology, Universidade de São Paulo, São Paulo 05403-000, Brazil; (M.P.N.); (K.L.); (E.A.J.)
| |
Collapse
|
26
|
Morais J. The phoneme: A conceptual heritage from alphabetic literacy. Cognition 2021; 213:104740. [DOI: 10.1016/j.cognition.2021.104740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
|
27
|
Qu J, Hu L, Liu X, Dong J, Yang R, Mei L. The contributions of the left hippocampus and bilateral inferior parietal lobule to form-meaning associative learning. Psychophysiology 2021; 58:e13834. [PMID: 33949705 DOI: 10.1111/psyp.13834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Existing studies have identified crucial roles for the hippocampus and a distributed set of cortical regions (e.g., the inferior parietal cortex) in learning novel words. Nevertheless, researchers have not clearly determined how the hippocampus and cortical regions dynamically interact during novel word learning, especially during form-meaning associative learning. As a method to address this question, we used an online learning paradigm and representational similarity analysis to explore the contributions of the hippocampus and neocortex to form-meaning associative learning. Twenty-nine native Chinese college students were recruited to learn 30 form-meaning pairs, which were repeated 7 times during fMRI scan. Form-meaning associative learning elicited activations in a wide neural network including regions required for word processing (i.e., the bilateral inferior frontal gyrus and the occipitotemporal cortex), regions required for encoding (i.e., the bilateral parahippocampus and hippocampus), and regions required for cognitive control (i.e., the anterior cingulate cortex and dorsolateral prefrontal cortex). More importantly, our study revealed the differential roles of the left hippocampus and bilateral inferior parietal lobule (IPL) in form-meaning associative learning. Specifically, higher pattern similarity in the bilateral IPL in the early learning phase (repetitions 1 to 3) was related to better learning performance, while higher pattern similarity in the left hippocampus in the late learning phase (repetitions 5 to 7) was associated with better learning performance. These findings indicate that the hippocampus and cortical regions (e.g., the IPL) contribute to form-meaning learning in different stages.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Liyuan Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoyu Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Siuda-Krzywicka K, Witzel C, Bartolomeo P, Cohen L. Color Naming and Categorization Depend on Distinct Functional Brain Networks. Cereb Cortex 2021; 31:1106-1115. [PMID: 32995838 DOI: 10.1093/cercor/bhaa278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/31/2020] [Accepted: 08/29/2020] [Indexed: 01/31/2023] Open
Abstract
Naming a color can be understood as an act of categorization, that is, identifying it as a member of a category of colors that are referred to by the same name. But are naming and categorization equivalent cognitive processes and consequently rely on same neural substrates? Here, we used task and resting-state functional magnetic resonance imaging as well as behavioral measures to identify functional brain networks that modulated naming and categorization of colors. We first identified three bilateral color-sensitive regions in the ventro-occipital cortex. We then showed that, across participants, color naming and categorization response times (RTs) were correlated with different resting state connectivity networks seeded from the color-sensitive regions. Color naming RTs correlated with the connectivity between the left posterior color region, the left middle temporal gyrus, and the left angular gyrus. In contrast, color categorization RTs correlated with the connectivity between the bilateral posterior color regions, and left frontal, right temporal and bilateral parietal areas. The networks supporting naming and categorization had a minimal overlap, indicating that the 2 processes rely on different neural mechanisms.
Collapse
Affiliation(s)
- Katarzyna Siuda-Krzywicka
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Christoph Witzel
- School of Psychology, University of Southampton, Southampton SO17 1BJ, UK
| | - Paolo Bartolomeo
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau, ICM, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitie Salpêtrière, Fédération de Neurologie, 75013 Paris, France
| |
Collapse
|
29
|
Dávila G, Moyano MP, Edelkraut L, Moreno-Campos L, Berthier ML, Torres-Prioris MJ, López-Barroso D. Pharmacotherapy of Traumatic Childhood Aphasia: Beneficial Effects of Donepezil Alone and Combined With Intensive Naming Therapy. Front Pharmacol 2020; 11:1144. [PMID: 32848757 PMCID: PMC7411310 DOI: 10.3389/fphar.2020.01144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
At present, language therapy is the only available treatment for childhood aphasia (CA). Studying new interventions to augment and hasten the benefits provided by language therapy in children is strongly needed. CA frequently emerges as a consequence of traumatic brain injury and, as in the case of adults, it may be associated with dysfunctional activity of neurotransmitter systems. The use of cognitive-enhancing drugs, alone or combined with aphasia therapy, promotes improvement of language deficits in aphasic adults. In this study we report the case of a 9-year-old right-handed girl, subject P, who had chronic anomic aphasia associated with traumatic lesions in the left temporal-parietal cortex. We performed a single-subject, open-label study encompassing administration of the cholinergic agent donepezil (DP) alone during 12 weeks, followed by a combination of DP and intensive naming therapy (INT) for 2 weeks and thereafter by a continued treatment of DP alone during 12 weeks, a 4-week washout period, and another 2 weeks of INT. Four comprehensive language and neuropsychological evaluations were performed at different timepoints along the study, and multiple naming evaluations were performed after each INT in order to assess performance in treated and untreated words. Structural magnetic resonance imaging (MRI) was performed at baseline. MRI revealed two focal lesions in the left hemisphere, one large involving the posterior inferior and middle temporal gyri and another comprising the angular gyrus. Overall, baseline evaluation disclosed marked impairment in naming with mild-to-moderate compromise of spontaneous speech, repetition, and auditory comprehension. Executive and attention functions were also affected, but memory, visuoconstructive, and visuoperceptive functions were preserved. Treatment with DP alone significantly improved spontaneous speech, auditory comprehension, repetition, and picture naming, in addition to processing speed, selective, and sustained attention. Combined DP-INT further improved naming. After washout of both interventions, most of these beneficial changes remained. Importantly, DP produced no side effects and subject P attained the necessary level of language competence to return to regular schooling. In conclusion, the use of DP alone and in combination with INT improved language function and related cognitive posttraumatic deficits in a child with acquired aphasia. Further studies in larger samples are warranted.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María Pilar Moyano
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga - IBIMA, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.,Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| |
Collapse
|
30
|
Torres-Prioris MJ, López-Barroso D, Càmara E, Fittipaldi S, Sedeño L, Ibáñez A, Berthier ML, García AM. Neurocognitive signatures of phonemic sequencing in expert backward speakers. Sci Rep 2020; 10:10621. [PMID: 32606382 PMCID: PMC7326922 DOI: 10.1038/s41598-020-67551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
Despite its prolific growth, neurolinguistic research on phonemic sequencing has largely neglected the study of individuals with highly developed skills in this domain. To bridge this gap, we report multidimensional signatures of two experts in backward speech, that is, the capacity to produce utterances by reversing the order of phonemes while retaining their identity. Our approach included behavioral assessments of backward and forward speech alongside neuroimaging measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional connectivity. Relative to controls, both backward speakers exhibited behavioral advantages for reversing words and sentences of varying complexity, irrespective of working memory skills. These patterns were accompanied by increased grey matter volume, higher mean diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions mediating phonological and other linguistic operations, with complementary support of areas subserving associative-visual and domain-general processes. Still, the specific loci of these neural patterns differed between both subjects, suggesting individual variability in the correlates of expert backward speech. Taken together, our results offer new vistas on the domain of phonemic sequencing, while illuminating neuroplastic patterns underlying extraordinary language abilities.
Collapse
Affiliation(s)
- María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sol Fittipaldi
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Global Brain Health Institute, University of California, San Francisco, United States
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Adolfo M García
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Global Brain Health Institute, University of California, San Francisco, United States. .,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina. .,Departamento de Lingüística Y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|