1
|
Lan Z, Chen Y, Rushmore J, Zekelman L, Makris N, Rathi Y, Golby AJ, Zhang F, O’Donnell LJ. Fiber Microstructure Quantile (FMQ) Regression: A Novel Statistical Approach for Analyzing White Matter Bundles from Periphery to Core. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619237. [PMID: 39484397 PMCID: PMC11526951 DOI: 10.1101/2024.10.19.619237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The structural connections of the brain's white matter are critical for brain function. Diffusion MRI tractography enables the in-vivo reconstruction of white matter fiber bundles and the study of their relationship to covariates of interest, such as neurobehavioral or clinical factors. In this work, we introduce Fiber Microstructure Quantile (FMQ) Regression, a new statistical approach for studying the association between white matter fiber bundles and scalar factors (e.g., cognitive scores). Our approach analyzes tissue microstructure measures based on quantile-specific bundle regions. These regions are defined according to the quantiles of fractional anisotropy (FA) from the periphery to the core of a population fiber bundle, which pools all individuals' bundles. To investigate how fiber bundle tissue microstructure relates to covariates of interest, we employ the statistical technique of quantile regression. Unlike ordinary regression, which only models a conditional mean, quantile regression models the conditional quantiles of a response variable. This enables the proposed analysis, where a quantile regression is fitted for each quantile-specific bundle region. To demonstrate FMQ Regression, we perform an illustrative study in a large healthy young adult tractography dataset derived from the Human Connectome Project-Young Adult (HCP-YA), focusing on particular bundles expected to relate to particular aspects of cognition and motor function. Importantly, our analysis considers sex-specific effects in brain-behavior associations. In comparison with a traditional method, Automated Fiber Quantification (AFQ), which enables FA analysis in regions defined along the trajectory of a bundle, our results suggest that FMQ Regression is much more powerful for detecting brain-behavior associations. Importantly, FMQ Regression finds significant brain-behavior associations in multiple bundles, including findings unique to males or to females. In both males and females, language performance is significantly associated with FA in the left arcuate fasciculus, with stronger associations in the bundle's periphery. In males only, memory performance is significantly associated with FA in the left uncinate fasciculus, particularly in intermediate regions of the bundle. In females only, motor performance is significantly associated with FA in the left and right corticospinal tracts, with a slightly lower relationship at the bundle periphery and a slightly higher relationship toward the bundle core. No significant relationships are found between executive function and cingulum bundle FA. Our study demonstrates that FMQ Regression is a powerful statistical approach that can provide insight into associations from bundle periphery to bundle core. Our results also identify several brain-behavior relationships unique to males or to females, highlighting the importance of considering sex differences in future research.
Collapse
Affiliation(s)
- Zhou Lan
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Center for Clinical Investigation, Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Yuqian Chen
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Jarrett Rushmore
- School of Medicine, Boston University, Boston, Massachusetts, United States
| | - Leo Zekelman
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, United States
| | - Nikos Makris
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Alexandra J. Golby
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Konell HG, Junior LOM, Dos Santos AC, Salmon CEG. Assessment of U-Net in the segmentation of short tracts: Transferring to clinical MRI routine. Magn Reson Imaging 2024; 111:217-228. [PMID: 38754751 DOI: 10.1016/j.mri.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Accurately studying structural connectivity requires precise tract segmentation strategies. The U-Net network has been widely recognized for its exceptional capacity in image segmentation tasks and provides remarkable results in large tract segmentation when high-quality diffusion-weighted imaging (DWI) data are used. However, short tracts, which are associated with various neurological diseases, pose specific challenges, particularly when high-quality DWI data acquisition within clinical settings is concerned. Here, we aimed to evaluate the U-Net network ability to segment short tracts by using DWI data acquired in different experimental conditions. To this end, we conducted three types of training experiments involving 350 healthy subjects and 11 white matter tracts, including the anterior, posterior, and hippocampal commissure, fornix, and uncinated fasciculus. In the first experiment, the model was exclusively trained with high-quality data of the Human Connectome Project (HCP) dataset. The second experiment focused on images of healthy subjects acquired from a local hospital dataset, representing a typical clinical routine acquisition. In the third experiment, a hybrid training approach was employed, combining data of the HCP and local hospital datasets. Then, the best model was also tested in unseen DWIs of 10 epilepsy patients of the local hospital and 10 healthy subjects acquired on a scanner from another company. The outcomes of the third experiment demonstrated a notable enhancement in performance when contrasted with the preceding trials. Specifically, the short tracts within the local hospital dataset achieved Dice scores ranging between 0.60 and 0.65. Similar intervals were obtained with HCP data in the first experiment, and a substantial improvement compared to the scores between 0.37 and 0.50 obtained with the local hospital dataset at the same experiment. This improvement persisted when the method was applied to diverse scenarios, including different scanner acquisitions and epilepsy patients. These results indicate that combining datasets from different sources, coupled with resolution standardization strengthens the neural network ability to generalize predictions across a spectrum of datasets. Nevertheless, short tract segmentation performance is intricately linked to the training composition, to validation, and to testing data. Moreover, curved tracts have intricate structural nature, which adds complexities to their segmenting. Although the network training approach tested herein has provided promising results, caution must be taken when extrapolating its application to datasets acquired under distinct experimental conditions, even in the case of higher-quality data or analysis of long or short tracts.
Collapse
Affiliation(s)
- Hohana Gabriela Konell
- Inbrain Lab, Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Otávio Murta Junior
- Medical Signals and Imaging Computing Lab, Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio Carlos Dos Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Faculty of Medicine of Ribeirão Preto, SP, Brazil
| | - Carlos Ernesto Garrido Salmon
- Inbrain Lab, Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Medical Imaging, Hematology and Clinical Oncology, Faculty of Medicine of Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Tchetchenian A, Zekelman L, Chen Y, Rushmore J, Zhang F, Yeterian EH, Makris N, Rathi Y, Meijering E, Song Y, O'Donnell LJ. Deep multimodal saliency parcellation of cerebellar pathways: Linking microstructure and individual function through explainable multitask learning. Hum Brain Mapp 2024; 45:e70008. [PMID: 39185598 PMCID: PMC11345609 DOI: 10.1002/hbm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024] Open
Abstract
Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion magnetic resonance imaging tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP to a large-scale dataset from the Human Connectome Project Young Adult study (n = 1065), we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds. We thoroughly experimented with all stages of the DeepMSP pipeline, including network selection, structure-function saliency representation, clustering algorithm, and cluster count. We found that a 1D convolutional neural network architecture and a transformer network architecture both performed comparably for the multitask prediction of endurance, strength, reading decoding, and vocabulary comprehension, with both architectures outperforming a fully connected network architecture. Quantitative experiments demonstrated that a proposed low-dimensional saliency representation with an explicit measure of motor versus cognitive category bias achieved the best parcellation results, while a parcel count of four was most successful according to standard cluster quality metrics. Our results suggested that motor and cognitive saliencies are distributed across the cerebellar white matter pathways. Inspection of the final k = 4 parcellation revealed that the highest-saliency parcel was most salient for the prediction of both motor and cognitive performance scores and included parts of the middle and superior cerebellar peduncles. Our proposed saliency-based parcellation framework, DeepMSP, enables multimodal, data-driven tractography parcellation. Through utilising both structural features and functional performance measures, this parcellation strategy may have the potential to enhance the study of structure-function relationships of the cerebellar pathways.
Collapse
Affiliation(s)
- Ari Tchetchenian
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Leo Zekelman
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Harvard UniversityCambridgeMassachusettsUSA
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Fan Zhang
- School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | - Nikos Makris
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Erik Meijering
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Yang Song
- Biomedical Image Computing Group, School of Computer Science and EngineeringUniversity of New South Wales (UNSW)SydneyNew South WalesAustralia
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Mu J, Wu L, Wang C, Dun W, Hong Z, Feng X, Zhang M, Liu J. Individual differences of white matter characteristic along the anterior insula-based fiber tract circuit for pain empathy in healthy women and women with primary dysmenorrhea. Neuroimage 2024; 293:120624. [PMID: 38657745 DOI: 10.1016/j.neuroimage.2024.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
Pain empathy, defined as the ability of one person to understand another person's pain, shows large individual variations. The anterior insula is the core region of the pain empathy network. However, the relationship between white matter (WM) properties of the fiber tracts connecting the anterior insula with other cortical regions and an individual's ability to modulate pain empathy remains largely unclear. In this study, we outline an automatic seed-based fiber streamline (sFS) analysis method and multivariate pattern analysis (MVPA) to predict the levels of pain empathy in healthy women and women with primary dysmenorrhoea (PDM). Using the sFS method, the anterior insula-based fiber tract network was divided into five fiber cluster groups. In healthy women, interindividual differences in pain empathy were predicted only by the WM properties of the five fiber cluster groups, suggesting that interindividual differences in pain empathy may rely on the connectivity of the anterior insula-based fiber tract network. In women with PDM, pain empathy could be predicted by a single cluster group. The mean WM properties along the anterior insular-rostroventral area of the inferior parietal lobule further mediated the effect of pain on empathy in patients with PDM. Our results suggest that chronic periodic pain may lead to maladaptive plastic changes, which could further impair empathy by making women with PDM feel more pain when they see other people experiencing pain. Our study also addresses an important gap in the analysis of the microstructural characteristics of seed-based fiber tract network.
Collapse
Affiliation(s)
- Junya Mu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Leiming Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Jixin Liu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China.
| |
Collapse
|
5
|
Poo E, Mangin JF, Poupon C, Hernández C, Guevara P. PhyberSIM: a tool for the generation of ground truth to evaluate brain fiber clustering algorithms. Front Neurosci 2024; 18:1396518. [PMID: 38872943 PMCID: PMC11169570 DOI: 10.3389/fnins.2024.1396518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Diffusion Magnetic Resonance Imaging tractography is a non-invasive technique that produces a collection of streamlines representing the main white matter bundle trajectories. Methods, such as fiber clustering algorithms, are important in computational neuroscience and have been the basis of several white matter analysis methods and studies. Nevertheless, these clustering methods face the challenge of the absence of ground truth of white matter fibers, making their evaluation difficult. As an alternative solution, we present an innovative brain fiber bundle simulator that uses spline curves for fiber representation. The methodology uses a tubular model for the bundle simulation based on a bundle centroid and five radii along the bundle. The algorithm was tested by simulating 28 Deep White Matter atlas bundles, leading to low inter-bundle distances and high intersection percentages between the original and simulated bundles. To prove the utility of the simulator, we created three whole-brain datasets containing different numbers of fiber bundles to assess the quality performance of QuickBundles and Fast Fiber Clustering algorithms using five clustering metrics. Our results indicate that QuickBundles tends to split less and Fast Fiber Clustering tends to merge less, which is consistent with their expected behavior. The performance of both algorithms decreases when the number of bundles is increased due to higher bundle crossings. Additionally, the two algorithms exhibit robust behavior with input data permutation. To our knowledge, this is the first whole-brain fiber bundle simulator capable of assessing fiber clustering algorithms with realistic data.
Collapse
Affiliation(s)
- Elida Poo
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | | | - Cyril Poupon
- CEA, CNRS, Baobab, Neurospin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cecilia Hernández
- Department of Computer Science, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
- Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile
| | - Pamela Guevara
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Gabusi I, Battocchio M, Bosticardo S, Schiavi S, Daducci A. Blurred streamlines: A novel representation to reduce redundancy in tractography. Med Image Anal 2024; 93:103101. [PMID: 38325156 DOI: 10.1016/j.media.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Tractography is a powerful tool to study brain connectivity in vivo, but it is well known to suffer from an intrinsic trade-off between sensitivity and specificity. A critical - but usually underrated - parameter to choose that can heavily impact the quality of the estimates is the number of streamlines to be reconstructed for a given data set. In fact, sensitivity can be improved by generating more and more streamlines, as all real anatomical connections are likely reconstructed, but lots of false positives are inevitably introduced, too. Consequently, so-called tractography filtering techniques have become increasingly popular to get rid of these false positives and improve specificity. However, increasing number of streamlines introduces redundancy in tractography reconstructions, which may negatively impact the performance of filtering algorithms, especially those based on linear formulations. To address this problem, we introduce a novel streamlines representation, called "blurred streamlines", which drastically reduces the redundancy among streamlines by (i) clustering similar trajectories and (ii) spatially blurring the corresponding signal contributions. We tested the effectiveness of the blurred streamlines both on synthetic and in vivo data. Our results clearly show that this new representation is as accurate as state-of-the-art methods despite using only 5% of the input streamlines, thus significantly decreasing the computational complexity of filtering algorithms as well as storage requirements of the resulting reconstructions.
Collapse
Affiliation(s)
- Ilaria Gabusi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy.
| | - Matteo Battocchio
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Sara Bosticardo
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simona Schiavi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; ASG Superconductors S.p.A., Genova, Italy
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Joshi A, Li H, Parikh NA, He L. A systematic review of automated methods to perform white matter tract segmentation. Front Neurosci 2024; 18:1376570. [PMID: 38567281 PMCID: PMC10985163 DOI: 10.3389/fnins.2024.1376570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
White matter tract segmentation is a pivotal research area that leverages diffusion-weighted magnetic resonance imaging (dMRI) for the identification and mapping of individual white matter tracts and their trajectories. This study aims to provide a comprehensive systematic literature review on automated methods for white matter tract segmentation in brain dMRI scans. Articles on PubMed, ScienceDirect [NeuroImage, NeuroImage (Clinical), Medical Image Analysis], Scopus and IEEEXplore databases and Conference proceedings of Medical Imaging Computing and Computer Assisted Intervention Society (MICCAI) and International Symposium on Biomedical Imaging (ISBI), were searched in the range from January 2013 until September 2023. This systematic search and review identified 619 articles. Adhering to the specified search criteria using the query, "white matter tract segmentation OR fiber tract identification OR fiber bundle segmentation OR tractography dissection OR white matter parcellation OR tract segmentation," 59 published studies were selected. Among these, 27% employed direct voxel-based methods, 25% applied streamline-based clustering methods, 20% used streamline-based classification methods, 14% implemented atlas-based methods, and 14% utilized hybrid approaches. The paper delves into the research gaps and challenges associated with each of these categories. Additionally, this review paper illuminates the most frequently utilized public datasets for tract segmentation along with their specific characteristics. Furthermore, it presents evaluation strategies and their key attributes. The review concludes with a detailed discussion of the challenges and future directions in this field.
Collapse
Affiliation(s)
- Ankita Joshi
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A. Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Computer Science, Biomedical Informatics, and Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
González Rodríguez LL, Osorio I, Cofre G. A, Hernandez Larzabal H, Román C, Poupon C, Mangin JF, Hernández C, Guevara P. Phybers: a package for brain tractography analysis. Front Neurosci 2024; 18:1333243. [PMID: 38529266 PMCID: PMC10962387 DOI: 10.3389/fnins.2024.1333243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
We present a Python library (Phybers) for analyzing brain tractography data. Tractography datasets contain streamlines (also called fibers) composed of 3D points representing the main white matter pathways. Several algorithms have been proposed to analyze this data, including clustering, segmentation, and visualization methods. The manipulation of tractography data is not straightforward due to the geometrical complexity of the streamlines, the file format, and the size of the datasets, which may contain millions of fibers. Hence, we collected and structured state-of-the-art methods for the analysis of tractography and packed them into a Python library, to integrate and share tools for tractography analysis. Due to the high computational requirements, the most demanding modules were implemented in C/C++. Available functions include brain Bundle Segmentation (FiberSeg), Hierarchical Fiber Clustering (HClust), Fast Fiber Clustering (FFClust), normalization to a reference coordinate system, fiber sampling, calculation of intersection between sets of brain fibers, tools for cluster filtering, calculation of measures from clusters, and fiber visualization. The library tools were structured into four principal modules: Segmentation, Clustering, Utils, and Visualization (Fibervis). Phybers is freely available on a GitHub repository under the GNU public license for non-commercial use and open-source development, which provides sample data and extensive documentation. In addition, the library can be easily installed on both Windows and Ubuntu operating systems through the pip library.
Collapse
Affiliation(s)
| | - Ignacio Osorio
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Alejandro Cofre G.
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Hernan Hernandez Larzabal
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Claudio Román
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | - Cyril Poupon
- CEA, CNRS, Baobab, Neurospin, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Cecilia Hernández
- Department of Computer Science, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
- Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile
| | - Pamela Guevara
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Ghazi N, Aarabi MH, Soltanian-Zadeh H. Deep Learning Methods for Identification of White Matter Fiber Tracts: Review of State-of-the-Art and Future Prospective. Neuroinformatics 2023; 21:517-548. [PMID: 37328715 DOI: 10.1007/s12021-023-09636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/18/2023]
Abstract
Quantitative analysis of white matter fiber tracts from diffusion Magnetic Resonance Imaging (dMRI) data is of great significance in health and disease. For example, analysis of fiber tracts related to anatomically meaningful fiber bundles is highly demanded in pre-surgical and treatment planning, and the surgery outcome depends on accurate segmentation of the desired tracts. Currently, this process is mainly done through time-consuming manual identification performed by neuro-anatomical experts. However, there is a broad interest in automating the pipeline such that it is fast, accurate, and easy to apply in clinical settings and also eliminates the intra-reader variabilities. Following the advancements in medical image analysis using deep learning techniques, there has been a growing interest in using these techniques for the task of tract identification as well. Recent reports on this application show that deep learning-based tract identification approaches outperform existing state-of-the-art methods. This paper presents a review of current tract identification approaches based on deep neural networks. First, we review the recent deep learning methods for tract identification. Next, we compare them with respect to their performance, training process, and network properties. Finally, we end with a critical discussion of open challenges and possible directions for future works.
Collapse
Affiliation(s)
- Nayereh Ghazi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14399, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14399, Iran.
- Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Chen Y, Zhang C, Xue T, Song Y, Makris N, Rathi Y, Cai W, Zhang F, O'Donnell LJ. Deep fiber clustering: Anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation. Neuroimage 2023; 273:120086. [PMID: 37019346 PMCID: PMC10958986 DOI: 10.1016/j.neuroimage.2023.120086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
White matter fiber clustering is an important strategy for white matter parcellation, which enables quantitative analysis of brain connections in health and disease. In combination with expert neuroanatomical labeling, data-driven white matter fiber clustering is a powerful tool for creating atlases that can model white matter anatomy across individuals. While widely used fiber clustering approaches have shown good performance using classical unsupervised machine learning techniques, recent advances in deep learning reveal a promising direction toward fast and effective fiber clustering. In this work, we propose a novel deep learning framework for white matter fiber clustering, Deep Fiber Clustering (DFC), which solves the unsupervised clustering problem as a self-supervised learning task with a domain-specific pretext task to predict pairwise fiber distances. This process learns a high-dimensional embedding feature representation for each fiber, regardless of the order of fiber points reconstructed during tractography. We design a novel network architecture that represents input fibers as point clouds and allows the incorporation of additional sources of input information from gray matter parcellation. Thus, DFC makes use of combined information about white matter fiber geometry and gray matter anatomy to improve the anatomical coherence of fiber clusters. In addition, DFC conducts outlier removal naturally by rejecting fibers with low cluster assignment probability. We evaluate DFC on three independently acquired cohorts, including data from 220 individuals across genders, ages (young and elderly adults), and different health conditions (healthy control and multiple neuropsychiatric disorders). We compare DFC to several state-of-the-art white matter fiber clustering algorithms. Experimental results demonstrate superior performance of DFC in terms of cluster compactness, generalization ability, anatomical coherence, and computational efficiency.
Collapse
Affiliation(s)
- Yuqian Chen
- Harvard Medical School, MA, USA; The University of Sydney, NSW, Australia
| | | | - Tengfei Xue
- Harvard Medical School, MA, USA; The University of Sydney, NSW, Australia
| | - Yang Song
- The University of New South Wales, NSW, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Wang Z, He M, Lv Y, Ge E, Zhang S, Qiang N, Liu T, Zhang F, Li X, Ge B. Accurate corresponding fiber tract segmentation via FiberGeoMap learner with application to autism. Cereb Cortex 2023:7133663. [PMID: 37083279 DOI: 10.1093/cercor/bhad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Fiber tract segmentation is a prerequisite for tract-based statistical analysis. Brain fiber streamlines obtained by diffusion magnetic resonance imaging and tractography technology are usually difficult to be leveraged directly, thus need to be segmented into fiber tracts. Previous research mainly consists of two steps: defining and computing the similarity features of fiber streamlines, then adopting machine learning algorithms for fiber clustering or classification. Defining the similarity feature is the basic premise and determines its potential reliability and application. In this study, we adopt geometric features for fiber tract segmentation and develop a novel descriptor (FiberGeoMap) for the corresponding representation, which can effectively depict fiber streamlines' shapes and positions. FiberGeoMap can differentiate fiber tracts within the same subject, meanwhile preserving the shape and position consistency across subjects, thus can identify common fiber tracts across brains. We also proposed a Transformer-based encoder network called FiberGeoMap Learner, to perform segmentation based on the geometric features. Experimental results showed that the proposed method can differentiate the 103 various fiber tracts, which outperformed the existing methods in both the number of categories and segmentation accuracy. Furthermore, the proposed method identified some fiber tracts that were statistically different on fractional anisotropy (FA), mean diffusion (MD), and fiber number ration in autism.
Collapse
Affiliation(s)
- Zhenwei Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Mengshen He
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Yifan Lv
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Enjie Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiang Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bao Ge
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
12
|
Gruen J, Groeschel S, Schultz T. Spatially regularized low-rank tensor approximation for accurate and fast tractography. Neuroimage 2023; 271:120004. [PMID: 36898487 DOI: 10.1016/j.neuroimage.2023.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tractography based on diffusion Magnetic Resonance Imaging (dMRI) is the prevalent approach to the in vivo delineation of white matter tracts in the human brain. Many tractography methods rely on models of multiple fiber compartments, but the local dMRI information is not always sufficient to reliably estimate the directions of secondary fibers. Therefore, we introduce two novel approaches that use spatial regularization to make multi-fiber tractography more stable. Both represent the fiber Orientation Distribution Function (fODF) as a symmetric fourth-order tensor, and recover multiple fiber orientations via low-rank approximation. Our first approach computes a joint approximation over suitably weighted local neighborhoods with an efficient alternating optimization. The second approach integrates the low-rank approximation into a current state-of-the-art tractography algorithm based on the unscented Kalman filter (UKF). These methods were applied in three different scenarios. First, we demonstrate that they improve tractography even in high-quality data from the Human Connectome Project, and that they maintain useful results with a small fraction of the measurements. Second, on the 2015 ISMRM tractography challenge, they increase overlap, while reducing overreach, compared to low-rank approximation without joint optimization or the traditional UKF, respectively. Finally, our methods permit a more comprehensive reconstruction of tracts surrounding a tumor in a clinical dataset. Overall, both approaches improve reconstruction quality. At the same time, our modified UKF significantly reduces the computational effort compared to its traditional counterpart, and to our joint approximation. However, when used with ROI-based seeding, joint approximation more fully recovers fiber spread.
Collapse
Affiliation(s)
- Johannes Gruen
- Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany; Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany
| | - Samuel Groeschel
- Experimental Pediatric Neuroimaging and Department of Pediatric Neurology & Developmental Medicine, University Children's Hospital, Hoppe-Seyler-Straße 1, Tuebingen, 72076, Germany
| | - Thomas Schultz
- Bonn-Aachen International Center for Information Technology, University of Bonn, Friedrich-Hirzebruch-Allee 6, Bonn, 53115, Germany; Institute for Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, Bonn, 53115, Germany.
| |
Collapse
|
13
|
Superficial white matter bundle atlas based on hierarchical fiber clustering over probabilistic tractography data. Neuroimage 2022; 262:119550. [DOI: 10.1016/j.neuroimage.2022.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
|
14
|
Disentangling the variability of the superficial white matter organization using regional-tractogram-based population stratification. Neuroimage 2022; 255:119197. [PMID: 35417753 DOI: 10.1016/j.neuroimage.2022.119197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Each variation of the cortical folding pattern implies a particular rearrangement of the geometry of the fibers of the underlying white matter. While this rearrangement only impacts the ends of the long pathways, it may affect most of the trajectory of the short bundles. Therefore, mapping the short fibers of the human brain using diffusion-based tractography requires a dedicated strategy to overcome the variability of the folding patterns. In this paper, we propose a fiber-based stratification strategy splitting the population into homogeneous groups for disentangling the superficial white matter bundle organization. This strategy introduces a new refined fiber distance which includes angular considerations for inferring fine-grained atlases of the short bundles surrounding a specific sulcus and a subtractogram distance that quantifies the similitude between fiber sets of two different subjects. The stratification splits the population into groups with similar regional fiber organization using manifold learning. We first successfully test the hypothesis that the main source of variability of the regional fiber organization is the variability of the regional folding pattern. Then, in each group, we proceed with the automatic identification of the most stable bundles, at a higher granularity level than what can be achieved with the non-stratified whole population, enabling the disentanglement of the very variable configuration of the short fibers. Finally, the method searches for bundle correspondence across groups to build a population level atlas. As a proof of concept, the atlas refinement achieved by this strategy is illustrated for the fibers that surround the central sulcus and the superior temporal sulcus using the HCP dataset.
Collapse
|
15
|
St-Onge E, Garyfallidis E, Collins DL. Fast Streamline Search: An Exact Technique for Diffusion MRI Tractography. Neuroinformatics 2022; 20:1093-1104. [PMID: 35716314 PMCID: PMC9588479 DOI: 10.1007/s12021-022-09590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 12/31/2022]
Abstract
In this work, a hierarchical search algorithm is proposed to efficiently compute the distance between similar tractography streamlines. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two streamlines, which guarantees the validity of a proximity search. The proposed streamline representation enables the use of space-partitioning search trees to increase the tractography clustering speed without reducing its accuracy. The resulting approach enables a fast reconstruction a sparse distance matrix between two sets of streamlines, for all similar streamlines within a given radius. Alongside a white matter atlas, this fast streamline search can be used for accurate and reproducible tractogram clustering.
Collapse
Affiliation(s)
- Etienne St-Onge
- NeuroImaging and Surgical Technologies Laboratory (NIST), Montreal Neurological Institute (MNI), Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| | | | - D. Louis Collins
- NeuroImaging and Surgical Technologies Laboratory (NIST), Montreal Neurological Institute (MNI), Department of Neurology and Neurosurgery, McGill University, Montreal, QC Canada
| |
Collapse
|
16
|
White matter variability, cognition, and disorders: a systematic review. Brain Struct Funct 2021; 227:529-544. [PMID: 34731328 PMCID: PMC8844174 DOI: 10.1007/s00429-021-02382-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.
Collapse
|
17
|
Mendoza C, Roman C, Vazquez A, Poupon C, Mangin JF, Hernandez C, Guevara P. Enhanced Automatic Segmentation for Superficial White Matter Fiber Bundles for Probabilistic Tractography Datasets. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3654-3658. [PMID: 34892029 DOI: 10.1109/embc46164.2021.9630529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents an enhanced algorithm for automatic segmentation of superficial white matter (SWM) bundles from probabilistic dMRI tractography datasets, based on a multi-subject bundle atlas. Previous segmentation methods use the maximum Euclidean distance between corresponding points of the subject fibers and the atlas centroids. However, this scheme might include noisy fibers. Here, we propose a three step approach to discard noisy fibers improving the identification of fibers. The first step applies a fiber clustering and the segmentation is performed between the centroids of the clusters and the atlas centroids. This step removes outliers and enables a better identification of fibers with similar shapes. The second step applies a fiber filter based on two different fiber similarities. One is the Symmetrized Segment-Path Distance (SSPD) over 2D ISOMAP and the other is an adapted version of SSPD for 3D space. The last step eliminates noisy fibers by removing those that connect regions that are far from the main atlas bundle connections. We perform an experimental evaluation using ten subjects of the Human Connectome (HCP) database. The evaluation only considers the bundles connecting precentral and postcentral gyri, with a total of seven bundles per hemisphere. For comparison, the bundles of the ten subjects were manually segmented. Bundles segmented with our method were evaluated in terms of similarity to manually segmented bundles and the final number of fibers. The results show that our approach obtains bundles with a higher similarity score than the state-of-the-art method and maintains a similar number of fibers.Clinical relevance-Many brain pathologies or disorders can occur in specific regions of the SWM automatic segmentation of reliable SWM bundles would help applications to clinical research.
Collapse
|
18
|
Vergara C, Silva F, Huerta I, Lopez-Lopez N, Vazquez A, Houenou J, Poupon C, Mangin JF, Hernandez C, Guevara P. Group-Wise Cortical Surface Parcellation Based on Inter-Subject Fiber Clustering . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2655-2659. [PMID: 34891798 DOI: 10.1109/embc46164.2021.9631099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present an automatic algorithm for the group-wise parcellation of the cortical surface. The method is based on the structural connectivity obtained from representative brain fiber clusters, calculated via an inter-subject clustering scheme. Preliminary regions were defined from cluster-cortical mesh intersection points. The final parcellation was obtained using parcel probability maps to model and integrate the connectivity information of all subjects, and graphs to represent the overlap between parcels. Two inter-subject clustering schemes were tested, generating a total of 171 and 109 parcels, respectively. The resulting parcels were quantitatively compared with three state-of-the-art atlases. The best parcellation returned 69 parcels with a Dice similarity coefficient greater than 0.5. To the best of our knowledge, this is the first diffusion-based cortex parcellation method based on whole-brain inter-subject fiber clustering.
Collapse
|
19
|
Goicovich I, Olivares P, Román C, Vázquez A, Poupon C, Mangin JF, Guevara P, Hernández C. Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism. Front Neuroinform 2021; 15:727859. [PMID: 34539370 PMCID: PMC8445177 DOI: 10.3389/fninf.2021.727859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Fiber clustering methods are typically used in brain research to study the organization of white matter bundles from large diffusion MRI tractography datasets. These methods enable exploratory bundle inspection using visualization and other methods that require identifying brain white matter structures in individuals or a population. Some applications, such as real-time visualization and inter-subject clustering, need fast and high-quality intra-subject clustering algorithms. This work proposes a parallel algorithm using a General Purpose Graphics Processing Unit (GPGPU) for fiber clustering based on the FFClust algorithm. The proposed GPGPU implementation exploits data parallelism using both multicore and GPU fine-grained parallelism present in commodity architectures, including current laptops and desktop computers. Our approach implements all FFClust steps in parallel, improving execution times in all of them. In addition, our parallel approach includes a parallel Kmeans++ algorithm implementation and defines a new variant of Kmeans++ to reduce the impact of choosing outliers as initial centroids. The results show that our approach provides clustering quality results very similar to FFClust, and it requires an execution time of 3.5 s for processing about a million fibers, achieving a speedup of 11.5 times compared to FFClust.
Collapse
Affiliation(s)
- Isaac Goicovich
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | - Paulo Olivares
- Department of Computer Science, Universidad de Concepción, Concepción, Chile
| | - Claudio Román
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | - Andrea Vázquez
- Department of Computer Science, Universidad de Concepción, Concepción, Chile
| | - Cyril Poupon
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France
| | | | - Pamela Guevara
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | - Cecilia Hernández
- Department of Computer Science, Universidad de Concepción, Concepción, Chile.,Center for Biotechnology and Bioengineering, Santiago, Chile
| |
Collapse
|
20
|
Osorio I, Guevara M, Bonometti D, Carrasco D, Descoteaux M, Poupon C, Mangin JF, Hernández C, Guevara P. ABrainVis: an android brain image visualization tool. Biomed Eng Online 2021; 20:72. [PMID: 34325693 PMCID: PMC8323223 DOI: 10.1186/s12938-021-00909-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background The visualization and analysis of brain data such as white matter diffusion tractography and magnetic resonance imaging (MRI) volumes is commonly used by neuro-specialist and researchers to help the understanding of brain structure, functionality and connectivity. As mobile devices are widely used among users and their technology shows a continuous improvement in performance, different types of applications have been designed to help users in different work areas. Results We present, ABrainVis, an Android mobile tool that allows users to visualize different types of brain images, such as white matter diffusion tractographies, represented as fibers in 3D, segmented fiber bundles, MRI 3D images as rendered volumes and slices, and meshes. The tool enables users to choose and combine different types of brain imaging data to provide visual anatomical context for specific visualization needs. ABrainVis provides high performance over a wide range of Android devices, including tablets and cell phones using medium and large tractography datasets. Interesting visualizations including brain tumors and arteries, along with fiber, are given as examples of case studies using ABrainVis. Conclusions The functionality, flexibility and performance of ABrainVis tool introduce an improvement in user experience enabling neurophysicians and neuroscientists fast visualization of large tractography datasets, as well as the ability to incorporate other brain imaging data such as MRI volumes and meshes, adding anatomical contextual information. Supplementary Information The online version contains supplementary material available at 10.1186/s12938-021-00909-0.
Collapse
Affiliation(s)
- Ignacio Osorio
- Department of Computer Sciences, Universidad de Concepción, Concepción, Chile
| | - Miguel Guevara
- Université Paris-Saclay, CEA, CNRS, Neurospin, BAOBAB, Gif-sur-Yvette, France
| | - Danilo Bonometti
- Department of Computer Sciences, Universidad de Concepción, Concepción, Chile
| | - Diego Carrasco
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
| | - Cyril Poupon
- Université Paris-Saclay, CEA, CNRS, Neurospin, BAOBAB, Gif-sur-Yvette, France
| | | | - Cecilia Hernández
- Department of Computer Sciences, Universidad de Concepción, Concepción, Chile.,Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile
| | - Pamela Guevara
- Department of Electrical Engineering, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
21
|
Xu C, Sun G, Liang R, Xu X. Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3094555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|