1
|
Castro P, Luppi A, Tagliazucchi E, Perl YS, Naci L, Owen AM, Sitt JD, Destexhe A, Cofré R. Dynamical structure-function correlations provide robust and generalizable signatures of consciousness in humans. Commun Biol 2024; 7:1224. [PMID: 39349600 PMCID: PMC11443142 DOI: 10.1038/s42003-024-06858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Resting-state functional magnetic resonance imaging evolves through a repertoire of functional connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious awareness. We investigated whether the dynamic exploration of these states can provide robust and generalizable markers for the state of consciousness in human participants, across loss of consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to transition to other patterns. Our results provide evidence supporting the pronounced differences between conscious and unconscious brain states in terms of whole-brain dynamics; in particular, the maintenance of rich brain dynamics measured by entropy is a critical aspect of conscious awareness. Collectively, our results may have significant implications for our understanding of consciousness and the neural basis of human awareness, as well as for the discovery of robust signatures of consciousness that are generalizable among different brain conditions.
Collapse
Affiliation(s)
- Pablo Castro
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Andrea Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Yonatan S Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorina Naci
- Trinity College Institute of Neuroscience Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Adrian M Owen
- Departments of Physiology and Pharmacology and Psychology, Western University, London, Canada
| | - Jacobo D Sitt
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Ordóñez-Rubiano EG, Castañeda-Duarte MA, Baeza-Antón L, Romo-Quebradas JA, Perilla-Estrada JP, Perilla-Cepeda TA, Enciso-Olivera CO, Rudas J, Marín-Muñoz JH, Pulido C, Gómez F, Martínez D, Zorro O, Garzón E, Patiño-Gómez JG. Resting state networks in patients with acute disorders of consciousness after severe traumatic brain injury. Clin Neurol Neurosurg 2024; 242:108353. [PMID: 38830290 DOI: 10.1016/j.clineuro.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES This study aims to describe resting state networks (RSN) in patients with disorders of consciousness (DOC)s after acute severe traumatic brain injury (TBI). METHODS Adult patients with TBI with a GCS score <8 who remained in a coma, minimally conscious state (MCS), or unresponsive wakefulness syndrome (UWS), between 2017 and 2020 were included. Blood-oxygen-level dependent imaging was performed to compare their RSN with 10 healthy volunteers. RESULTS Of a total of 293 patients evaluated, only 13 patients were included according to inclusion criteria: 7 in coma (54%), 2 in MCS (15%), and 4 (31%) had an UWS. RSN analysis showed that the default mode network (DMN) was present and symmetric in 6 patients (46%), absent in 1 (8%), and asymmetric in 6 (46%). The executive control network (ECN) was present in all patients but was asymmetric in 3 (23%). The right ECN was absent in 2 patients (15%) and the left ECN in 1 (7%). The medial visual network was present in 11 (85%) patients. Finally, the cerebellar network was symmetric in 8 patients (62%), asymmetric in 1 (8%), and absent in 4 (30%). CONCLUSIONS A substantial impairment in activation of RSN is demonstrated in patients with DOC after severe TBI in comparison with healthy subjects. Three patterns of activation were found: normal/complete activation, 2) asymmetric activation or partially absent, and 3) absent activation.
Collapse
Affiliation(s)
- Edgar G Ordóñez-Rubiano
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia; Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Marcelo A Castañeda-Duarte
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Laura Baeza-Antón
- Department of Neurological Surgery, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, NY, USA.
| | - Jorge A Romo-Quebradas
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Juan P Perilla-Estrada
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Tito A Perilla-Cepeda
- Department of Neurosurgery, Hospital Infantil Universitario de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Cesar O Enciso-Olivera
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge Rudas
- Department of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge H Marín-Muñoz
- Department of Radiology, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia; Innovation and Research Division, Imaging Experts and Healthcare Services (ImexHS), Bogotá, Colombia
| | - Cristian Pulido
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Francisco Gómez
- Department of Computer Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Darwin Martínez
- Department of Computer Science, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Oscar Zorro
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Emilio Garzón
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Javier G Patiño-Gómez
- Department of Neurosurgery, Hospital de San José, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| |
Collapse
|
4
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Han J, Xie Q, Wu X, Huang Z, Tanabe S, Fogel S, Hudetz AG, Wu H, Northoff G, Mao Y, He S, Qin P. The neural correlates of arousal: Ventral posterolateral nucleus-global transient co-activation. Cell Rep 2024; 43:113633. [PMID: 38159279 DOI: 10.1016/j.celrep.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Arousal and awareness are two components of consciousness whose neural mechanisms remain unclear. Spontaneous peaks of global (brain-wide) blood-oxygenation-level-dependent (BOLD) signal have been found to be sensitive to changes in arousal. By contrasting BOLD signals at different arousal levels, we find decreased activation of the ventral posterolateral nucleus (VPL) during transient peaks in the global signal in low arousal and awareness states (non-rapid eye movement sleep and anesthesia) compared to wakefulness and in eyes-closed compared to eyes-open conditions in healthy awake individuals. Intriguingly, VPL-global co-activation remains high in patients with unresponsive wakefulness syndrome (UWS), who exhibit high arousal without awareness, while it reduces in rapid eye movement sleep, a state characterized by low arousal but high awareness. Furthermore, lower co-activation is found in individuals during N3 sleep compared to patients with UWS. These results demonstrate that co-activation of VPL and global activity is critical to arousal but not to awareness.
Collapse
Affiliation(s)
- Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China; Joint Research Centre for Disorders of Consciousness, Guangzhou, Guangdong, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zirui Huang
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Sean Tanabe
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - Hang Wu
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, Guangdong, China
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Pengmin Qin
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, Guangdong, China; Pazhou Lab, Guangzhou 510335, China.
| |
Collapse
|
6
|
Ueno F, Shimada S. Inter-subject correlations of EEG reflect subjective arousal and acoustic features of music. Front Hum Neurosci 2023; 17:1225377. [PMID: 37671247 PMCID: PMC10475548 DOI: 10.3389/fnhum.2023.1225377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background Research on music-induced emotion and brain activity is constantly expanding. Although studies using inter-subject correlation (ISC), a collectively shared brain activity analysis method, have been conducted, whether ISC during music listening represents the music preferences of a large population remains uncertain; additionally, it remains unclear which factors influence ISC during music listening. Therefore, here, we aimed to investigate whether the ISCs of electroencephalography (EEG) during music listening represent a preference for music reflecting engagement or interest of a large population in music. Methods First, we selected 21 pieces of music from the Billboard Japan Hot 100 chart of 2017, which served as an indicator of preference reflecting the engagement and interest of a large population. To ensure even representation, we chose one piece for every fifth song on the chart, spanning from highly popular music to less popular ones. Next, we recorded EEG signals while the subjects listened to the selected music, and they were asked to evaluate four aspects (preference, enjoyment, frequency of listening, and arousal) for each song. Subsequently, we conducted ISC analysis by utilizing the first three principal components of EEG, which were highly correlated across subjects and extracted through correlated component analysis (CorrCA). We then explored whether music with high preferences that reflected the engagement and interest of large population had high ISC values. Additionally, we employed cluster analysis on all 21 pieces of music, utilizing the first three principal components of EEG, to investigate the impact of emotions and musical characteristics on EEG ISC during music listening. Results A significant distinction was noted between the mean ISC values of the 10 higher-ranked pieces of music compared to the 10 lower-ranked pieces of music [t(542) = -1.97, p = 0.0025]. This finding suggests that ISC values may correspond preferences reflecting engagement or interest of a large population. Furthermore, we found that significant variations were observed in the first three principal component values among the three clusters identified through cluster analysis, along with significant differences in arousal levels. Moreover, the characteristics of the music (tonality and tempo) differed among the three clusters. This indicates that the principal components, which exhibit high correlation among subjects and were employed in calculating ISC values, represent both subjects' arousal levels and specific characteristics of the music. Conclusion Subjects' arousal values during music listening and music characteristics (tonality and tempo) affect ISC values, which represent the interest of a large population in music.
Collapse
Affiliation(s)
- Fuyu Ueno
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| |
Collapse
|
7
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
8
|
Nemirovsky IE, Popiel NJM, Rudas J, Caius M, Naci L, Schiff ND, Owen AM, Soddu A. An implementation of integrated information theory in resting-state fMRI. Commun Biol 2023; 6:692. [PMID: 37407655 DOI: 10.1038/s42003-023-05063-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Integrated Information Theory was developed to explain and quantify consciousness, arguing that conscious systems consist of elements that are integrated through their causal properties. This study presents an implementation of Integrated Information Theory 3.0, the latest version of this framework, to functional MRI data. Data were acquired from 17 healthy subjects who underwent sedation with propofol, a short-acting anaesthetic. Using the PyPhi software package, we systematically analyze how Φmax, a measure of integrated information, is modulated by the sedative in different resting-state networks. We compare Φmax to other proposed measures of conscious level, including the previous version of integrated information, Granger causality, and correlation-based functional connectivity. Our results indicate that Φmax presents a variety of sedative-induced behaviours for different networks. Notably, changes to Φmax closely reflect changes to subjects' conscious level in the frontoparietal and dorsal attention networks, which are responsible for higher-order cognitive functions. In conclusion, our findings present important insight into different measures of conscious level that will be useful in future implementations to functional MRI and other forms of neuroimaging.
Collapse
Affiliation(s)
- Idan E Nemirovsky
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Nicholas J M Popiel
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Jorge Rudas
- Institute of Biotechnology, Universidad Nacional de Colombia, Cra 45, Bogotá, Colombia
| | - Matthew Caius
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Adrian M Owen
- Department of Physiology and Pharmacology and Department of Psychology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Andrea Soddu
- Western Institute for Neuroscience, Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
9
|
Lawn T, Martins D, O'Daly O, Williams S, Howard M, Dipasquale O. The effects of propofol anaesthesia on molecular-enriched networks during resting-state and naturalistic listening. Neuroimage 2023; 271:120018. [PMID: 36935083 PMCID: PMC10410200 DOI: 10.1016/j.neuroimage.2023.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| |
Collapse
|
10
|
Chamberlain TA, Rosenberg MD. Propofol selectively modulates functional connectivity signatures of sustained attention during rest and narrative listening. Cereb Cortex 2022; 32:5362-5375. [PMID: 35285485 DOI: 10.1093/cercor/bhac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Sustained attention is a critical cognitive function reflected in an individual's whole-brain pattern of functional magnetic resonance imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time. Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state? To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals. More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity of network-based models of cognitive function.
Collapse
Affiliation(s)
- Taylor A Chamberlain
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago.,Neuroscience Institute, The University of Chicago, 5812 South Ellis Ave., MC 0912, Suite P-400, IL 60637, Chicago
| |
Collapse
|
11
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Commun Biol 2022; 5:384. [PMID: 35444252 PMCID: PMC9021270 DOI: 10.1038/s42003-022-03330-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain entertains rich spatiotemporal dynamics, which are drastically reconfigured when consciousness is lost due to anaesthesia or disorders of consciousness (DOC). Here, we sought to identify the neurobiological mechanisms that explain how transient pharmacological intervention and chronic neuroanatomical injury can lead to common reconfigurations of neural activity. We developed and systematically perturbed a neurobiologically realistic model of whole-brain haemodynamic signals. By incorporating PET data about the cortical distribution of GABA receptors, our computational model reveals a key role of spatially-specific local inhibition for reproducing the functional MRI activity observed during anaesthesia with the GABA-ergic agent propofol. Additionally, incorporating diffusion MRI data obtained from DOC patients reveals that the dynamics that characterise loss of consciousness can also emerge from randomised neuroanatomical connectivity. Our results generalise between anaesthesia and DOC datasets, demonstrating how increased inhibition and connectome perturbation represent distinct neurobiological paths towards the characteristic activity of the unconscious brain.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK.
- The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Enciso-Olivera CO, Ordóñez-Rubiano EG, Casanova-Libreros R, Rivera D, Zarate-Ardila CJ, Rudas J, Pulido C, Gómez F, Martínez D, Guerrero N, Hurtado MA, Aguilera-Bustos N, Hernández-Torres CP, Hernandez J, Marín-Muñoz JH. Structural and functional connectivity of the ascending arousal network for prediction of outcome in patients with acute disorders of consciousness. Sci Rep 2021; 11:22952. [PMID: 34824383 PMCID: PMC8617304 DOI: 10.1038/s41598-021-98506-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
To determine the role of early acquisition of blood oxygen level-dependent (BOLD) signals and diffusion tensor imaging (DTI) for analysis of the connectivity of the ascending arousal network (AAN) in predicting neurological outcomes after acute traumatic brain injury (TBI), cardiopulmonary arrest (CPA), or stroke. A prospective analysis of 50 comatose patients was performed during their ICU stay. Image processing was conducted to assess structural and functional connectivity of the AAN. Outcomes were evaluated after 3 and 6 months. Nineteen patients (38%) had stroke, 18 (36%) CPA, and 13 (26%) TBI. Twenty-three patients were comatose (44%), 11 were in a minimally conscious state (20%), and 16 had unresponsive wakefulness syndrome (32%). Univariate analysis demonstrated that measurements of diffusivity, functional connectivity, and numbers of fibers in the gray matter, white matter, whole brain, midbrain reticular formation, and pontis oralis nucleus may serve as predictive biomarkers of outcome depending on the diagnosis. Multivariate analysis demonstrated a correlation of the predicted value and the real outcome for each separate diagnosis and for all the etiologies together. Findings suggest that the above imaging biomarkers may have a predictive role for the outcome of comatose patients after acute TBI, CPA, or stroke.
Collapse
Affiliation(s)
- Cesar O Enciso-Olivera
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Edgar G Ordóñez-Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Bogotá, Colombia
| | - Rosángela Casanova-Libreros
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Diana Rivera
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Carol J Zarate-Ardila
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge Rudas
- Department of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Cristian Pulido
- Department of Mathematics, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Francisco Gómez
- Department of Computer Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Darwin Martínez
- Department of Computer Science, Universidad Central, Bogotá, Colombia
| | - Natalia Guerrero
- Department of Radiology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Mayra A Hurtado
- Department of Critical Care and Intensive Care Unit, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Natalia Aguilera-Bustos
- Division of Clinical Research, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José, Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Clara P Hernández-Torres
- Department of Psychology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - José Hernandez
- Department of Neurology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia
| | - Jorge H Marín-Muñoz
- Department of Radiology, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital Infantil Universitario de San José, Bogotá, Colombia. .,Innovation and Research Division, Imaging Experts and Healthcare Services (ImexHS), Street 92 # 11-51, Of 202, Bogotá, Colombia.
| |
Collapse
|