1
|
Wang X, Zhou C, Jin X. Resonance and beat perception of ballroom dancers: An EEG study. PLoS One 2024; 19:e0312302. [PMID: 39432504 PMCID: PMC11493285 DOI: 10.1371/journal.pone.0312302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE The ability to synchronize the perceptual and motor systems is important for full motor coordination and the core determinant of motor skill performance. Dance-related training has been found to effectively improve sensorimotor synchronization, however, the underlying characteristics behind these improvements still warrant further exploration. This study was conducted to investigate the behavioral and neuroactivity characteristics of ballroom dancers relative to those of non-dancers. PARTICIPANTS AND METHODS Thirty-two dancers (19.8 ± 1.8 years old) and 31 non-dancers (22.6 ± 3.1 years old) were recruited to perform a finger-tapping task in synchrony with audiovisual beat stimuli at two intervals: 400 and 800 ms, while simultaneously recording EEG data. Behavioral and neural activity data were recorded during the task. RESULTS The dancers employed a predictive strategy when synchronizing with the beat. EEG recordings revealed stronger brain resonance with external rhythmic stimuli, indicating heightened neural resonance compared to non-dancers (p < 0.05). The task was more challenging with an 800-ms beat interval, as observed through both behavioral metrics and corresponding neural signatures in the EEG data, leading to poorer synchronization performance and necessitating a greater allocation of attentional resources (ps < 0.05). CONCLUSION When performing the finger-tapping task involving audiovisual beats, the beat interval was the primary factor influencing movement synchronization, neural activity and attentional resource allocation. Although no significant behavioral differences were observed between dancers and non-dancers, dancers have enhanced neural resonance in response to rhythmic stimuli. Further research using more ecologically valid tasks and stimuli may better capture the full extent of dancers' synchronization abilities.
Collapse
Affiliation(s)
- Xuru Wang
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai, China
| | - Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai, China
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Senkowski D, Engel AK. Multi-timescale neural dynamics for multisensory integration. Nat Rev Neurosci 2024; 25:625-642. [PMID: 39090214 DOI: 10.1038/s41583-024-00845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase-amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom-up and cognitive top-down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Fu X, Smulders FTY, Riecke L. Touch Helps Hearing: Evidence From Continuous Audio-Tactile Stimulation. Ear Hear 2024:00003446-990000000-00318. [PMID: 39046790 DOI: 10.1097/aud.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Identifying target sounds in challenging environments is crucial for daily experiences. It is important to note that it can be enhanced by nonauditory stimuli, for example, through lip-reading in an ongoing conversation. However, how tactile stimuli affect auditory processing is still relatively unclear. Recent studies have shown that brief tactile stimuli can reliably facilitate auditory perception, while studies using longer-lasting audio-tactile stimulation yielded conflicting results. This study aimed to investigate the impact of ongoing pulsating tactile stimulation on basic auditory processing. DESIGN In experiment 1, the electroencephalogram (EEG) was recorded while 24 participants performed a loudness-discrimination task on a 4-Hz modulated tone-in-noise and received either in-phase, anti-phase, or no 4-Hz electrotactile stimulation above the median nerve. In experiment 2, another 24 participants were presented with the same tactile stimulation as before, but performed a tone-in-noise detection task while their selective auditory attention was manipulated. RESULTS We found that in-phase tactile stimulation enhanced EEG responses to the tone, whereas anti-phase tactile stimulation suppressed these responses. No corresponding tactile effects on loudness-discrimination performance were observed in experiment 1. Using a yes/no paradigm in experiment 2, we found that in-phase tactile stimulation, but not anti-phase tactile stimulation, improved detection thresholds. Selective attention also improved thresholds but did not modulate the observed benefit from in-phase tactile stimulation. CONCLUSIONS Our study highlights that ongoing in-phase tactile input can enhance basic auditory processing as reflected in scalp EEG and detection thresholds. This might have implications for the development of hearing enhancement technologies and interventions.
Collapse
Affiliation(s)
- Xueying Fu
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | |
Collapse
|
4
|
Bonnet P, Bonnefond M, Kösem A. What is a Rhythm for the Brain? The Impact of Contextual Temporal Variability on Auditory Perception. J Cogn 2024; 7:15. [PMID: 38250558 PMCID: PMC10798173 DOI: 10.5334/joc.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Temporal predictions can be formed and impact perception when sensory timing is fully predictable: for instance, the discrimination of a target sound is enhanced if it is presented on the beat of an isochronous rhythm. However, natural sensory stimuli, like speech or music, are not entirely predictable, but still possess statistical temporal regularities. We investigated whether temporal expectations can be formed in non-fully predictable contexts, and how the temporal variability of sensory contexts affects auditory perception. Specifically, we asked how "rhythmic" an auditory stimulation needs to be in order to observe temporal predictions effects on auditory discrimination performances. In this behavioral auditory oddball experiment, participants listened to auditory sound sequences where the temporal interval between each sound was drawn from gaussian distributions with distinct standard deviations. Participants were asked to discriminate sounds with a deviant pitch in the sequences. Auditory discrimination performances, as measured with deviant sound discrimination accuracy and response times, progressively declined as the temporal variability of the sound sequence increased. Moreover, both global and local temporal statistics impacted auditory perception, suggesting that temporal statistics are promptly integrated to optimize perception. Altogether, these results suggests that temporal predictions can be set up quickly based on the temporal statistics of past sensory events and are robust to a certain amount of temporal variability. Therefore, temporal predictions can be built on sensory stimulations that are not purely periodic nor temporally deterministic.
Collapse
Affiliation(s)
- Pierre Bonnet
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| | - Mathilde Bonnefond
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| |
Collapse
|
5
|
Mohanta S, Cleveland DM, Afrasiabi M, Rhone AE, Górska U, Cooper Borkenhagen M, Sanders RD, Boly M, Nourski KV, Saalmann YB. Traveling waves shape neural population dynamics enabling predictions and internal model updating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574848. [PMID: 38260606 PMCID: PMC10802392 DOI: 10.1101/2024.01.09.574848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The brain generates predictions based on statistical regularities in our environment. However, it is unclear how predictions are optimized through iterative interactions with the environment. Because traveling waves (TWs) propagate across the cortex shaping neural excitability, they can carry information to serve predictive processing. Using human intracranial recordings, we show that anterior-to-posterior alpha TWs correlated with prediction strength. Learning about priors altered neural state space trajectories, and how much it altered correlated with trial-by-trial prediction strength. Learning involved mismatches between predictions and sensory evidence triggering alpha-phase resets in lateral temporal cortex, accompanied by stronger alpha phase-high gamma amplitude coupling and high-gamma power. The mismatch initiated posterior-to-anterior alpha TWs and change in the subsequent trial's state space trajectory, facilitating model updating. Our findings suggest a vital role of alpha TWs carrying both predictions to sensory cortex and mismatch signals to frontal cortex for trial-by-trial fine-tuning of predictive models.
Collapse
Affiliation(s)
- S Mohanta
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - D M Cleveland
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - M Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - A E Rhone
- Department of Neurosurgery, University of Iowa, IA, USA
| | - U Górska
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| | | | - R D Sanders
- Specialty of Anaesthesia, University of Sydney, Camperdown, NSW, Australia and Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - M Boly
- Department of Psychiatry, University of Wisconsin-Madison, WI, USA
- Department of Neurology, University of Wisconsin-Madison, WI, USA
| | - K V Nourski
- Department of Neurosurgery, University of Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, IA, USA
| | - Y B Saalmann
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
6
|
Charalambous E, Djebbara Z. On natural attunement: Shared rhythms between the brain and the environment. Neurosci Biobehav Rev 2023; 155:105438. [PMID: 37898445 DOI: 10.1016/j.neubiorev.2023.105438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Rhythms exist both in the embodied brain and the built environment. Becoming attuned to the rhythms of the environment, such as repetitive columns, can greatly affect perception. Here, we explore how the built environment affects human cognition and behavior through the concept of natural attunement, often resulting from the coordination of a person's sensory and motor systems with the rhythmic elements of the environment. We argue that the built environment should not be reduced to mere states, representations, and single variables but instead be considered a bundle of highly related continuous signals with which we can resonate. Resonance and entrainment are dynamic processes observed when intrinsic frequencies of the oscillatory brain are influenced by the oscillations of an external signal. This allows visual rhythmic stimulations of the environment to affect the brain and body through neural entrainment, cross-frequency coupling, and phase resetting. We review how real-world architectural settings can affect neural dynamics, cognitive processes, and behavior in people, suggesting the crucial role of everyday rhythms in the brain-body-environment relationship.
Collapse
Affiliation(s)
| | - Zakaria Djebbara
- Aalborg University, Department of Architecture, Design, Media, and Technology, Denmark; Technical University of Berlin, Biological Psychology and Neuroergonomics, Germany.
| |
Collapse
|
7
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Meng J, Li X, Zhao Y, Li R, Xu M, Ming D. Modality-Attention Promotes the Neural Effects of Precise Timing Prediction in Early Sensory Processing. Brain Sci 2023; 13:brainsci13040610. [PMID: 37190575 DOI: 10.3390/brainsci13040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/05/2023] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
Precise timing prediction (TP) enables the brain to accurately predict the occurrence of upcoming events in millisecond timescale, which is fundamental for adaptive behaviors. The neural effect of the TP within a single sensory modality has been widely studied. However, less is known about how precise TP works when the brain is concurrently faced with multimodality sensory inputs. Modality attention (MA) is a crucial cognitive function for dealing with the overwhelming information induced by multimodality sensory inputs. Therefore, it is necessary to investigate whether and how the MA influences the neural effects of the precise TP. This study designed a visual–auditory temporal discrimination task, in which the MA was allocated to visual or auditory modality, and the TP was manipulated into no timing prediction (NTP), matched timing prediction (MTP), and violated timing prediction (VTP) conditions. Behavioral and electroencephalogram (EEG) data were recorded from 27 subjects, event-related potentials (ERP), time–frequency distributions of inter-trial coherence (ITC), and event-related spectral perturbation (ERSP) were analyzed. In the visual modality, precise TP led to N1 amplitude variations and 200–400 ms theta ITC. Such variations only emerged when the MA was attended. In auditory modality, the MTP had the largest P2 amplitude and delta ITC than other TP conditions when the MA was attended, whereas the distinctions disappeared when the MA was unattended. The results suggest that the MA promoted the neural effects of the precise TP in early sensory processing, which provides more neural evidence for better understanding the interactions between the TP and MA.
Collapse
Affiliation(s)
- Jiayuan Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yingru Zhao
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Chalas N, Daube C, Kluger DS, Abbasi O, Nitsch R, Gross J. Speech onsets and sustained speech contribute differentially to delta and theta speech tracking in auditory cortex. Cereb Cortex 2023; 33:6273-6281. [PMID: 36627246 DOI: 10.1093/cercor/bhac502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
When we attentively listen to an individual's speech, our brain activity dynamically aligns to the incoming acoustic input at multiple timescales. Although this systematic alignment between ongoing brain activity and speech in auditory brain areas is well established, the acoustic events that drive this phase-locking are not fully understood. Here, we use magnetoencephalographic recordings of 24 human participants (12 females) while they were listening to a 1 h story. We show that whereas speech-brain coupling is associated with sustained acoustic fluctuations in the speech envelope in the theta-frequency range (4-7 Hz), speech tracking in the low-frequency delta (below 1 Hz) was strongest around onsets of speech, like the beginning of a sentence. Crucially, delta tracking in bilateral auditory areas was not sustained after onsets, proposing a delta tracking during continuous speech perception that is driven by speech onsets. We conclude that both onsets and sustained components of speech contribute differentially to speech tracking in delta- and theta-frequency bands, orchestrating sampling of continuous speech. Thus, our results suggest a temporal dissociation of acoustically driven oscillatory activity in auditory areas during speech tracking, providing valuable implications for orchestration of speech tracking at multiple time scales.
Collapse
Affiliation(s)
- Nikos Chalas
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Geb. A9a, Münster, Germany
| | - Christoph Daube
- Centre for Cognitive Neuroimaging, University of Glasgow, 56-64 Hillhead Street, G12 8QB, Glasgow, United Kingdom
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany
| | - Omid Abbasi
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - Robert Nitsch
- Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Geb. A9a, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Fliednerstr. 21, 48149 Münster, Germany
| |
Collapse
|
10
|
Schmid RR, Pomper U, Ansorge U. Cyclic reactivation of distinct feature dimensions in human visual working memory. Acta Psychol (Amst) 2022; 226:103561. [PMID: 35316710 DOI: 10.1016/j.actpsy.2022.103561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Several recent behavioral studies have observed 4-10 Hz rhythmic fluctuations in attention-related performance over time. So far, this rhythmic attentional sampling has predominantly been demonstrated with regards to external visual attention, directed toward one single feature dimension. Whether and how attention might sample from concurrent internal representations of different feature dimensions held in working memory (WM) is currently largely unknown. To elucidate this issue, we conducted a human behavioral dense-sampling experiment, in which participants had to hold representations of two distinct feature dimensions (color and orientation) in WM. By querying the contents of WM at 72 time-points after encoding, we estimated the activity time course of the individual feature representations. Our results demonstrate an oscillatory component at 9.4 Hz in the joint time courses of both representations, presumably reflecting a common early perceptual sampling process in the alpha-frequency range. Furthermore, we observed an oscillatory component at 3.5 Hz in the time course difference between the two representations. This likely corresponds to a later attentional sampling process and indicates that internal representations of distinct features are activated in alteration. In summary, we demonstrate the cyclic reactivation of internal WM representations of distinct feature dimensions, as well as the co-occurrence of behavioral fluctuations at distinct frequencies, presumably associated to internal perceptual- and attentional rhythms. In addition, our findings also challenge a model of strict parallel processing in visual search, thus, providing novel input to the ongoing debate on whether search for more than one target feature constitutes a parallel- or a sequential mechanism.
Collapse
Affiliation(s)
- Rebecca Rosa Schmid
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna.
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna; Cognitive Science Research Hub, University of Vienna; Research Platform Mediatised Lifeworlds, University of Vienna
| |
Collapse
|
11
|
Bánki A, Brzozowska A, Hoehl S, Köster M. Neural Entrainment vs. Stimulus-Tracking: A Conceptual Challenge for Rhythmic Perceptual Stimulation in Developmental Neuroscience. Front Psychol 2022; 13:878984. [PMID: 35602682 PMCID: PMC9121997 DOI: 10.3389/fpsyg.2022.878984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Bánki
- Faculty of Psychology, University of Vienna, Vienna, Austria
- *Correspondence: Anna Bánki
| | | | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Moritz Köster
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
13
|
Jones KT, Smith CC, Gazzaley A, Zanto TP. Research outside the laboratory: Longitudinal at-home neurostimulation. Behav Brain Res 2022; 428:113894. [DOI: 10.1016/j.bbr.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
|
14
|
Herbst SK, Stefanics G, Obleser J. Endogenous modulation of delta phase by expectation–A replication of Stefanics et al., 2010. Cortex 2022; 149:226-245. [DOI: 10.1016/j.cortex.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
|
15
|
Expertise Modulates Neural Stimulus-Tracking. eNeuro 2021; 8:ENEURO.0065-21.2021. [PMID: 34341067 PMCID: PMC8371925 DOI: 10.1523/eneuro.0065-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
How does the brain anticipate information in language? When people perceive speech, low-frequency (<10 Hz) activity in the brain synchronizes with bursts of sound and visual motion. This phenomenon, called cortical stimulus-tracking, is thought to be one way that the brain predicts the timing of upcoming words, phrases, and syllables. In this study, we test whether stimulus-tracking depends on domain-general expertise or on language-specific prediction mechanisms. We go on to examine how the effects of expertise differ between frontal and sensory cortex. We recorded electroencephalography (EEG) from human participants who were experts in either sign language or ballet, and we compared stimulus-tracking between groups while participants watched videos of sign language or ballet. We measured stimulus-tracking by computing coherence between EEG recordings and visual motion in the videos. Results showed that stimulus-tracking depends on domain-general expertise, and not on language-specific prediction mechanisms. At frontal channels, fluent signers showed stronger coherence to sign language than to dance, whereas expert dancers showed stronger coherence to dance than to sign language. At occipital channels, however, the two groups of participants did not show different patterns of coherence. These results are difficult to explain by entrainment of endogenous oscillations, because neither sign language nor dance show any periodicity at the frequencies of significant expertise-dependent stimulus-tracking. These results suggest that the brain may rely on domain-general predictive mechanisms to optimize perception of temporally-predictable stimuli such as speech, sign language, and dance.
Collapse
|
16
|
Acoustically Driven Cortical δ Oscillations Underpin Prosodic Chunking. eNeuro 2021; 8:ENEURO.0562-20.2021. [PMID: 34083380 PMCID: PMC8272402 DOI: 10.1523/eneuro.0562-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oscillation-based models of speech perception postulate a cortical computational principle by which decoding is performed within a window structure derived by a segmentation process. Segmentation of syllable-size chunks is realized by a θ oscillator. We provide evidence for an analogous role of a δ oscillator in the segmentation of phrase-sized chunks. We recorded magnetoencephalography (MEG) in humans, while participants performed a target identification task. Random-digit strings, with phrase-long chunks of two digits, were presented at chunk rates of 1.8 or 2.6 Hz, inside or outside the δ frequency band (defined here to be 0.5–2 Hz). Strong periodicities were elicited by chunk rates inside of δ in superior, middle temporal areas and speech-motor integration areas. Periodicities were diminished or absent for chunk rates outside δ, in line with behavioral performance. Our findings show that prosodic chunking of phrase-sized acoustic segments is correlated with acoustic-driven δ oscillations, expressing anatomically specific patterns of neuronal periodicities.
Collapse
|
17
|
Zeng K, Drummond NM, Ghahremani A, Saha U, Kalia SK, Hodaie M, Lozano AM, Aron AR, Chen R. Fronto-subthalamic phase synchronization and cross-frequency coupling during conflict processing. Neuroimage 2021; 238:118205. [PMID: 34077804 PMCID: PMC8944202 DOI: 10.1016/j.neuroimage.2021.118205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Growing evidence suggests that both the medial prefrontal cortex (mPFC) and the subthalamic nucleus (STN) play crucial roles in conflict processing, but how these two structures coordinate their activities remains poorly understood. We simultaneously recorded electroencephalogram from the mPFC and local field potentials from the STN using deep brain stimulation electrodes in 13 Parkinson’s disease patients while they performed a Stroop task. Both mPFC and STN showed significant increases in theta activities (2–8 Hz) in incongruent trials compared to the congruent trials. The theta activity in incongruent trials also demonstrated significantly increased phase synchronization between mPFC and STN. Furthermore, the amplitude of gamma oscillation was modulated by the phase of theta activity at the STN in incongruent trials. Such theta-gamma phase-amplitude coupling (PAC) was much stronger for incongruent trials with faster reaction times than those with slower reaction times. Elevated theta-gamma PAC in the STN provides a novel mechanism by which the STN may operationalize its proposed “hold-your-horses” role. The co-occurrence of mPFC-STN theta phase synchronization and STN theta-gamma PAC reflects a neural substrate for fronto-subthalamic communication during conflict processing. More broadly, it may be a general mechanism for neuronal interactions in the cortico-basal ganglia circuits via a combination of long-range, within-frequency phase synchronization and local cross-frequency PAC.
Collapse
Affiliation(s)
- Ke Zeng
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
| | - Neil M Drummond
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ayda Ghahremani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; School of Medicine, Stanford University, Stanford, California, USA
| | - Utpal Saha
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, California, USA
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|