1
|
Chu CH, Huang IL, Hillman CH, Chen NC, Yu J, Hung CS, Chen FT, Chang YK. The relationship between cardiorespiratory fitness and inhibitory control following acute stress: An ERP study. Psychophysiology 2024; 61:e14592. [PMID: 38682486 DOI: 10.1111/psyp.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
Although the relationships among acute stress, cardiorespiratory fitness (CRF), and cognitive function have been examined, whether CRF is related to behavioral and neuroelectric indices of inhibitory control following acute stress remains unknown. The purpose of the current study was to investigate the combined influence of acute stress and CRF on inhibitory control. Participants, aged 20-30 years, were stratified into the Higher-Fit (n = 31) and the Lower-Fit (n = 32) groups, and completed a Stroop task following the modified Maastricht Acute Stress Test (MAST) in the stress condition and the sham-MAST in the non-stress condition, during which electroencephalography was recorded. Behavioral (i.e., response time and accuracy) and neuroelectric (N2 and P3b components of the event-related potential) outcomes of inhibitory control were obtained. While the Higher-Fit group demonstrated shorter response times and higher accuracy than the Lower-Fit group following both the MAST and the sham-MAST, they also exhibited selective benefits of acute stress on inhibitory control performance (i.e., decreased response times and diminished interference scores). CRF-dependent alterations in neuroelectric indices were also observed, with the Higher-Fit group displaying smaller N2 and greater P3b amplitudes than the Lower-Fit group following the sham-MAST, and increased N2 and attenuated P3b amplitudes following the MAST. Collectively, these findings not only confirm the positive relationship between CRF and inhibitory control but also provide novel insights into the potential influence of CRF on inhibitory control and associated neuroelectric activity following acute stress.
Collapse
Affiliation(s)
- Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - I-Lun Huang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, Massachusetts, USA
| | - Nai-Chi Chen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jeffrey Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Chen-Sin Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Feng-Tzu Chen
- Department of Kinesiology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Social Emotional Education and Development Center, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
2
|
Nan W, Yang W, Gong A, Kadosh RC, Ros T, Fu Y, Wan F. Successful learning of alpha up-regulation through neurofeedback training modulates sustained attention. Neuropsychologia 2024; 195:108804. [PMID: 38242318 DOI: 10.1016/j.neuropsychologia.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As a fundamental attention function, sustained attention plays a critical role in general cognitive abilities and is closely linked to EEG alpha oscillations. Neurofeedback training (NFT) of alpha activity on different aspects of attention has been studied previously. However, it remains unclear how NFT with up- or down-regulation directions modulates sustained attention. Here we employed a counterbalanced single-blind sham-controlled crossover design, in which healthy young adults underwent one NFT session of alpha up-regulation, one NFT session of alpha down-regulation, and one sham-control NFT session over the posterior area. The session order was counterbalanced with a 7-day interval between each session. After each NFT session, the participants completed a visual continuous temporal expectancy task (vCTET) to assess their sustained attention performance. The results showed that compared to sham-control NFT, successful learning of alpha up-regulation resulted in increased reaction time at the beginning of the attention task but a slower increase over vCTET blocks. On the other hand, successful learning of alpha down-regulation had no impact on attention performance compared to sham-control NFT. These findings suggest that successful learning of alpha up-regulation through NFT could impair initial attention performance but slow down visual attention deterioration over time, i.e., alpha enhancement by NFT stabilizing visual attention.
Collapse
Affiliation(s)
- Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China.
| | - Wenjie Yang
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Anmin Gong
- School of Information Engineering, Engineering University of People's Armed Police, Xi'an, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | - Tomas Ros
- Departments of Neuroscience and Psychiatry, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
3
|
Guo Y, Xia Y, Chen K. The body mass index is associated with increased temporal variability of functional connectivity in brain reward system. Front Nutr 2023; 10:1210726. [PMID: 37388634 PMCID: PMC10300418 DOI: 10.3389/fnut.2023.1210726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
The reward system has been proven to be contributed to the vulnerability of obesity. Previous fMRI studies have shown abnormal functional connectivity of the reward system in obesity. However, most studies were based on static index such as resting-state functional connectivity (FC), ignoring the dynamic changes over time. To investigate the dynamic neural correlates of obesity susceptibility, we used a large, demographically well-characterized sample from the Human Connectome Project (HCP) to determine the relationship of body mass index (BMI) with the temporal variability of FC from integrated multilevel perspectives, i.e., regional and within- and between-network levels. Linear regression analysis was used to investigate the association between BMI and temporal variability of FC, adjusting for covariates of no interest. We found that BMI was positively associated with regional FC variability in reward regions, such as the ventral orbitofrontal cortex and visual regions. At the intra-network level, BMI was positively related to the variability of FC within the limbic network (LN) and default mode network (DMN). At the inter-network level, variability of connectivity of LN with DMN, frontoparietal, sensorimotor, and ventral attention networks showed positive correlations with BMI. These findings provided novel evidence for abnormal dynamic functional interaction between the reward network and the rest of the brain in obesity, suggesting a more unstable state and over-frequent interaction of the reward network and other attention and cognitive networks. These findings, thus, provide novel insight into obesity interventions that need to decrease the dynamic interaction between reward networks and other brain networks through behavioral treatment and neural modulation.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuxiao Xia
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke Chen
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
4
|
Yang S, Enkhzaya G, Zhu BH, Chen J, Wang ZJ, Kim ES, Kim NY. High-Definition Transcranial Direct Current Stimulation in the Right Ventrolateral Prefrontal Cortex Lengthens Sustained Attention in Virtual Reality. Bioengineering (Basel) 2023; 10:721. [PMID: 37370652 DOI: 10.3390/bioengineering10060721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Due to the current limitations of three-dimensional (3D) simulation graphics technology, mind wandering commonly occurs in virtual reality tasks, which has impeded it being applied more extensively. The right ventrolateral prefrontal cortex (rVLPFC) plays a vital role in executing continuous two-dimensional (2D) mental paradigms, and transcranial direct current stimulation (tDCS) over this cortical region has been shown to successfully modulate sustained 2D attention. Accordingly, we further explored the effects of electrical activation of the rVLPFC on 3D attentional tasks using anodal high-definition (HD)-tDCS. A 3D Go/No-go (GNG) task was developed to compare the after effects of real and sham brain stimulation. Specifically, GNG tasks were periodically interrupted to assess the subjective perception of attentional level, behavioral reactions were tracked and decomposed into an underlying decision cognition process, and electroencephalography data were recorded to calculate event-related potentials (ERPs) in rVLPFC. The p-values statistically indicated that HD-tDCS improved the subjective mentality, led to more cautious decisions, and enhanced neuronal discharging in rVLPFC. Additionally, the neurophysiological P300 ERP component and stimulation being active or sham could effectively predict several objective outcomes. These findings indicate that the comprehensive approach including brain stimulation, 3D mental paradigm, and cross-examined performance could significantly lengthen and robustly compare sustained 3D attention.
Collapse
Affiliation(s)
- Shan Yang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Ganbold Enkhzaya
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Bao-Hua Zhu
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Jian Chen
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Zhi-Ji Wang
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun-Seong Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| | - Nam-Young Kim
- RFIC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
- NDAC Center, Department of Electronic Engineering, Kwangwoon University, Nonwon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
5
|
Liu S, You B, Zhang X, Shaw A, Chen H, Jackson T. Individual Differences in Pain Catastrophizing and Regional Gray Matter Volume Among Community-dwelling Adults With Chronic Pain: A Voxel-based Morphology Study. Clin J Pain 2023; 39:209-216. [PMID: 36920221 DOI: 10.1097/ajp.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Elevations in pain catastrophizing (PC) are associated with more severe pain, emotional distress, and impairment within samples with chronic pain. However, brain structure correlates underlying individual differences in PC are not well understood and predict more severe pain and impairment within samples with chronic pain. This study assessed links between regional gray matter volume (GMV) and individual differences in PC within a large mixed chronic pain sample. MATERIALS AND METHODS Chinese adult community dwellers with chronic pain of at least 3 months duration (101 women and 59 men) completed self-report measures of background characteristics, pain severity, depression, and a widely validated PC questionnaire as well as a structural magnetic resonance imagining scan featuring voxel-based morphology to assess regional GMV correlates of PC. RESULTS After controlling for demographic correlates of PC, pain severity, and depression, higher PC scores had a significant, unique association with lower GMV levels in the inferior temporal area of the right fusiform gyrus, a region previously implicated in emotion regulation. DISCUSSION GMV deficits, particularly in right temporal-occipital emotion regulation regions, correspond to high levels of PC among individuals with chronic pain.
Collapse
Affiliation(s)
- Shuyang Liu
- School of Psychology, Southwest University, Chongqing
| | - BeiBei You
- School of Nursing, Guizhou Medical University, Guizhou
| | - Xin Zhang
- School of Psychology, Southwest University, Chongqing
| | - Amy Shaw
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| | - Hong Chen
- School of Psychology, Southwest University, Chongqing
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa, Macau, S.A.R., China
| |
Collapse
|
6
|
Labonté K, Nielsen DE. Measuring food-related inhibition with go/no-go tasks: Critical considerations for experimental design. Appetite 2023; 185:106497. [PMID: 36893916 DOI: 10.1016/j.appet.2023.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/18/2023] [Indexed: 03/09/2023]
Abstract
The use of go/no-go tasks to assess inhibitory control over food stimuli is becoming increasingly popular. However, the wide variability in the design of these tasks makes it difficult to fully leverage their results. The goal of this commentary was to provide researchers with crucial aspects to consider when designing food-related go/no-go experiments. We examined 76 studies that used food-themed go/no-go tasks and extracted characteristics related to participant population, methodology, and analysis. Based on our observations of common issues that can influence study conclusions, we stress the importance for researchers to design an appropriate control condition and match stimuli between experimental conditions in terms of emotional and physical properties. We also emphasize that stimuli should be tailored to the participants under study, whether at the individual or group level. To ensure that the task truly measures inhibitory abilities, researchers should promote the establishment of a prepotent response pattern by presenting more go than no-go trials and by using short trials. Researchers should also pre-specify the criteria used to identify potentially invalid data. While go/no-go tasks represent valuable tools for studying food cognition, researchers should choose task parameters carefully and justify their methodological and analytical decisions in order to ensure the validity of results and promote best practices in food-related inhibition research.
Collapse
Affiliation(s)
- Katherine Labonté
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Daiva E Nielsen
- School of Human Nutrition, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
7
|
Adise S, Marshall AT, Kan E, Sowell ER. Access to quality health resources and environmental toxins affect the relationship between brain structure and BMI in a sample of pre and early adolescents. Front Public Health 2022; 10:1061049. [PMID: 36589997 PMCID: PMC9797683 DOI: 10.3389/fpubh.2022.1061049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Environmental resources are related to childhood obesity risk and altered brain development, but whether these relationships are stable or if they have sustained impact is unknown. Here, we utilized a multidimensional index of childhood neighborhood conditions to compare the influence of various social and environmental disparities (SED) on body mass index (BMI)-brain relationships over a 2-year period in early adolescence. Methods Data were gathered the Adolescent Brain Cognitive Development Study® (n = 2,970, 49.8% female, 69.1% White, no siblings). Structure magnetic resonance imaging (sMRI), anthropometrics, and demographic information were collected at baseline (9/10-years-old) and the 2-year-follow-up (11/12-years-old). Region of interest (ROIs; 68 cortical, 18 subcortical) estimates of cortical thickness and subcortical volume were extracted from sMRI T1w images using the Desikan atlas. Residential addresses at baseline were used to obtain geocoded estimates of SEDs from 3 domains of childhood opportunity index (COI): healthy environment (COIHE), social/economic (COISE), and education (COIED). Nested, random-effects mixed models were conducted to evaluate relationships of BMI with (1) ROI * COI[domain] and (2) ROI * COI[domain] * Time. Models controlled for sex, race, ethnicity, puberty, and the other two COI domains of non-interest, allowing us to estimate the unique variance explained by each domain and its interaction with ROI and time. Results Youth living in areas with lower COISE and COIED scores were heavier at the 2-year follow-up than baseline and exhibited greater thinning in the bilateral occipital cortex between visits. Lower COISE scores corresponded with larger volume of the bilateral caudate and greater BMI at the 2-year follow-up. COIHE scores showed the greatest associations (n = 20 ROIs) with brain-BMI relationships: youth living in areas with lower COIHE had thinner cortices in prefrontal regions and larger volumes of the left pallidum and Ventral DC. Time did not moderate the COIHE x ROI interaction for any brain region during the examined 2-year period. Findings were independent of family income (i.e., income-to-needs). Conclusion Collectively our findings demonstrate that neighborhood SEDs for health-promoting resources play a particularly important role in moderating relationships between brain and BMI in early adolescence regardless of family-level financial resources.
Collapse
Affiliation(s)
- Shana Adise
- Division of Pediatric Research Administration, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Andrew T. Marshall
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Eric Kan
- Division of Pediatric Research Administration, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth R. Sowell
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Xinyuan L, Ximei C, Qingqing L, Guangcan X, Wei L, Mingyue X, Xiaoli D, Shiqing S, Yong L, Hong C. Altered resting-state functional connectivity of medial frontal cortex in overweight individuals: Link to food-specific intentional inhibition and weight gain. Behav Brain Res 2022; 433:114003. [PMID: 35811002 DOI: 10.1016/j.bbr.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Numerous findings from functional neuroimaging research suggest that overweight may be associated with alterations in reactive inhibition. However, there is a dearth of research investigating the functional connectivity that mediates intentional inhibition in overweight individuals. To explore this issue, 55 overweight and 45 normal-weight adults completed an assessment consisting of a resting-state functional magnetic resonance imaging scan, a behavioural task measuring food-specific intentional inhibition, and a 1-year longitudinal measurement of BMI change. A seed-based approach was employed to examine the group-difference of the resting-state functional connectivity (rsFC) of the medial frontal cortex (MFC) (dorsal fronto-medial cortex [dFMC], pre-supplementary motor area, and premotor cortex) regions involved in intentional inhibition. Compared with normal-weight adults, the overweight individuals exhibited higher rsFC between the MFC seeds and (i) cerebellum, (ii) postcentral gyrus, (iii) middle temporal gyrus, and (iv) posterior cingulate cortex, while lower rsFC strength were observed between MFC seeds and (i) putamen and (ii) insula. The overweight individuals with higher dFMC-cerebellum rsFC strength showed poorer performance in food-specific intentional inhibition and gained more weight a year later than those of normal-weight participants. Results suggested that altered functional connections between MFC and regions associated with reward and maladaptive eating may be key neural mechanisms of food-specific intentional inhibition in overweight status. Therefore, individuals are encouraged to make informed decisions about their health and reduce their consumption of obesogenic foods from the perspective of intentional inhibition.
Collapse
Affiliation(s)
- Liu Xinyuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Ximei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Qingqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiang Guangcan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiao Mingyue
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Du Xiaoli
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Song Shiqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Liu Yong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Hong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|