1
|
Wards Y, Ehrhardt SE, Garner KG, Mattingley JB, Filmer HL, Dux PE. Stimulating prefrontal cortex facilitates training transfer by increasing representational overlap. Cereb Cortex 2024; 34:bhae209. [PMID: 38771242 DOI: 10.1093/cercor/bhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales, Mathews Building, Gate 11, Botany Street, Randwick, New South Wales 2052, Australia
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Wards Y, Ehrhardt SE, Filmer HL, Mattingley JB, Garner KG, Dux PE. Neural substrates of individual differences in learning generalization via combined brain stimulation and multitasking training. Cereb Cortex 2023; 33:11679-11694. [PMID: 37930735 DOI: 10.1093/cercor/bhad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
A pervasive limitation in cognition is reflected by the performance costs we experience when attempting to undertake two tasks simultaneously. While training can overcome these multitasking costs, the more elusive objective of training interventions is to induce persistent gains that transfer across tasks. Combined brain stimulation and cognitive training protocols have been employed to improve a range of psychological processes and facilitate such transfer, with consistent gains demonstrated in multitasking and decision-making. Neural activity in frontal, parietal, and subcortical regions has been implicated in multitasking training gains, but how the brain supports training transfer is poorly understood. To investigate this, we combined transcranial direct current stimulation of the prefrontal cortex and multitasking training, with functional magnetic resonance imaging in 178 participants. We observed transfer to a visual search task, following 1 mA left or right prefrontal cortex transcranial direct current stimulation and multitasking training. These gains persisted for 1-month post-training. Notably, improvements in visual search performance for the right hemisphere stimulation group were associated with activity changes in the right hemisphere dorsolateral prefrontal cortex, intraparietal sulcus, and cerebellum. Thus, functional dynamics in these task-general regions determine how individuals respond to paired stimulation and training, resulting in enhanced performance on an untrained task.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research, MaRS Centre, West tower, 661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales, Mathews Building, Gate 11, Botany Street, Randwick, New South Wales 2052, Australia
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Jung S, Kim JY, Jo S, Han SW. The Involvement of the Multiple Demand and Default Mode Networks in a Trial-by-Trial Cognitive Control. Brain Sci 2023; 13:1247. [PMID: 37759848 PMCID: PMC10526790 DOI: 10.3390/brainsci13091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Adaptive behavior in the environment requires a high level of cognitive control to bias limited processing resources to behaviorally significant stimuli. Such control has been associated with a set of brain regions located in the fronto-parietal cortex (multiple demand network), whose activity was found to increase as the control demand for a task increases. In contrast, another set of regions, default mode network regions, were found to be deactivated during top-down processing of task stimuli. Despite this dissociation in their activation amplitudes, it is possible that activation patterns of these regions commonly encode specific task features. In two independent neuroimaging datasets, involving a total of 40 human samples, we found that the performance of an attentional task evoked positive activity of the MDN and deactivation of the DMN. Consistent with previous studies, task features could be decoded from the fronto-parietal cognitive regions. Importantly, the regions of the DMN also encoded task features when the task set had to be rapidly reconfigured in a transient, trial-by-trial manner, along with the MDN regions. These results suggest that the two separate brain networks ultimately co-ordinate for the effective establishment of top-down cognitive control.
Collapse
Affiliation(s)
- Shinyoung Jung
- Department of Psychological Sciences, Texas Tech University, MS 2051, Lubbock, TX 79409, USA;
| | - Joo Yeon Kim
- Department of Research Equipment Operation, Korea Basic Science Institute, Cheong-won, Ochang 28119, Republic of Korea;
| | - Suhyeon Jo
- Department of Psychology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Suk Won Han
- Department of Psychology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
4
|
Neurocognitive Mechanisms Underlying Internet/Smartphone Addiction: A Preliminary fMRI Study. Tomography 2022; 8:1781-1790. [PMID: 35894015 PMCID: PMC9326674 DOI: 10.3390/tomography8040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the neurocognitive mechanisms underlying smartphone/internet addiction. We tested a specific hypothesis that the excessive, uncontrolled use of smartphones should be related to the ability of controlling attention in a purely endogenous and self-regulatory manner. In an fMRI experiment, in which 43 adults participated, we had participants detect and identify specified target stimuli among non-targets. In some trials, 10 s oddball movies were presented as distractors. While the participants try to filter out the distractors and focus their attention on the main task, the activation profiles of the frontoparietal brain regions were examined. The results showed that the people with a higher risk of being addicted to smartphone use failed to filter out distractors via the endogenous control of attention. The neuroimaging data showed that the high-risk group showed significantly lower levels of activation in the frontopolar cortex (FPC). We conclude that people at a high risk of smartphone addiction have difficulty endogenously shifting their attention from distracting stimuli toward goal-directed behavior, and FPC plays a critical role in this self-regulatory control of attention.
Collapse
|
5
|
Cope TE, Hughes LE, Phillips HN, Adams NE, Jafarian A, Nesbitt D, Assem M, Woolgar A, Duncan J, Rowe JB. Causal Evidence for the Multiple Demand Network in Change Detection: Auditory Mismatch Magnetoencephalography across Focal Neurodegenerative Diseases. J Neurosci 2022; 42:3197-3215. [PMID: 35260433 PMCID: PMC8994545 DOI: 10.1523/jneurosci.1622-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/02/2023] Open
Abstract
The multiple demand (MD) system is a network of fronto-parietal brain regions active during the organization and control of diverse cognitive operations. It has been argued that this activation may be a nonspecific signal of task difficulty. However, here we provide convergent evidence for a causal role for the MD network in the "simple task" of automatic auditory change detection, through the impairment of top-down control mechanisms. We employ independent structure-function mapping, dynamic causal modeling (DCM), and frequency-resolved functional connectivity analyses of MRI and magnetoencephalography (MEG) from 75 mixed-sex human patients across four neurodegenerative syndromes [behavioral variant fronto-temporal dementia (bvFTD), nonfluent variant primary progressive aphasia (nfvPPA), posterior cortical atrophy (PCA), and Alzheimer's disease mild cognitive impairment with positive amyloid imaging (ADMCI)] and 48 age-matched controls. We show that atrophy of any MD node is sufficient to impair auditory neurophysiological response to change in frequency, location, intensity, continuity, or duration. There was no similar association with atrophy of the cingulo-opercular, salience or language networks, or with global atrophy. MD regions displayed increased functional but decreased effective connectivity as a function of neurodegeneration, suggesting partially effective compensation. Overall, we show that damage to any of the nodes of the MD network is sufficient to impair top-down control of sensation, providing a common mechanism for impaired change detection across dementia syndromes.SIGNIFICANCE STATEMENT Previous evidence for fronto-parietal networks controlling perception is largely associative and may be confounded by task difficulty. Here, we use a preattentive measure of automatic auditory change detection [mismatch negativity (MMN) magnetoencephalography (MEG)] to show that neurodegeneration in any frontal or parietal multiple demand (MD) node impairs primary auditory cortex (A1) neurophysiological response to change through top-down mechanisms. This explains why the impaired ability to respond to change is a core feature across dementias, and other conditions driven by brain network dysfunction, such as schizophrenia. It validates theoretical frameworks in which neurodegenerating networks upregulate connectivity as partially effective compensation. The significance extends beyond network science and dementia, in its construct validation of dynamic causal modeling (DCM), and human confirmation of frequency-resolved analyses of animal neurodegeneration models.
Collapse
Affiliation(s)
- Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
- Cambridge University Hospitals NHS Trust, Cambridge CB2 0SZ, United Kingdom
| | - Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
| | - Holly N Phillips
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Natalie E Adams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Amirhossein Jafarian
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - David Nesbitt
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
| | - Moataz Assem
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
| | - Alexandra Woolgar
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
| | - John Duncan
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, United Kingdom
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Cambridge University Hospitals NHS Trust, Cambridge CB2 0SZ, United Kingdom
| |
Collapse
|
6
|
Whitwell RL, Striemer CL, Cant JS, Enns JT. The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale. Curr Neurol Neurosci Rep 2021; 21:54. [PMID: 34586544 DOI: 10.1007/s11910-021-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Historical and contemporary treatments of visual agnosia and neglect regard these disorders as largely unrelated. It is thought that damage to different neural processes leads directly to one or the other condition, yet apperceptive variants of agnosia and object-centered variants of neglect share remarkably similar deficits in the quality of conscious experience. Here we argue for a closer association between "apperceptive" variants of visual agnosia and "object-centered" variants of visual neglect. We introduce a theoretical framework for understanding these conditions based on "scale attention", which refers to selecting boundary and surface information at different levels of the structural hierarchy in the visual array. RECENT FINDINGS We review work on visual agnosia, the cortical structures and cortico-cortical pathways that underlie visual perception, visuospatial neglect and object-centered neglect, and attention to scale. We highlight direct and indirect pathways involved in these disorders and in attention to scale. The direct pathway involves the posterior vertical segments of the superior longitudinal fasciculus that are positioned to link the established dorsal and ventral attentional centers in the parietal cortex with structures in the inferior occipitotemporal cortex associated with visual apperceptive agnosia. The connections in the right hemisphere appear to be more important for visual conscious experience, whereas those in the left hemisphere appear to be more strongly associated with the planning and execution of visually guided grasps directed at multi-part objects such as tools. In the latter case, semantic and functional information must drive the selection of the appropriate hand posture and grasp points on the object. This view is supported by studies of grasping in patients with agnosia and in patients with neglect that show that the selection of grasp points when picking up a tool involves both scale attention and semantic contributions from inferotemporal cortex. The indirect pathways, which include the inferior fronto-occipital and horizontal components of the superior longitudinal fasciculi, involve the frontal lobe, working memory and the "multiple demands" network, which can shape the content of visual awareness through the maintenance of goal- and task-based abstractions and their influence on scale attention. Recent studies of human cortico-cortical pathways necessitate revisions to long-standing theoretical views on visual perception, visually guided action and their integrations. We highlight findings from a broad sample of seemingly disparate areas of research to support the proposal that attention to scale is necessary for typical conscious visual experience and for goal-directed actions that depend on functional and semantic information. Furthermore, we suggest that vertical pathways between the parietal and occipitotemporal cortex, along with indirect pathways that involve the premotor and prefrontal cortex, facilitate the operations of scale attention.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | - Jonathan S Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Sciaraffa N, Borghini G, Di Flumeri G, Cincotti F, Babiloni F, Aricò P. Joint Analysis of Eye Blinks and Brain Activity to Investigate Attentional Demand during a Visual Search Task. Brain Sci 2021; 11:brainsci11050562. [PMID: 33925209 PMCID: PMC8146019 DOI: 10.3390/brainsci11050562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
In several fields, the need for a joint analysis of brain activity and eye activity to investigate the association between brain mechanisms and manifest behavior has been felt. In this work, two levels of attentional demand, elicited through a conjunction search task, have been modelled in terms of eye blinks, brain activity, and brain network features. Moreover, the association between endogenous neural mechanisms underlying attentional demand and eye blinks, without imposing a time-locked structure to the analysis, has been investigated. The analysis revealed statistically significant spatial and spectral modulations of the recorded brain activity according to the different levels of attentional demand, and a significant reduction in the number of eye blinks when a higher amount of attentional investment was required. Besides, the integration of information coming from high-density electroencephalography (EEG), brain source localization, and connectivity estimation allowed us to merge spectral and causal information between brain areas, characterizing a comprehensive model of neurophysiological processes behind attentional demand. The analysis of the association between eye and brain-related parameters revealed a statistically significant high correlation (R > 0.7) of eye blink rate with anterofrontal brain activity at 8 Hz, centroparietal brain activity at 12 Hz, and a significant moderate correlation with the participation of right Intra Parietal Sulcus in alpha band (R = -0.62). Due to these findings, this work suggests the possibility of using eye blinks measured from one sensor placed on the forehead as an unobtrusive measure correlating with neural mechanisms underpinning attentional demand.
Collapse
Affiliation(s)
- Nicolina Sciaraffa
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- Correspondence:
| | - Gianluca Borghini
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
- IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Via Ardeatina 306, 00179 Rome, Italy;
| | - Gianluca Di Flumeri
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
| | - Febo Cincotti
- IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Via Ardeatina 306, 00179 Rome, Italy;
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310005, China
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.B.); (G.D.F.); (F.B.); (P.A.)
- BrainSigns srl, Lungotevere Michelangelo 9, 00192 Rome, Italy
| |
Collapse
|