1
|
Liang Z, Wu S, Wu J, Wang WX, Qin S, Liu C. Distance and grid-like codes support the navigation of abstract social space in the human brain. eLife 2024; 12:RP89025. [PMID: 38875004 DOI: 10.7554/elife.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a 'social cognitive map' organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.
Collapse
Affiliation(s)
- Zilu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Simeng Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Wen-Xu Wang
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Sigismondi F, Xu Y, Silvestri M, Bottini R. Altered grid-like coding in early blind people. Nat Commun 2024; 15:3476. [PMID: 38658530 PMCID: PMC11043432 DOI: 10.1038/s41467-024-47747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.
Collapse
Affiliation(s)
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy
- Max Planck Institute for Human Cognitive and Brain Sciences, D-04303, Leipzig, Germany
| | - Mattia Silvestri
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, 38122, Trento, Italy.
| |
Collapse
|
3
|
Viganò S, Bayramova R, Doeller CF, Bottini R. Spontaneous eye movements reflect the representational geometries of conceptual spaces. Proc Natl Acad Sci U S A 2024; 121:e2403858121. [PMID: 38635638 PMCID: PMC11046636 DOI: 10.1073/pnas.2403858121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.
Collapse
Affiliation(s)
- Simone Viganò
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Center for Mind/Brain Sciences, University of Trento, Rovereto38068, Italy
| | - Rena Bayramova
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
| | - Christian F. Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig04103, Germany
- Kavli Institute for Systems Neuroscience, Center for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Jebsen Center for Alzheimer’s Disease, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, Rovereto38068, Italy
| |
Collapse
|
4
|
Kawahara D, Fujisawa S. Advantages of Persistent Cohomology in Estimating Animal Location From Grid Cell Population Activity. Neural Comput 2024; 36:385-411. [PMID: 38363660 DOI: 10.1162/neco_a_01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/09/2023] [Indexed: 02/18/2024]
Abstract
Many cognitive functions are represented as cell assemblies. In the case of spatial navigation, the population activity of place cells in the hippocampus and grid cells in the entorhinal cortex represents self-location in the environment. The brain cannot directly observe self-location information in the environment. Instead, it relies on sensory information and memory to estimate self-location. Therefore, estimating low-dimensional dynamics, such as the movement trajectory of an animal exploring its environment, from only the high-dimensional neural activity is important in deciphering the information represented in the brain. Most previous studies have estimated the low-dimensional dynamics (i.e., latent variables) behind neural activity by unsupervised learning with Bayesian population decoding using artificial neural networks or gaussian processes. Recently, persistent cohomology has been used to estimate latent variables from the phase information (i.e., circular coordinates) of manifolds created by neural activity. However, the advantages of persistent cohomology over Bayesian population decoding are not well understood. We compared persistent cohomology and Bayesian population decoding in estimating the animal location from simulated and actual grid cell population activity. We found that persistent cohomology can estimate the animal location with fewer neurons than Bayesian population decoding and robustly estimate the animal location from actual noisy data.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba 277-8563, Japan
- Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shigeyoshi Fujisawa
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba 277-8563, Japan
- Laboratory for Systems Neurophysiology, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Nitsch A, Garvert MM, Bellmund JLS, Schuck NW, Doeller CF. Grid-like entorhinal representation of an abstract value space during prospective decision making. Nat Commun 2024; 15:1198. [PMID: 38336756 PMCID: PMC10858181 DOI: 10.1038/s41467-024-45127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
How valuable a choice option is often changes over time, making the prediction of value changes an important challenge for decision making. Prior studies identified a cognitive map in the hippocampal-entorhinal system that encodes relationships between states and enables prediction of future states, but does not inherently convey value during prospective decision making. In this fMRI study, participants predicted changing values of choice options in a sequence, forming a trajectory through an abstract two-dimensional value space. During this task, the entorhinal cortex exhibited a grid-like representation with an orientation aligned to the axis through the value space most informative for choices. A network of brain regions, including ventromedial prefrontal cortex, tracked the prospective value difference between options. These findings suggest that the entorhinal grid system supports the prediction of future values by representing a cognitive map, which might be used to generate lower-dimensional value signals to guide prospective decision making.
Collapse
Affiliation(s)
- Alexander Nitsch
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Mona M Garvert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jacob L S Bellmund
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
- Institute of Psychology, Universität Hamburg, Hamburg, Germany
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway.
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany.
- Department of Psychology, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Chen D, Axmacher N, Wang L. Grid codes underlie multiple cognitive maps in the human brain. Prog Neurobiol 2024; 233:102569. [PMID: 38232782 DOI: 10.1016/j.pneurobio.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
7
|
Kabrel M, Tulver K, Aru J. The journey within: mental navigation as a novel framework for understanding psychotherapeutic transformation. BMC Psychiatry 2024; 24:91. [PMID: 38302927 PMCID: PMC10835954 DOI: 10.1186/s12888-024-05522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Despite the demonstrated efficacy of psychotherapy, the precise mechanisms that drive therapeutic transformations have posed a challenge and still remain unresolved. Here, we suggest a potential solution to this problem by introducing a framework based on the concept of mental navigation. It refers to our ability to navigate our cognitive space of thoughts, ideas, concepts, and memories, similar to how we navigate physical space. We start by analyzing the neural, cognitive, and experiential constituents intrinsic to mental navigation. Subsequently, we posit that the metaphoric spatial language we employ to articulate introspective experiences (e.g., "unexplored territory" or "going in circles") serves as a robust marker of mental navigation. METHODS Using large text corpora, we compared the utilization of spatial language between transcripts of psychotherapy sessions (≈ 12 M. words), casual everyday conversations (≈ 12 M. words), and fictional dialogues in movies (≈ 14 M. words). We also examined 110 psychotherapy transcripts qualitatively to discern patterns and dynamics associated with mental navigation. RESULTS We found a notable increase in the utilization of spatial metaphors during psychotherapy compared to casual everyday dialogues (U = 192.0, p = .001, d = 0.549) and fictional conversations (U = 211, p < .001, d = 0.792). In turn, analyzing the usage of non-spatial metaphors, we did not find significant differences between the three datasets (H = 0.682, p = 0.710). The qualitative analysis highlighted specific examples of mental navigation at play. CONCLUSION Mental navigation might underlie the psychotherapy process and serve as a robust framework for understanding the transformative changes it brings about.
Collapse
Affiliation(s)
- Mykyta Kabrel
- Institute of Philosophy and Semiotics, University of Tartu, Tartu, Estonia.
| | - Kadi Tulver
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Zheng XY, Hebart MN, Grill F, Dolan RJ, Doeller CF, Cools R, Garvert MM. Parallel cognitive maps for multiple knowledge structures in the hippocampal formation. Cereb Cortex 2024; 34:bhad485. [PMID: 38204296 PMCID: PMC10839836 DOI: 10.1093/cercor/bhad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.
Collapse
Affiliation(s)
- Xiaochen Y Zheng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
| | - Martin N Hebart
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Medicine, Justus Liebig University, 35390, Giessen, Germany
| | - Filip Grill
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Neurology, 6525 GA, Nijmegen, the Netherlands
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Christian F Doeller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU, 7491, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, 04109, Leipzig, Germany
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525 GA, Nijmegen, the Netherlands
| | - Mona M Garvert
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Viganò S, Bayramova R, Doeller CF, Bottini R. Mental search of concepts is supported by egocentric vector representations and restructured grid maps. Nat Commun 2023; 14:8132. [PMID: 38065931 PMCID: PMC10709434 DOI: 10.1038/s41467-023-43831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The human hippocampal-entorhinal system is known to represent both spatial locations and abstract concepts in memory in the form of allocentric cognitive maps. Using fMRI, we show that the human parietal cortex evokes complementary egocentric representations in conceptual spaces during goal-directed mental search, akin to those observable during physical navigation to determine where a goal is located relative to oneself (e.g., to our left or to our right). Concurrently, the strength of the grid-like signal, a neural signature of allocentric cognitive maps in entorhinal, prefrontal, and parietal cortices, is modulated as a function of goal proximity in conceptual space. These brain mechanisms might support flexible and parallel readout of where target conceptual information is stored in memory, capitalizing on complementary reference frames.
Collapse
Affiliation(s)
- Simone Viganò
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Rena Bayramova
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Roberto Bottini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
10
|
Menghi N, Silvestrin F, Pascolini L, Penny W. The emergence of task-relevant representations in a nonlinear decision-making task. Neurobiol Learn Mem 2023; 206:107860. [PMID: 37952773 DOI: 10.1016/j.nlm.2023.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This paper describes the relationship between performance in a decision-making task and the emergence of task-relevant representations. Participants learnt two tasks in which the appropriate response depended on multiple relevant stimuli and the underlying stimulus-outcome associations were governed by a latent feature that participants could discover. We divided participants into good and bad performers based on their overall classification rate and computed behavioural accuracy for each feature value. We found that participants with better performance had a better representation of the latent feature space. We then used representation similarity analysis on Electroencephalographic (EEG) data to identify when these representations emerge. We were able to decode task-relevant representations in a time window emerging 700 ms after stimulus presentation, but only for participants with good task performance. Our findings suggest that, in order to make good decisions, it is necessary to create and extract a low-dimensional representation of the task at hand.
Collapse
Affiliation(s)
- N Menghi
- University East Anglia, School of Psychology, UK; Max Planck for Human Cognitive and Brain Sciences, Department of Psychology, Germany.
| | - F Silvestrin
- University East Anglia, School of Psychology, UK
| | - L Pascolini
- University East Anglia, School of Psychology, UK
| | - W Penny
- University East Anglia, School of Psychology, UK
| |
Collapse
|
11
|
Zhu SL, Lakshminarasimhan KJ, Angelaki DE. Computational cross-species views of the hippocampal formation. Hippocampus 2023; 33:586-599. [PMID: 37038890 PMCID: PMC10947336 DOI: 10.1002/hipo.23535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
The discovery of place cells and head direction cells in the hippocampal formation of freely foraging rodents has led to an emphasis of its role in encoding allocentric spatial relationships. In contrast, studies in head-fixed primates have additionally found representations of spatial views. We review recent experiments in freely moving monkeys that expand upon these findings and show that postural variables such as eye/head movements strongly influence neural activity in the hippocampal formation, suggesting that the function of the hippocampus depends on where the animal looks. We interpret these results in the light of recent studies in humans performing challenging navigation tasks which suggest that depending on the context, eye/head movements serve one of two roles-gathering information about the structure of the environment (active sensing) or externalizing the contents of internal beliefs/deliberation (embodied cognition). These findings prompt future experimental investigations into the information carried by signals flowing between the hippocampal formation and the brain regions controlling postural variables, and constitute a basis for updating computational theories of the hippocampal system to accommodate the influence of eye/head movements.
Collapse
Affiliation(s)
- Seren L Zhu
- Center for Neural Science, New York University, New York, New York, USA
| | - Kaushik J Lakshminarasimhan
- Center for Theoretical Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, New York, USA
- Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| |
Collapse
|
12
|
Mahmoodi A, Nili H, Harbison C, Hamilton S, Trudel N, Bang D, Rushworth MFS. Causal role of a neural system for separating and selecting multidimensional social cognitive information. Neuron 2023; 111:1152-1164.e6. [PMID: 36681075 PMCID: PMC10914676 DOI: 10.1016/j.neuron.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023]
Abstract
People are multi-faceted, typically good at some things but bad at others, and a critical aspect of social judgement is the ability to focus on those traits relevant for the task at hand. However, it remains unknown how the brain supports such context-dependent social judgement. Here, we examine how people represent multidimensional individuals, and how the brain extracts relevant information and filters out irrelevant information when comparing individuals within a specific dimension. Using human fMRI, we identify distinct neural representations in dorsomedial prefrontal cortex (dmPFC) and anterior insula (AI) supporting separation and selection of information for context-dependent social judgement. Causal evaluation using non-invasive brain stimulation shows that AI disruption alters the impact of relevant information on social comparison, whereas dmPFC disruption only affects the impact of irrelevant information. This neural circuit is distinct from the one supporting integration across, as opposed to separation of, different features of a multidimensional cognitive space.
Collapse
Affiliation(s)
- Ali Mahmoodi
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Hamed Nili
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sorcha Hamilton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nadescha Trudel
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Wellcome Centre for Human Neuroimaging, University College London, Oxford, UK
| | - Dan Bang
- Wellcome Centre for Human Neuroimaging, University College London, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Aru J, Drüke M, Pikamäe J, Larkum ME. Mental navigation and the neural mechanisms of insight. Trends Neurosci 2023; 46:100-109. [PMID: 36462993 DOI: 10.1016/j.tins.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
How do new ideas come about? The central hypothesis presented here states that insights might happen during mental navigation and correspond to rapid plasticity at the cellular level. We highlight the differences between neocortical and hippocampal mechanisms of insight. We argue that the suddenness of insight can be related to the sudden emergence of place fields in the hippocampus. According to our hypothesis, insights are supported by a state of mind-wandering that can be tied to the process of combining knowledge pieces during sharp-wave ripples (SWRs). Our framework connects the dots between research on creativity, mental navigation, and specific synaptic plasticity mechanisms in the hippocampus.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Moritz Drüke
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Juhan Pikamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Chen ZS, Zhang X, Long X, Zhang SJ. Are Grid-Like Representations a Component of All Perception and Cognition? Front Neural Circuits 2022; 16:924016. [PMID: 35911570 PMCID: PMC9329517 DOI: 10.3389/fncir.2022.924016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Grid cells or grid-like responses have been reported in the rodent, bat and human brains during various spatial and non-spatial tasks. However, the functions of grid-like representations beyond the classical hippocampal formation remain elusive. Based on accumulating evidence from recent rodent recordings and human fMRI data, we make speculative accounts regarding the mechanisms and functional significance of the sensory cortical grid cells and further make theory-driven predictions. We argue and reason the rationale why grid responses may be universal in the brain for a wide range of perceptual and cognitive tasks that involve locomotion and mental navigation. Computational modeling may provide an alternative and complementary means to investigate the grid code or grid-like map. We hope that the new discussion will lead to experimentally testable hypotheses and drive future experimental data collection.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaohan Zhang
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University School of Medicine, New York, NY, United States
| | - Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Houser TM. Spatialization of Time in the Entorhinal-Hippocampal System. Front Behav Neurosci 2022; 15:807197. [PMID: 35069143 PMCID: PMC8770534 DOI: 10.3389/fnbeh.2021.807197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
The functional role of the entorhinal-hippocampal system has been a long withstanding mystery. One key theory that has become most popular is that the entorhinal-hippocampal system represents space to facilitate navigation in one's surroundings. In this Perspective article, I introduce a novel idea that undermines the inherent uniqueness of spatial information in favor of time driving entorhinal-hippocampal activity. Specifically, by spatializing events that occur in succession (i.e., across time), the entorhinal-hippocampal system is critical for all types of cognitive representations. I back up this argument with empirical evidence that hints at a role for the entorhinal-hippocampal system in non-spatial representation, and computational models of the logarithmic compression of time in the brain.
Collapse
Affiliation(s)
- Troy M. Houser
- Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
16
|
Viganò S, Rubino V, Buiatti M, Piazza M. The neural representation of absolute direction during mental navigation in conceptual spaces. Commun Biol 2021; 4:1294. [PMID: 34785757 PMCID: PMC8595308 DOI: 10.1038/s42003-021-02806-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
When humans mentally “navigate” bidimensional uniform conceptual spaces, they recruit the same grid-like and distance codes typically evoked when exploring the physical environment. Here, using fMRI, we show evidence that conceptual navigation also elicits another kind of spatial code: that of absolute direction. This code is mostly localized in the medial parietal cortex, where its strength predicts participants’ comparative semantic judgments. It may provide a complementary mechanism for conceptual navigation outside the hippocampal formation. Viganò et al. use fMRI in healthy human participants to show that conceptual navigation elicits a spatial code for absolute direction in the medial parietal cortex. Their findings are suggestive of a complementary mechanism for conceptual navigation outside the hippocampal formation.
Collapse
Affiliation(s)
- Simone Viganò
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Valerio Rubino
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Marco Buiatti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Manuela Piazza
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|