1
|
Weinstein SM, Tu D, Hu F, Pan R, Zhang R, Vandekar SN, Baller EB, Gur RC, Gur RE, Alexander-Bloch AF, Satterthwaite TD, Park JY. Mapping Individual Differences in Intermodal Coupling in Neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600817. [PMID: 38979274 PMCID: PMC11230458 DOI: 10.1101/2024.06.26.600817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Within-individual coupling between measures of brain structure and function evolves in development and may underlie differential risk for neuropsychiatric disorders. Despite increasing interest in the development of structure-function relationships, rigorous methods to quantify and test individual differences in coupling remain nascent. In this article, we explore and address gaps in approaches for testing and spatially localizing individual differences in intermodal coupling. We propose a new method, called CIDeR, which is designed to simultaneously perform hypothesis testing in a way that limits false positive results and improve detection of true positive results. Through a comparison across different approaches to testing individual differences in intermodal coupling, we delineate subtle differences in the hypotheses they test, which may ultimately lead researchers to arrive at different results. Finally, we illustrate the utility of CIDeR in two applications to brain development using data from the Philadelphia Neurodevelopmental Cohort.
Collapse
Affiliation(s)
- Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Danni Tu
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruyi Pan
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rongqian Zhang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute (LiBI), Philadelphia, PA, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute (LiBI), Philadelphia, PA, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute (LiBI), Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute (LiBI), Philadelphia, PA, USA
| | - Jun Young Park
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Zhang R, Chen L, Oliver LD, Voineskos AN, Park JY. SAN: Mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites. Hum Brain Mapp 2024; 45:e26692. [PMID: 38712767 PMCID: PMC11075170 DOI: 10.1002/hbm.26692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.
Collapse
Affiliation(s)
- Rongqian Zhang
- Department of Statistical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Linxi Chen
- Department of Statistical SciencesUniversity of TorontoTorontoOntarioCanada
| | | | - Aristotle N. Voineskos
- Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Jun Young Park
- Department of Statistical SciencesUniversity of TorontoTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Zhang R, Chen L, Oliver LD, Voineskos AN, Park JY. SAN: mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569619. [PMID: 38105933 PMCID: PMC10723364 DOI: 10.1101/2023.12.04.569619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called SAN (Spatial Autocorrelation Normalization) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.
Collapse
Affiliation(s)
- Rongqian Zhang
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Linxi Chen
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jun Young Park
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Kundu S, Reinhardt A, Song S, Han J, Meadows ML, Crosson B, Krishnamurthy V. Bayesian longitudinal tensor response regression for modeling neuroplasticity. Hum Brain Mapp 2023; 44:6326-6348. [PMID: 37909393 PMCID: PMC10681668 DOI: 10.1002/hbm.26509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
A major interest in longitudinal neuroimaging studies involves investigating voxel-level neuroplasticity due to treatment and other factors across visits. However, traditional voxel-wise methods are beset with several pitfalls, which can compromise the accuracy of these approaches. We propose a novel Bayesian tensor response regression approach for longitudinal imaging data, which pools information across spatially distributed voxels to infer significant changes while adjusting for covariates. The proposed method, which is implemented using Markov chain Monte Carlo (MCMC) sampling, utilizes low-rank decomposition to reduce dimensionality and preserve spatial configurations of voxels when estimating coefficients. It also enables feature selection via joint credible regions which respect the shape of the posterior distributions for more accurate inference. In addition to group level inferences, the method is able to infer individual-level neuroplasticity, allowing for examination of personalized disease or recovery trajectories. The advantages of the proposed approach in terms of prediction and feature selection over voxel-wise regression are highlighted via extensive simulation studies. Subsequently, we apply the approach to a longitudinal Aphasia dataset consisting of task functional MRI images from a group of subjects who were administered either a control intervention or intention treatment at baseline and were followed up over subsequent visits. Our analysis revealed that while the control therapy showed long-term increases in brain activity, the intention treatment produced predominantly short-term changes, both of which were concentrated in distinct localized regions. In contrast, the voxel-wise regression failed to detect any significant neuroplasticity after multiplicity adjustments, which is biologically implausible and implies lack of power.
Collapse
Affiliation(s)
- Suprateek Kundu
- Department of BiostatisticsUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Alec Reinhardt
- Department of BiostatisticsUT MD Anderson Cancer CenterHoustonTexasUSA
| | - Serena Song
- Center for Visual and Neurocognitive RehabilitationAtlanta Veterans Affairs Medical CenterDecaturGeorgiaUSA
| | - Joo Han
- Center for Visual and Neurocognitive RehabilitationAtlanta Veterans Affairs Medical CenterDecaturGeorgiaUSA
| | - M. Lawson Meadows
- Center for Visual and Neurocognitive RehabilitationAtlanta Veterans Affairs Medical CenterDecaturGeorgiaUSA
| | - Bruce Crosson
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Department of Imaging and Radiological SciencesEmory UniversityAtlantaGeorgiaUSA
| | | |
Collapse
|
5
|
Vandekar SN, Kang K, Woodward ND, Huang A, McHugo M, Garbett S, Stephens J, Shinohara RT, Schwartzman A, Blume J. Evaluation of resampling-based inference for topological features of neuroimages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571377. [PMID: 38168311 PMCID: PMC10760090 DOI: 10.1101/2023.12.12.571377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Many recent studies have demonstrated the inflated type 1 error rate of the original Gaussian random field (GRF) methods for inference of neuroimages and identified resampling (permutation and bootstrapping) methods that have better performance. There has been no evaluation of resampling procedures when using robust (sandwich) statistical images with different topological features (TF) used for neuroimaging inference. Here, we consider estimation of distributions TFs of a statistical image and evaluate resampling procedures that can be used when exchangeability is violated. We compare the methods using realistic simulations and study sex differences in life-span age-related changes in gray matter volume in the Nathan Kline Institute Rockland sample. We find that our proposed wild bootstrap and the commonly used permutation procedure perform well in sample sizes above 50 under realistic simulations with heteroskedasticity. The Rademacher wild bootstrap has fewer assumptions than the permutation and performs similarly in samples of 100 or more, so is valid in a broader range of conditions. We also evaluate the GRF-based pTFCE method and show that it has inflated error rates in samples less than 200. Our R package, pbj , is available on Github and allows the user to reproducibly implement various resampling-based group level neuroimage analyses.
Collapse
|
6
|
Pan R, Dickie EW, Hawco C, Reid N, Voineskos AN, Park JY. Spatial-extent inference for testing variance components in reliability and heritability studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537270. [PMID: 37131799 PMCID: PMC10153210 DOI: 10.1101/2023.04.19.537270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Clusterwise inference is a popular approach in neuroimaging to increase sensitivity, but most existing methods are currently restricted to the General Linear Model (GLM) for testing mean parameters. Statistical methods for testing variance components, which are critical in neuroimaging studies that involve estimation of narrow-sense heritability or test-retest reliability, are underdeveloped due to methodological and computational challenges, which would potentially lead to low power. We propose a fast and powerful test for variance components called CLEAN-V (CLEAN for testing Variance components). CLEAN-V models the global spatial dependence structure of imaging data and computes a locally powerful variance component test statistic by data-adaptively pooling neighborhood information. Correction for multiple comparisons is achieved by permutations to control family-wise error rate (FWER). Through analysis of task-fMRI data from the Human Connectome Project across five tasks and comprehensive data-driven simulations, we show that CLEAN-V outperforms existing methods in detecting test-retest reliability and narrow-sense heritability with significantly improved power, with the detected areas aligning with activation maps. The computational efficiency of CLEAN-V also speaks of its practical utility, and it is available as an R package.
Collapse
Affiliation(s)
- Ruyi Pan
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5G 1Z5, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Erin W. Dickie
- The Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Colin Hawco
- The Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Nancy Reid
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5G 1Z5, Canada
| | - Aristotle N. Voineskos
- The Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Jun Young Park
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5G 1Z5, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5G 1Z5, Canada
| |
Collapse
|
7
|
Weinstein SM, Vandekar SN, Baller EB, Tu D, Adebimpe A, Tapera TM, Gur RC, Gur RE, Detre JA, Raznahan A, Alexander-Bloch AF, Satterthwaite TD, Shinohara RT, Park JY. Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence. Neuroimage 2022; 264:119712. [PMID: 36309332 PMCID: PMC10062374 DOI: 10.1016/j.neuroimage.2022.119712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
With the increasing availability of neuroimaging data from multiple modalities-each providing a different lens through which to study brain structure or function-new techniques for comparing, integrating, and interpreting information within and across modalities have emerged. Recent developments include hypothesis tests of associations between neuroimaging modalities, which can be used to determine the statistical significance of intermodal associations either throughout the entire brain or within anatomical subregions or functional networks. While these methods provide a crucial foundation for inference on intermodal relationships, they cannot be used to answer questions about where in the brain these associations are most pronounced. In this paper, we introduce a new method, called CLEAN-R, that can be used both to test intermodal correspondence throughout the brain and also to localize this correspondence. Our method involves first adjusting for the underlying spatial autocorrelation structure within each modality before aggregating information within small clusters to construct a map of enhanced test statistics. Using structural and functional magnetic resonance imaging data from a subsample of children and adolescents from the Philadelphia Neurodevelopmental Cohort, we conduct simulations and data analyses where we illustrate the high statistical power and nominal type I error levels of our method. By constructing an interpretable map of group-level correspondence using spatially-enhanced test statistics, our method offers insights beyond those provided by earlier methods.
Collapse
Affiliation(s)
- Sarah M Weinstein
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Simon N Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Erica B Baller
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danni Tu
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Strategy Innovation & Deployment Section, Johnson and Johnson, Raritan, NJ, 08869, USA
| | - Tinashe M Tapera
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health Intramural Research Program, Bethesda, MD 20892, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Young Park
- Department of Statistical Sciences and Department of Psychology, University of Toronto, Toronto, ON, M5G 1Z5, Canada.
| |
Collapse
|
8
|
Park JY, Fiecas M. CLEAN: Leveraging spatial autocorrelation in neuroimaging data in clusterwise inference. Neuroimage 2022; 255:119192. [PMID: 35398279 DOI: 10.1016/j.neuroimage.2022.119192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
While clusterwise inference is a popular approach in neuroimaging that improves sensitivity, current methods do not account for explicit spatial autocorrelations because most use univariate test statistics to construct cluster-extent statistics. Failure to account for such dependencies could result in decreased reproducibility. To address methodological and computational challenges, we propose a new powerful and fast statistical method called CLEAN (Clusterwise inference Leveraging spatial Autocorrelations in Neuroimaging). CLEAN computes multivariate test statistics by modelling brain-wise spatial autocorrelations, constructs cluster-extent test statistics, and applies a refitting-free resampling approach to control false positives. We validate CLEAN using simulations and applications to the Human Connectome Project. This novel method provides a new direction in neuroimaging that paces with advances in high-resolution MRI data which contains a substantial amount of spatial autocorrelation.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Statistical Sciences and Department of Psychology, University of Toronto, Toronto, ON M5S, Canada.
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| |
Collapse
|