1
|
Jia W, Peng J, Zhang Y, Zhu J, Qiang X, Zhang R, Shi L. Amelioration impact of gut-brain communication on obesity control by regulating gut microbiota composition through the ingestion of animal-plant-derived peptides and dietary fiber: can food reward effect as a hidden regulator? Crit Rev Food Sci Nutr 2024; 64:11575-11589. [PMID: 37526310 DOI: 10.1080/10408398.2023.2241078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Various roles of intestinal flora in the gut-brain axis response pathway have received enormous attention because of their unique position in intestinal flora-derived metabolites regulating hormones, inducing appetite, and modulating energy metabolism. Reward pathways in the brain play a crucial role in gut-brain communications, but the mechanisms have not been methodically understood. This review outlined the mechanisms by which leptin, ghrelin, and insulin are influenced by intestinal flora-derived metabolites to regulate appetite and body weight, focused on the significance of the paraventricular nucleus and ventromedial prefrontal cortex in food reward. The vagus nerve and mitochondria are essential pathways of the intestinal flora involved in the modulation of neurotransmitters, neural signaling, and neurotransmission in gut-brain communications. The dynamic response to nutrient intake and changes in the characteristics of feeding activity requires the participation of the vagus nerve to transmit messages to be completed. SCFAs, Bas, BCAAs, and induced hormones mediate the sensory information and reward signaling of the host in the complex regulatory mechanism of food selection, and the composition of the intestinal flora significantly impacts this process. Food reward in the process of obesity based on gut-brain communications expands new ideas for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Zhang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Qiang
- Inspection and Testing Center of Fuping County (Shaanxi Goat Milk Product Quality Supervision and Inspection Center), Wei nan, China
| | - Rong Zhang
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
2
|
Mellick W, McTeague L, Hix S, Anton R, Prisciandaro JJ. Blunted reward-related activation to food scenes distinguishes individuals with alcohol use disorder in a pilot case-control fMRI pilot study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1866-1875. [PMID: 39312084 PMCID: PMC11492229 DOI: 10.1111/acer.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/17/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is thought to bias the neurocircuitry underlying reward processing and motivation to preferentially attend to conditioned alcohol cues over natural rewards. The present case-control pilot study evaluated this hypothesis using novel natural reward paradigms. METHODS Twenty-eight participants (AUD, n = 14, light drinkers, n = 14) were recruited-AUD participants reported 44.0% heavy drinking days (%HDD) and 4.67 drinks/day over the preceding 90 days. Functional magnetic resonance imaging (fMRI) data were acquired during the administration of three separate picture-viewing paradigms of alcohol cues, food scenes, and social reward, respectively. Independent samples t-tests were performed to compare groups' fMRI data and exploratory correlation analyses were performed to examine associations with clinical characteristics of AUD. RESULTS Food scenes elicited abnormally low reward-related activation, within the superior frontal gyrus and caudate bilaterally, among AUD participants. Lower activation to food scenes within the superior frontal gyrus was, in turn, associated with higher levels of past-month %HDD among AUD participants, specifically, along with craving and alcohol dependence severity when examined across the full sample. Contrasting reward types (e.g., alcohol cues vs. food scenes) did not reveal "preferential" activation to differentiate groups. CONCLUSIONS Heavy drinking appears associated with reduced responsivity to natural rewards, specifically food rather than social cues. Neural mechanisms underlying the high prevalence of malnutrition among individuals with AUD may involve some combination of blunted approach-related affect and reduced craving-related motivation to eat when food is present, resulting in limited engagement of cortico-striato-thalamic motor circuitry supporting food acquisition. However, given the preliminary nature of this pilot study, such formulations remain tentative until larger follow-up studies can be conducted. From a potential translational standpoint, the ability of promising therapeutics to demonstrate increased responsivity to natural rewards, specifically nutritive reward may serve as a valuable complementary efficacy indicator for future clinical neuroimaging trials in AUD.
Collapse
Affiliation(s)
- William Mellick
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa McTeague
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Sara Hix
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Anton
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James J. Prisciandaro
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
3
|
Liao QM, Zhang ZJ, Yang X, Wei JX, Wang M, Dou YK, Du Y, Ma XH. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder. J Affect Disord 2024; 351:259-267. [PMID: 38266932 DOI: 10.1016/j.jad.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zi-Jian Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Kai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Pfabigan DM, Frogner ER, Schéle E, Thorsby PM, Skålhegg BS, Dickson SL, Sailer U. Ghrelin is related to lower brain reward activation during touch. Psychophysiology 2024; 61:e14443. [PMID: 37737514 DOI: 10.1111/psyp.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/19/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.
Collapse
Affiliation(s)
- D M Pfabigan
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - E R Frogner
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - P M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Oslo, Norway
| | - B S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - U Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Hayashi D, Edwards C, Emond JA, Gilbert-Diamond D, Butt M, Rigby A, Masterson TD. What Is Food Noise? A Conceptual Model of Food Cue Reactivity. Nutrients 2023; 15:4809. [PMID: 38004203 PMCID: PMC10674813 DOI: 10.3390/nu15224809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
As GLP-1 receptor agonists, like semaglutide, emerge as effective treatments for weight management, anecdotal reports from patients and clinicians alike point to a reduction in what has been colloquially termed "food noise", as patients report experiencing less rumination and obsessive preoccupation about food. In this narrative review, we discuss concepts used in studies to investigate human eating behavior that can help elucidate and define food noise, particularly food cue reactivity. We propose a conceptual model that summarizes the main factors that have been shown to determine the magnitude of the reactivity elicited by external and internal food cues and how these factors can affect short- and long-term behavioral and clinical outcomes. By integrating key research conducted in this field, the Cue-Influencer-Reactivity-Outcome (CIRO) model of food cue reactivity provides a framework that can be used in future research to design studies and interpret findings related to food noise and food cue reactivity.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| | - Caitlyn Edwards
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Diane Gilbert-Diamond
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Melissa Butt
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Andrea Rigby
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Health, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Travis D. Masterson
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16801, USA (T.D.M.)
| |
Collapse
|
6
|
Bhargava R, Luur S, Rodriguez Flores M, Emini M, Prechtl CG, Goldstone AP. Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. J Endocr Soc 2023; 7:bvad061. [PMID: 37287649 PMCID: PMC10243873 DOI: 10.1210/jendso/bvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background The novel liver-gut hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a centrally acting inverse agonist, and competitive antagonist of orexigenic acyl ghrelin (AG), at the GH secretagogue receptor, reducing food intake in rodents. In humans, the effects of LEAP2 on eating behavior and mechanisms behind the postprandial increase in LEAP2 are unclear, though this is reciprocal to the postprandial decrease in plasma AG. Methods Plasma LEAP2 was measured in a secondary analysis of a previous study. Twenty-two adults without obesity attended after an overnight fast, consuming a 730-kcal meal without or with subcutaneous AG administration. Postprandial changes in plasma LEAP2 were correlated with postprandial changes in appetite, high-energy (HE) or low-energy (LE) food cue reactivity using functional magnetic resonance imaging, ad libitum food intake, and plasma/serum AG, glucose, insulin, and triglycerides. Results Postprandial plasma LEAP2 increased by 24.5% to 52.2% at 70 to 150 minutes, but was unchanged by exogenous AG administration. Postprandial increases in LEAP2 correlated positively with postprandial decreases in appetite, and cue reactivity to HE/LE and HE food in anteroposterior cingulate cortex, paracingulate cortex, frontal pole, and middle frontal gyrus, with similar trend for food intake. Postprandial increases in LEAP2 correlated negatively with body mass index, but did not correlate positively with increases in glucose, insulin, or triglycerides, nor decreases in AG. Conclusions These correlational findings are consistent with a role for postprandial increases in plasma LEAP2 in suppressing human eating behavior in adults without obesity. Postprandial increases in plasma LEAP2 are unrelated to changes in plasma AG and the mediator(s) remain uncertain.
Collapse
Affiliation(s)
- Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Luur
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Christina G Prechtl
- School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Hospital, London, W2 1PG, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
7
|
How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI. Physiol Behav 2023; 263:114111. [PMID: 36740132 DOI: 10.1016/j.physbeh.2023.114111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.
Collapse
|
8
|
Manzano MA, Strong DR, Rhee KE, Liang J, Boutelle KN. Discordance between assessments of food cue responsiveness: Implications for assessment in youth with overweight/obesity. Appetite 2023; 186:106575. [PMID: 37100119 DOI: 10.1016/j.appet.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
Food cue responsiveness (FCR), broadly defined as behavioral, cognitive, emotional and/or physiological responses to external appetitive cues outside of physiological need, contributes to overeating and obesity among youth and adults. A variety of measures purportedly assess this construct, ranging from youth- or parent-report surveys to objective eating tasks. However, little research has assessed their convergence. It is especially important to evaluate this in children with overweight/obesity (OW/OB), as reliable and valid assessments of FCR are essential to better understand the role of this critical mechanism in behavioral interventions. The present study examined the relationship between five measures of FCR in a sample of 111 children with OW/OB (mean age = 10.6, mean BMI percentile = 96.4; 70% female; 68% white; 23% Latinx). Assessments included: objectively measured eating in the absence of hunger (EAH), parasympathetic activity when exposed to food, parent reported food responsiveness subscale from the Child Eating Behavior Questionnaire (CEBQ-FR), child self-reported Power of Food total score (C-PFS), and child self-reported Food Cravings Questionnaire total score (FCQ-T). Statistically significant spearman correlations were found between EAH and CEBQ-FR (ρ = 0.19, p < 0.05) and parasympathetic reactivity to food cues with both C-PFS (ρ = -0.32, p = 0.002) and FCQ-T (ρ = -0.34, p < 0.001). No other associations were statistically significant. These relationships remained significant in subsequent linear regression models controlling for child age and gender. The lack of concordance between measures assessing highly conceptually related constructs is of concern. Future studies should seek to elucidate a clear operationalization of FCR, examine the associations between FCR assessments in children and adolescents with a range of weight statuses, and evaluate how to best revise these measures to accurately reflect the latent construct being assessed.
Collapse
Affiliation(s)
- Michael A Manzano
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, United States; University of California San Diego, Department of Pediatrics, United States.
| | - David R Strong
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, United States
| | - Kyung E Rhee
- University of California San Diego, Department of Pediatrics, United States
| | - June Liang
- University of California San Diego, Department of Pediatrics, United States
| | - Kerri N Boutelle
- University of California San Diego, Department of Pediatrics, United States; University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, United States; University of California San Diego, Department of Psychiatry, United States
| |
Collapse
|
9
|
Neural correlates of ‘Liking’ and ‘Wanting’ in short-term eating behaviours and long-term energy balance. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
11
|
Duis J, Butler MG. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv Biol (Weinh) 2022; 6:e2101154. [PMID: 35680611 DOI: 10.1002/adbi.202101154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/13/2022] [Indexed: 01/28/2023]
Abstract
Growing evidence supports syndromic and nonsyndromic causes of obesity, including genome-wide association studies, candidate gene analysis, advanced genetic technology using next-generation sequencing (NGS), and identification of copy number variants. Identification of susceptibility genes impacts mechanistic understanding and informs precision medicine. The cause of obesity is heterogeneous with complex biological processes playing a role by controlling peptides involved in regulating appetite and food intake, cellular energy, and metabolism. Evidence for heritability shows genetic components contributing to 40%-70% of obesity. Monogenic causes and obesity-related syndromes are discussed and illustrated as well as biological pathways, gene interactions, and factors contributing to the obesity phenotype. Over 550 obesity-related single genes have been identified and summarized in tabular form with approximately 20% of these genes have been added to obesity gene panels for testing by commercially available laboratories. Early studies show that about 10% of patients with severe obesity using NGS testing have a pathogenic gene variant. Discussion to help characterize gene-gene interactions and disease mechanisms for early diagnosis, treatment, and risk factors contributing to disease is incorporated in this review.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics and Inherited Metabolic Disorders, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO, 80045, USA
| | - Merlin G Butler
- Division of Research and Genetics, Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 4015, Kansas City, KS, 66160, USA
| |
Collapse
|
12
|
Kullmann S, Veit R, Crabtree DR, Buosi W, Androutsos O, Johnstone AM, Manios Y, Preissl H, Smeets PAM. The effect of hunger state on hypothalamic functional connectivity in response to food cues. Hum Brain Mapp 2022; 44:418-428. [PMID: 36056618 PMCID: PMC9842901 DOI: 10.1002/hbm.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023] Open
Abstract
The neural underpinnings of the integration of internal and external cues that reflect nutritional status are poorly understood in humans. The hypothalamus is a key integrative area involved in short- and long-term energy intake regulation. Hence, we examined the effect of hunger state on the hypothalamus network using functional magnetic resonance imaging. In a multicenter study, participants performed a food cue viewing task either fasted or sated on two separate days. We evaluated hypothalamic functional connectivity (FC) using psychophysiological interactions during high versus low caloric food cue viewing in 107 adults (divided into four groups based on age and body mass index [BMI]; age range 24-76 years; BMI range 19.5-41.5 kg/m2 ). In the sated compared to the fasted condition, the hypothalamus showed significantly higher FC with the bilateral caudate, the left insula and parts of the left inferior frontal cortex. Interestingly, we observed a significant interaction between hunger state and BMI group in the dorsolateral prefrontal cortex (DLPFC). Participants with normal weight compared to overweight and obesity showed higher FC between the hypothalamus and DLPFC in the fasted condition. The current study showed that task-based FC of the hypothalamus can be modulated by internal (hunger state) and external cues (i.e., food cues with varying caloric content) with a general enhanced communication in the sated state and obesity-associated differences in hypothalamus to DLPFC communication. This could potentially promote overeating in persons with obesity.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany
| | - Daniel R. Crabtree
- The Rowett InstituteUniversity of AberdeenAberdeenScotland,Division of Biomedical Sciences, Centre for Health ScienceUniversity of the Highlands and IslandsInvernessUK
| | - William Buosi
- The Rowett InstituteUniversity of AberdeenAberdeenScotland
| | - Odysseas Androutsos
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and DieteticsUniversity of ThessalyVolosGreece
| | | | - Yannis Manios
- Department of Nutrition‐Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands,Image Sciences Institute, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
13
|
Exploring the Effects of Energy Constraints on Performance, Body Composition, Endocrinological/Hematological Biomarkers, and Immune System among Athletes: An Overview of the Fasting State. Nutrients 2022; 14:nu14153197. [PMID: 35956373 PMCID: PMC9370338 DOI: 10.3390/nu14153197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
The Ramadan fasting period (RFP) means abstaining from consuming food and/or beverages during certain hours of the day—from sunrise to sunset. Engaging in exercise and sports during the RFP leads to the lipolysis of adipose tissue and an increase in the breakdown of peripheral fat, leading to an increase in fat consumption. The effects of the RFP on functional, hematological, and metabolic parameters needs further study as existing studies have reported contradictory results. The differences in the results of various studies are due to the geographical characteristics of Muslim athletes, their specific diets, and their genetics, which explain these variations. In recent years, the attention of medical and sports researchers on the effects of the RFP and energy restrictions on bodily functions and athletic performance has increased significantly. Therefore, this brief article examines the effects of the RFP on the immune system, body composition, hematology, and the functionality of athletes during and after the RFP. We found that most sporting activities were performed during any time of the day without being affected by Ramadan fasting. Athletes were able to participate in their physical activities during fasting periods and saw few effects on their performance. Sleep and nutritional factors should be adjusted so that athletic performance is not impaired.
Collapse
|
14
|
Ester T, Kullmann S. Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Rev Endocr Metab Disord 2022; 23:753-772. [PMID: 34862944 PMCID: PMC9307556 DOI: 10.1007/s11154-021-09697-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The prefrontal cortex is appreciated as a key neurobiological player in human eating behavior. A special focus is herein dedicated to the dorsolateral prefrontal cortex (DLPFC), which is critically involved in executive function such as cognitive control over eating. Persons with obesity display hypoactivity in this brain area, which is linked to overconsumption and food craving. Contrary to that, higher activity in the DLPFC is associated with successful weight-loss and weight-maintenance. Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation tool used to enhance self-control and inhibitory control. The number of studies using tDCS to influence eating behavior rapidly increased in the last years. However, the effectiveness of tDCS is still unclear, as studies show mixed results and individual differences were shown to be an important factor in the effectiveness of non-invasive brain stimulation. Here, we describe the current state of research of human studies using tDCS to influence food intake, food craving, subjective feeling of hunger and body weight. Excitatory stimulation of the right DLPFC seems most promising to reduce food cravings to highly palatable food, while other studies provide evidence that stimulating the left DLPFC shows promising effects on weight loss and weight maintenance, especially in multisession approaches. Overall, the reported findings are heterogeneous pointing to large interindividual differences in tDCS responsiveness.
Collapse
Affiliation(s)
- Theresa Ester
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center of Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Ebehard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|