1
|
Mormino EC, Biber SA, Rahman-Filipiak A, Arfanakis K, Clark L, Dage JL, Detre JA, Dickerson BC, Donohue MC, Kecskemeti S, Hohman TJ, Jagust WJ, Keene DC, Kukull W, Levendovszky SR, Rosen H, Thompson PM, Villemagne VL, Wolk DA, Okonkwo OC, Rabinvovici GD, Rivera-Mindt M, Foroud T, Johnson SC. The Consortium for Clarity in ADRD Research Through Imaging (CLARiTI). Alzheimers Dement 2024. [PMID: 39588767 DOI: 10.1002/alz.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024]
Abstract
The presence of multiple pathologies is the largest predictor of dementia. A major gap in the field is the in vivo detection of mixed pathologies and their antecedents. The Alzheimer's Disease Research Centers (ADRCs) are uniquely positioned to address this gap. The ADRCs longitudinally follow ≈ 17,000 participants, ranging from cognitively unimpaired to dementia, arising from Alzheimer's disease (AD) and related dementias (ADRD; e.g., AD, Lewy body disorders, vascular). Motivated by the Alzheimer's Disease Neuroimaging Initiative's (ADNI) impact, the ADRC Consortium for Clarity in ADRD Research Through Imaging (CLARiTI) was formed. Leveraging existing ADRC infrastructure, CLARiTI will integrate standardized imaging and plasma collection to characterize mixed pathologies and use community-engaged research methods to ensure that ≥ 25% of the sample is from underrepresented populations (e.g., ethnoculturally minoritized, low education). The resulting ADRD profiles, within a more diverse sample, will provide key resources for ADRCs and an unprecedented, more generalizable publicly available imaging-plasma dataset. HIGHLIGHTS: In vivo detection of mixed pathologies is critical for Alzheimer's disease and related dementias research. The Alzheimer's Disease Research Centers (ADRCs) are uniquely positioned to address gaps related to mixed pathologies. The ADRC Consortium for Clarity in ADRD Research Through Imaging (CLARiTI) will enhance this national program by adding standardized imaging and plasma collection to existing ADRC infrastructure. This effort will provide key resources for ADRCs and an unprecedented publicly available imaging-plasma-neuropath dataset.
Collapse
Affiliation(s)
- Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Cogen Facility, Stanford, California, USA
| | - Sarah A Biber
- National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | | | | | - Lindsay Clark
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Health Sciences Learning Center, Madison, Wisconsin, USA
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C Donohue
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California, San Diego, California, USA
| | - Steven Kecskemeti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Health Sciences Learning Center, Madison, Wisconsin, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William J Jagust
- Department of Epidemiology, School of Public Health, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Dirk C Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Walter Kukull
- National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | | | - Howie Rosen
- Department of Neurology, University of California, San Francisco, California, USA
| | - Paul M Thompson
- Department of Ophthalmology, Psychiatry and the Behavioral Sciences, Radiology, Psychiatry, and Engineering, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ozioma C Okonkwo
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Health Sciences Learning Center, Madison, Wisconsin, USA
| | - Gil D Rabinvovici
- Department of Neurology, University of California, San Francisco, California, USA
| | - Monica Rivera-Mindt
- Department of Psychology, Fordham University, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Health Sciences Learning Center, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Gil N, Tabari A, Lo WC, Clifford B, Lang M, Awan K, Gaudet K, Splitthoff DN, Polak D, Cauley S, Huang SY. Quantitative evaluation of Scout Accelerated Motion Estimation and Reduction (SAMER) MPRAGE for morphometric analysis of brain tissue in patients undergoing evaluation for memory loss. Neuroimage 2024; 300:120865. [PMID: 39349147 PMCID: PMC11498920 DOI: 10.1016/j.neuroimage.2024.120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024] Open
Abstract
BACKGROUND Three-dimensional (3D) T1-weighted MRI sequences such as the magnetization prepared rapid gradient echo (MPRAGE) sequence are important for assessing regional cortical atrophy in the clinical evaluation of dementia but have long acquisition times and are prone to motion artifact. The recently developed Scout Accelerated Motion Estimation and Reduction (SAMER) retrospective motion correction method addresses motion artifact within clinically-acceptable computation times and has been validated through qualitative evaluation in inpatient and emergency settings. METHODS We evaluated the quantitative accuracy of morphometric analysis of SAMER motion-corrected compared to non-motion-corrected MPRAGE images by estimating cortical volume and thickness across neuroanatomical regions in two subject groups: (1) healthy volunteers and (2) patients undergoing evaluation for dementia. In part (1), we used a set of 108 MPRAGE reconstructed images derived from 12 healthy volunteers to systematically assess the effectiveness of SAMER in correcting varying degrees of motion corruption, ranging from mild to severe. In part (2), 29 patients who were scheduled for brain MRI with memory loss protocol and had motion corruption on their clinical MPRAGE scans were prospectively enrolled. RESULTS In part (1), SAMER resulted in effective correction of motion-induced cortical volume and thickness reductions. We observed systematic increases in the estimated cortical volume and thickness across all neuroanatomical regions and a relative reduction in percent error values compared to reference standard scans of up to 66 % for the cerebral white matter volume. In part (2), SAMER resulted in statistically significant volume increases across anatomical regions, with the most pronounced increases seen in the parietal and temporal lobes, and general reductions in percent error relative to reference standard clinical scans. CONCLUSION SAMER improves the accuracy of morphometry through systematic increases and recovery of the estimated cortical volume and cortical thickness following motion correction, which may affect the evaluation of regional cortical atrophy in patients undergoing evaluation for dementia.
Collapse
Affiliation(s)
- Nelson Gil
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Komal Awan
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Stephen Cauley
- Harvard Medical School, Boston, MA, USA; Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Jiang J, Zhuo Z, Wang A, Li W, Jiang S, Duan Y, Ren Q, Zhao M, Wang L, Yang S, Awan MUN, Liu Y, Xu J. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum. Alzheimers Res Ther 2024; 16:149. [PMID: 38961406 PMCID: PMC11221040 DOI: 10.1186/s13195-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aβ42, Aβ40, Aβ42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aβ42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aβ42 and Aβ40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aβ42 and Aβ40 levels with MMSE scores (19.08% and 36.57%), and Aβ42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aβ42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aβ42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
4
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kirk GR, Kecskemeti SR, Alexander AL, Li JJ, Travers BG. Microstructural neural correlates of maximal grip strength in autistic children: the role of the cortico-cerebellar network and attention-deficit/hyperactivity disorder features. Front Integr Neurosci 2024; 18:1359099. [PMID: 38808069 PMCID: PMC11130426 DOI: 10.3389/fnint.2024.1359099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Maximal grip strength, a measure of how much force a person's hand can generate when squeezing an object, may be an effective method for understanding potential neurobiological differences during motor tasks. Grip strength in autistic individuals may be of particular interest due to its unique developmental trajectory. While autism-specific differences in grip-brain relationships have been found in adult populations, it is possible that such differences in grip-brain relationships may be present at earlier ages when grip strength is behaviorally similar in autistic and non-autistic groups. Further, such neural differences may lead to the later emergence of diagnostic-group grip differences in adolescence. The present study sought to examine this possibility, while also examining if grip strength could elucidate the neuro-motor sources of phenotypic heterogeneity commonly observed within autism. Methods Using high resolution, multi-shell diffusion, and quantitative R1 relaxometry imaging, this study examined how variations in key sensorimotor-related white matter pathways of the proprioception input, lateral grasping, cortico-cerebellar, and corticospinal networks were associated with individual variations in grip strength in 68 autistic children and 70 non-autistic (neurotypical) children (6-11 years-old). Results In both groups, results indicated that stronger grip strength was associated with higher proprioceptive input, lateral grasping, and corticospinal (but not cortico-cerebellar modification) fractional anisotropy and R1, indirect measures concordant with stronger microstructural coherence and increased myelination. Diagnostic group differences in these grip-brain relationships were not observed, but the autistic group exhibited more variability particularly in the cortico-cerebellar modification indices. An examination into the variability within the autistic group revealed that attention-deficit/hyperactivity disorder (ADHD) features moderated the relationships between grip strength and both fractional anisotropy and R1 relaxometry in the premotor-primary motor tract of the lateral grasping network and the cortico-cerebellar network tracts. Specifically, in autistic children with elevated ADHD features (60% of the autistic group) stronger grip strength was related to higher fractional anisotropy and R1 of the cerebellar modification network (stronger microstructural coherence and more myelin), whereas the opposite relationship was observed in autistic children with reduced ADHD features. Discussion Together, this work suggests that while the foundational elements of grip strength are similar across school-aged autistic and non-autistic children, neural mechanisms of grip strength within autistic children may additionally depend on the presence of ADHD features. Specifically, stronger, more coherent connections of the cerebellar modification network, which is thought to play a role in refining and optimizing motor commands, may lead to stronger grip in children with more ADHD features, weaker grip in children with fewer ADHD features, and no difference in grip in non-autistic children. While future research is needed to understand if these findings extend to other motor tasks beyond grip strength, these results have implications for understanding the biological basis of neuromotor control in autistic children and emphasize the importance of assessing co-occurring conditions when evaluating brain-behavior relationships in autism.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - James J. Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Psychology Department, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Travers BG, Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kecskemeti SR, Kirk GR, Alexander AL, Zhu J, Skaletski EC, Naik S, Duran M. Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features. Autism Res 2024; 17:266-279. [PMID: 38278763 PMCID: PMC10922575 DOI: 10.1002/aur.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9 years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.
Collapse
Affiliation(s)
- Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily C. Skaletski
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonali Naik
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Duran
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Surgent O, Guerrero-Gonzalez J, Dean DC, Kirk GR, Adluru N, Kecskemeti SR, Alexander AL, Travers BG. How we get a grip: Microstructural neural correlates of manual grip strength in children. Neuroimage 2023; 273:120117. [PMID: 37062373 PMCID: PMC10161685 DOI: 10.1016/j.neuroimage.2023.120117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Maximal grip strength is associated with a variety of health-related outcome measures and thus may be reflective of the efficiency of foundational brain-body communication. Non-human primate models of grip strength strongly implicate the cortical lateral grasping network, but little is known about the translatability of these models to human children. Further, it is unclear how supplementary networks that provide proprioceptive information and cerebellar-based motor command modification are associated with maximal grip strength. Therefore, this study employed high resolution, multi-shell diffusion and quantitative T1 imaging to examine how variations in lateral grasping, proprioception input, and cortico-cerebellar modification network white matter microstructure are associated with variations in grip strength across 70 children. Results indicated that stronger grip strength was associated with higher lateral grasping and proprioception input network fractional anisotropy and R1, indirect measures consistent with stronger microstructural coherence and increased myelination. No relationships were found in the cerebellar modification network. These results provide a neurobiological mechanism of grip behavior in children which suggests that increased myelination of cortical sensory and motor pathways is associated with stronger grip. This neurobiological mechanism may be a signature of pediatric neuro-motor behavior more broadly as evidenced by the previously demonstrated relationships between grip strength and behavioral outcome measures across a variety of clinical and non-clinical populations.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
7
|
Surgent O, Riaz A, Ausderau KK, Adluru N, Kirk GR, Guerrero-Gonzalez J, Skaletski EC, Kecskemeti SR, Dean III DC, Weismer SE, Alexander AL, Travers BG. Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children. Mol Autism 2022; 13:48. [PMID: 36536467 PMCID: PMC9762648 DOI: 10.1186/s13229-022-00524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11 years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations.
Collapse
Affiliation(s)
- Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI USA
| | - Ali Riaz
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Karla K. Ausderau
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI USA
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Emily C. Skaletski
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| | - Steven R. Kecskemeti
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
| | - Douglas C Dean III
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI USA
| | - Susan Ellis Weismer
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI USA
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI USA
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705 USA
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
8
|
Richter S, Winzeck S, Correia MM, Kornaropoulos EN, Manktelow A, Outtrim J, Chatfield D, Posti JP, Tenovuo O, Williams GB, Menon DK, Newcombe VF. Validation of cross-sectional and longitudinal ComBat harmonization methods for magnetic resonance imaging data on a travelling subject cohort. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507071 PMCID: PMC9726680 DOI: 10.1016/j.ynirp.2022.100136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Background The growth in multi-center neuroimaging studies generated a need for methods that mitigate the differences in hardware and acquisition protocols across sites i.e., scanner effects. ComBat harmonization methods have shown promise but have not yet been tested on all the data types commonly studied with magnetic resonance imaging (MRI). This study aimed to validate neuroCombat, longCombat and gamCombat on both structural and diffusion metrics in both cross-sectional and longitudinal data. Methods We used a travelling subject design whereby 73 healthy volunteers contributed 161 scans across two sites and four machines using one T1 and five diffusion MRI protocols. Scanner was defined as a composite of site, machine and protocol. A common pipeline extracted two structural metrics (volumes and cortical thickness) and two diffusion tensor imaging metrics (mean diffusivity and fractional anisotropy) for seven regions of interest including gray and (except for cortical thickness) white matter regions. Results Structural data exhibited no significant scanner effect and therefore did not benefit from harmonization in our particular cohort. Indeed, attempting harmonization obscured the true biological effect for some regions of interest. Diffusion data contained marked scanner effects and was successfully harmonized by all methods, resulting in smaller scanner effects and better detection of true biological effects. LongCombat less effectively reduced the scanner effect for cross-sectional white matter data but had a slightly lower probability of incorrectly finding group differences in simulations, compared to neuroCombat and gamCombat. False positive rates for all methods and all metrics did not significantly exceed 5%. Conclusions Statistical harmonization of structural data is not always necessary and harmonization in the absence of a scanner effect may be harmful. Harmonization of diffusion MRI data is highly recommended with neuroCombat, longCombat and gamCombat performing well in cross-sectional and longitudinal settings.
Collapse
Affiliation(s)
- Sophie Richter
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Corresponding author.
| | - Stefan Winzeck
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- BioMedIA Group, Department of Computing, Imperial College London, London, UK
| | - Marta M. Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Anne Manktelow
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Outtrim
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Doris Chatfield
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jussi P. Posti
- Turku Brain Injury Center, Turku University Hospital & University of Turku, Turku, Finland
- Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital & University of Turku, Turku, Finland
| | - Guy B. Williams
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Rivera-Rivera LA, Kecskemeti S, Jen ML, Miller Z, Johnson SC, Eisenmenger L, Johnson KM. Motion-corrected 4D-Flow MRI for neurovascular applications. Neuroimage 2022; 264:119711. [PMID: 36307060 PMCID: PMC9801539 DOI: 10.1016/j.neuroimage.2022.119711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Neurovascular 4D-Flow MRI has emerged as a powerful tool for comprehensive cerebrovascular hemodynamic characterization. Clinical studies in at risk populations such as aging adults indicate hemodynamic markers can be confounded by motion-induced bias. This study develops and characterizes a high fidelity 3D self-navigation approach for retrospective rigid motion correction of neurovascular 4D-Flow data. A 3D radial trajectory with pseudorandom ordering was combined with a multi-resolution low rank regularization approach to enable high spatiotemporal resolution self-navigators from extremely undersampled data. Phantom and volunteer experiments were performed at 3.0T to evaluate the ability to correct for different amounts of induced motions. In addition, the approach was applied to clinical-research exams from ongoing aging studies to characterize performance in the clinical setting. Simulations, phantom and volunteer experiments with motion correction produced images with increased vessel conspicuity, reduced image blurring, and decreased variability in quantitative measures. Clinical exams revealed significant changes in hemodynamic parameters including blood flow rates, flow pulsatility index, and lumen areas after motion correction in probed cerebral arteries (Flow: P<0.001 Lt ICA, P=0.002 Rt ICA, P=0.004 Lt MCA, P=0.004 Rt MCA; Area: P<0.001 Lt ICA, P<0.001 Rt ICA, P=0.004 Lt MCA, P=0.004 Rt MCA; flow pulsatility index: P=0.042 Rt ICA, P=0.002 Lt MCA). Motion induced bias can lead to significant overestimation of hemodynamic markers in cerebral arteries. The proposed method reduces measurement bias from rigid motion in neurovascular 4D-Flow MRI in challenging populations such as aging adults.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Steve Kecskemeti
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Mu-Lan Jen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Zachary Miller
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States
| | - Sterling C Johnson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Rm 1005, Madison, WI, 53705-2275, United States; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States.
| |
Collapse
|
10
|
Guerrero-Gonzalez J, Surgent O, Adluru N, Kirk GR, Dean III DC, Kecskemeti SR, Alexander AL, Travers BG. Improving Imaging of the Brainstem and Cerebellum in Autistic Children: Transformation-Based High-Resolution Diffusion MRI (TiDi-Fused) in the Human Brainstem. Front Integr Neurosci 2022; 16:804743. [PMID: 35310466 PMCID: PMC8928227 DOI: 10.3389/fnint.2022.804743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) of the brainstem is technically challenging, especially in young autistic children as nearby tissue-air interfaces and motion (voluntary and physiological) can lead to artifacts. This limits the availability of high-resolution images, which are desirable for improving the ability to study brainstem structures. Furthermore, inherently low signal-to-noise ratios, geometric distortions, and sensitivity to motion not related to molecular diffusion have resulted in limited techniques for high-resolution data acquisition compared to other modalities such as T1-weighted imaging. Here, we implement a method for achieving increased apparent spatial resolution in pediatric dMRI that hinges on accurate geometric distortion correction and on high fidelity within subject image registration between dMRI and magnetization prepared rapid acquisition gradient echo (MPnRAGE) images. We call this post-processing pipeline T1 weighted-diffusion fused, or "TiDi-Fused". Data used in this work consists of dMRI data (2.4 mm resolution, corrected using FSL's Topup) and T1-weighted (T1w) MPnRAGE anatomical data (1 mm resolution) acquired from 128 autistic and non-autistic children (ages 6-10 years old). Accurate correction of geometric distortion permitted for a further increase in apparent resolution of the dMRI scan via boundary-based registration to the MPnRAGE T1w. Estimation of fiber orientation distributions and further analyses were carried out in the T1w space. Data processed with the TiDi-Fused method were qualitatively and quantitatively compared to data processed with conventional dMRI processing methods. Results show the advantages of the TiDi-Fused pipeline including sharper brainstem gray-white matter tissue contrast, improved inter-subject spatial alignment for group analyses of dMRI based measures, accurate spatial alignment with histology-based imaging of the brainstem, reduced variability in brainstem-cerebellar white matter tracts, and more robust biologically plausible relationships between age and brainstem-cerebellar white matter tracts. Overall, this work identifies a promising pipeline for achieving high-resolution imaging of brainstem structures in pediatric and clinical populations who may not be able to endure long scan times. This pipeline may serve as a gateway for feasibly elucidating brainstem contributions to autism and other conditions.
Collapse
Affiliation(s)
- Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean III
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Occupational Therapy Program in the Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|