1
|
Allen A, Zhang Z, Nobel A. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Netw Neurosci 2024; 8:1439-1466. [PMID: 39735498 PMCID: PMC11675023 DOI: 10.1162/netn_a_00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 12/31/2024] Open
Abstract
Despite the widespread exploration and availability of parcellations for the functional connectome, parcellations designed for the structural connectome are comparatively limited. Current research suggests that there may be no single "correct" parcellation and that the human brain is intrinsically a multiresolution entity. In this work, we propose the Continuous Structural Connectivitity-based, Nested (CoCoNest) family of parcellations-a fully data-driven, multiresolution family of parcellations derived from structural connectome data. The CoCoNest family is created using agglomerative (bottom-up) clustering and error-complexity pruning, which strikes a balance between the complexity of each parcellation and how well it preserves patterns in vertex-level, high-resolution connectivity data. We draw on a comprehensive battery of internal and external evaluation metrics to show that the CoCoNest family is competitive with or outperforms widely used parcellations in the literature. Additionally, we show how the CoCoNest family can serve as an exploratory tool for researchers to investigate the multiresolution organization of the structural connectome.
Collapse
Affiliation(s)
- Adrian Allen
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwu Zhang
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Nobel
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Jeganathan J, Koussis NC, Paton B, Sina Mansour L, Zalesky A, Breakspear M. Spurious correlations in surface-based functional brain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602799. [PMID: 39026811 PMCID: PMC11257594 DOI: 10.1101/2024.07.09.602799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The study of functional MRI data is increasingly performed after mapping from volumetric voxels to surface vertices. Processing pipelines commonly used to achieve this mapping produce meshes with uneven vertex spacing, with closer neighbours in sulci compared to gyri. Consequently, correlations between the fMRI time series of neighbouring sulcal vertices are stronger than expected. However, the causes, extent, and impacts of this bias are not well understood or widely appreciated. We explain the origins of these biases, and using in-silico models of fMRI data, illustrate how they lead to spurious results. The bias leads to leakage of anatomical cortical folding information into fMRI time series. We show that many common analyses can be affected by this "gyral bias", including test-retest reliability, fingerprinting, functional parcellations, regional homogeneity, and brain-behaviour associations. Finally, we provide recommendations to avoid or remedy this spatial bias.
Collapse
Affiliation(s)
- Jayson Jeganathan
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nikitas C Koussis
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Bryan Paton
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - L Sina Mansour
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Systems Lab, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Andrew Zalesky
- Systems Lab, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
3
|
Xue T, Zhang F, Zekelman LR, Zhang C, Chen Y, Cetin-Karayumak S, Pieper S, Wells WM, Rathi Y, Makris N, Cai W, O'Donnell LJ. TractoSCR: a novel supervised contrastive regression framework for prediction of neurocognitive measures using multi-site harmonized diffusion MRI tractography. Front Neurosci 2024; 18:1411797. [PMID: 38988766 PMCID: PMC11233814 DOI: 10.3389/fnins.2024.1411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e., neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8,735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR obtains significantly higher accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities. Our code will be available at: https://github.com/SlicerDMRI/TractoSCR.
Collapse
Affiliation(s)
- Tengfei Xue
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo R. Zekelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chaoyi Zhang
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Yuqian Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Steve Pieper
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William M. Wells
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Lauren J. O'Donnell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Gabusi I, Battocchio M, Bosticardo S, Schiavi S, Daducci A. Blurred streamlines: A novel representation to reduce redundancy in tractography. Med Image Anal 2024; 93:103101. [PMID: 38325156 DOI: 10.1016/j.media.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Tractography is a powerful tool to study brain connectivity in vivo, but it is well known to suffer from an intrinsic trade-off between sensitivity and specificity. A critical - but usually underrated - parameter to choose that can heavily impact the quality of the estimates is the number of streamlines to be reconstructed for a given data set. In fact, sensitivity can be improved by generating more and more streamlines, as all real anatomical connections are likely reconstructed, but lots of false positives are inevitably introduced, too. Consequently, so-called tractography filtering techniques have become increasingly popular to get rid of these false positives and improve specificity. However, increasing number of streamlines introduces redundancy in tractography reconstructions, which may negatively impact the performance of filtering algorithms, especially those based on linear formulations. To address this problem, we introduce a novel streamlines representation, called "blurred streamlines", which drastically reduces the redundancy among streamlines by (i) clustering similar trajectories and (ii) spatially blurring the corresponding signal contributions. We tested the effectiveness of the blurred streamlines both on synthetic and in vivo data. Our results clearly show that this new representation is as accurate as state-of-the-art methods despite using only 5% of the input streamlines, thus significantly decreasing the computational complexity of filtering algorithms as well as storage requirements of the resulting reconstructions.
Collapse
Affiliation(s)
- Ilaria Gabusi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy.
| | - Matteo Battocchio
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Sara Bosticardo
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Simona Schiavi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; ASG Superconductors S.p.A., Genova, Italy
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Helwegen K, Libedinsky I, van den Heuvel MP. Statistical power in network neuroscience. Trends Cogn Sci 2023; 27:282-301. [PMID: 36725422 DOI: 10.1016/j.tics.2022.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Network neuroscience has emerged as a leading method to study brain connectivity. The success of these investigations is dependent not only on approaches to accurately map connectivity but also on the ability to detect real effects in the data - that is, statistical power. We review the state of statistical power in the field and discuss sample size, effect size, measurement error, and network topology as key factors that influence the power of brain connectivity investigations. We use the term 'differential power' to describe how power can vary between nodes, edges, and graph metrics, leaving traces in both positive and negative connectome findings. We conclude with strategies for working with, rather than around, power in connectivity studies.
Collapse
Affiliation(s)
- Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|