1
|
Olivares EI, Bosch-Bayard JF, Urraca AS, Jiménez-Bascuñán A, Biscay RJ, Iglesias J. Brain connectivity for constructing new face representations in typical adults versus a prosopagnosic patient. Neuroimage 2025; 307:121039. [PMID: 39842702 DOI: 10.1016/j.neuroimage.2025.121039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
Will our brains get to know a new face better if we look at its external features first? Here we offer neurophysiological evidence of the relevance of external versus internal facial features for constructing new face representations, by contrasting successful face processing with a prototypical case of face agnosia. A woman with acquired prosopagnosia (E.C.) and 14 age-matched typical participants (7 women) were exposed to a face-feature matching task. External (E), internal (I) features, and whole target faces of unknown individuals (from an IdentiKit gallery) were displayed according to two different sequences: E →I→whole faces, or I→E→whole faces. Then, we studied the induced EEG activity using 'isolated effective coherence' to analyse the intracortical causal information flow among face-sensitive nodes. Initial presentation of external features (E before I), when compared to internal ones, triggered connections encompassing extensively the right-hemisphere face processing pathway [from posterior visual cortices for initial structural analysis, towards both intermediate (occipitotemporal) and high-level (prefrontal) relay stations], in which face-identity is thought to emerge progressively. Also, whereas exposure to internal features as second stimulus seemed to demand some sort of basic visual processing, external features triggered again more widespread and integrative connections. Connections for whole faces closing the E-I sequence resembled those for external features initiating the same sequence. Meanwhile, the predominant connections for whole faces completing the I-E sequence were more restricted to specific brain areas, with relevant prefrontal activity and a few connected nodes in right posterior regions, suggesting high attentional load plus initial and intermediate processing of face identity. Interestingly, the pattern of connections that distinguished typical participants from E.C. in the I-E sequence was the recruitment of left posterior visual regions, presumably underlying analytical subroutines for structural encoding of facial stimuli. These findings support that initial exposure to external features, followed by internal ones, provides the best visual cue to acquire new face configurations. Nevertheless, in case of face agnosia after right posterior damage, relying preferentially on internal features and left hemisphere specialized subroutines might be an alternative for cognitive training.
Collapse
Affiliation(s)
- Ela I Olivares
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain.
| | - Jorge F Bosch-Bayard
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| | - Ana S Urraca
- Centro Universitario Cardenal Cisneros, Alcalá de Henares, Madrid 28006, Spain
| | - Alba Jiménez-Bascuñán
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| | - Rolando J Biscay
- Centro de Investigación en Matemáticas, Guanajuato 36023, Mexico
| | - Jaime Iglesias
- Department of Biological and Health Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, Campus de Cantoblanco, Calle Iván Pávlov 6, Madrid 28049, Spain
| |
Collapse
|
2
|
Päeske L, Hinrikus H, Lass J, Põld T, Bachmann M. The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. SENSORS (BASEL, SWITZERLAND) 2024; 24:7438. [PMID: 39685972 DOI: 10.3390/s24237438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
This study aims to investigate the association between the natural level of blood biomarkers and electroencephalographic (EEG) markers. Resting EEG theta, alpha (ABP), beta, and gamma frequency band powers were selected as linear EEG markers indicating the level of EEG power, and Higuchi's fractal dimension (HFD) as a nonlinear EEG complexity marker reflecting brain temporal dynamics. The impact of seven different blood biomarkers, i.e., glucose, protein, lipoprotein, HDL, LDL, C-reactive protein, and cystatin C, was investigated. The study was performed on a group of 52 healthy participants. The results of the current study show that one linear EEG marker, ABP, is correlated with protein. The nonlinear EEG marker (HFD) is correlated with protein, lipoprotein, C-reactive protein, and cystatin C. A positive correlation with linear EEG power markers and a negative correlation with the nonlinear complexity marker dominate in all brain areas. The results demonstrate that EEG complexity is more sensitive to the natural level of blood biomarkers than the level of EEG power. The reported novel findings demonstrate that the EEG markers of healthy people are influenced by the natural levels of their blood biomarkers related to their everyday dietary habits. This knowledge is useful in the interpretation of EEG signals and contributes to obtaining information about people quality of life and well-being.
Collapse
Affiliation(s)
- Laura Päeske
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Hiie Hinrikus
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Toomas Põld
- Meliva Medical Center, 10143 Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| |
Collapse
|
3
|
Ronoh AK, Serrem CA, Tumwebaze SB, Were GM. Effect of fortifying sorghum and wheat with Longhorn grasshopper ( Ruspolia differens) powder on nutritional composition and consumer acceptability of biscuits. Food Sci Nutr 2024; 12:3492-3507. [PMID: 38726424 PMCID: PMC11077179 DOI: 10.1002/fsn3.4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 05/12/2024] Open
Abstract
This study aimed at improving the nutrient composition and protein quality of biscuits made from sorghum and wheat through fortification with Longhorn Ruspolia differens powder (RDP) for use as a supplementary food targeting children vulnerable to protein-energy malnutrition (PEM). Ten biscuit formulations were prepared by replacing a part of wheat and sorghum-wheat flours with 5, 15, 20, and 40% RDP. To establish the nutrient content of biscuits, proximate and mineral compositions were determined. The amino acid composition, reactive lysine and in vitro protein digestibility were determined for protein quality. Compositing wheat or wheat-sorghum biscuits with RDP increased the protein, fat, ash, and crude fiber by percentages as high as 118, 37, 133, and 573%, respectively. Mineral content increased with, iron, zinc, and potassium as high as 161, 219, and 169%, respectively. The lysine, reactive lysine and in vitro protein digestibility of the fortified biscuits increased significantly, relative to the 100% cereal biscuits. Fortification with RDP significantly improved the amino acid content of the biscuits but had a marginal effect on improvement of the lysine score and did not meet the reference pattern for children aged 3-10 years. The Protein Digestibility Corrected Amino Acid Score (PDCAAS) of wheat-sorghum and wheat biscuits improved by 6% to 47% and 2% to 33%, respectively, compared to the control biscuits. The fortified biscuits were liked by the consumers. The RDP-fortified biscuits have the potential to alleviate PME in developing countries.
Collapse
Affiliation(s)
- Amos Kipkemoi Ronoh
- Faculty of AgricultureUganda Martyrs UniversityNkoziUganda
- Institute of Food Bioresources TechnologyDedan Kimathi University of TechnologyNyeriKenya
| | - Charlotte Atsango Serrem
- Department of Consumer Sciences, School of Agriculture and BiotechnologyUniversity of EldoretEldoretKenya
| | - Susan Balaba Tumwebaze
- Department of Forestry, Biodiversity & Tourism, School of Forestry, Environmental and Geographical SciencesMakerere UniversityKampalaUganda
| | - Gertrude Mercy Were
- Department of Consumer Sciences, School of Agriculture and BiotechnologyUniversity of EldoretEldoretKenya
| |
Collapse
|
4
|
Lopez Naranjo C, Razzaq FA, Li M, Wang Y, Bosch‐Bayard JF, Lindquist MA, Gonzalez Mitjans A, Garcia R, Rabinowitz AG, Anderson SG, Chiarenza GA, Calzada‐Reyes A, Virues‐Alba T, Galler JR, Minati L, Bringas Vega ML, Valdes‐Sosa PA. EEG functional connectivity as a Riemannian mediator: An application to malnutrition and cognition. Hum Brain Mapp 2024; 45:e26698. [PMID: 38726908 PMCID: PMC11082925 DOI: 10.1002/hbm.26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate "mediators". Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a "compressed CST." The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5-11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.
Collapse
Affiliation(s)
- Carlos Lopez Naranjo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Fuleah Abdul Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Hangzhou Dianzi UniversityZhejiangHangzhouChina
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | | | - Anisleidy Gonzalez Mitjans
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Montreal Neurological Institute‐HospitalMcGill UniversityMontrealQuebecCanada
| | - Ronaldo Garcia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | - Simon G. Anderson
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health ResearchUniversity of the West IndiesCave HillBarbados
| | - Giuseppe A. Chiarenza
- Centro Internazionale Disturbi di Apprendimento, Attenzione, Iperattività (CIDAAI)MilanItaly
| | | | | | - Janina R. Galler
- Division of Pediatric Gastroenterology and NutritionMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Ludovico Minati
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Center for Mind/Brain Science (CIMeC)University of TrentoTrentoItaly
| | - Maria L. Bringas Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Cuban Center for NeuroscienceLa HabanaCuba
| | - Pedro A. Valdes‐Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Cuban Center for NeuroscienceLa HabanaCuba
| |
Collapse
|
5
|
Berchio C, Kumar SS, Micali N. EEG Spatial-temporal Dynamics of Resting-state Activity in Young Women with Anorexia Nervosa: Preliminary Evidence. Brain Topogr 2024; 37:447-460. [PMID: 37615798 DOI: 10.1007/s10548-023-01001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
The aim of this study was to provide preliminary evidence on temporal dynamics of resting-state brain networks in youth with anorexia nervosa (AN) using electroencephalography (EEG). Resting-state EEG data were collected in 18 young women with AN and 18 healthy controls (HC). Between-group differences in brain networks were assessed using microstates analyses. Five microstates were identified across all subjects (A, B, C, D, E). Using a single set of maps representative of the whole dataset, group differences were identified for microstates A, C, and E. A common-for-all template revealed a relatively high degree of consistency in results for reduced time coverage of microstate C, but also an increased presence of microstate class E. AN and HC had different microstate transition probabilities, largely involving microstate A. Using LORETA, for microstate D, we found that those with AN had augmented activations in the left frontal inferior operculum, left insula, and bilateral paracentral lobule, compared with HC. For microstate E, AN had augmented activations in the para-hippocampal gyrus, caudate, pallidum, cerebellum, and cerebellar vermis. Our findings suggest altered microstates in young women with AN associated with integration of sensory and bodily signals, monitoring of internal/external mental states, and self-referential processes. Future research should examine how EEG-derived microstates could be applied to develop diagnostic and prognostic models of AN.
Collapse
Affiliation(s)
- Cristina Berchio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70121, Bari, Italy.
| | - Samika S Kumar
- Department of Psychology, University of Cambridge, Cambridge, UK
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Nadia Micali
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Mental Health Services in the Capital Region of Denmark, Eating Disorders Research Unit, Psychiatric Centre Ballerup, Ballerup, Denmark
- Institute of biological Psychiatry, Psykiatrisk Center Sct. Hans, Region Hovedstaden, Denmark
| |
Collapse
|
6
|
Roger K, Vannasing P, Tremblay J, Bringas Vega ML, Bryce CP, Rabinowitz A, Valdes-Sosa PA, Galler JR, Gallagher A. Early childhood malnutrition impairs adult resting brain function using near-infrared spectroscopy. Front Hum Neurosci 2024; 17:1287488. [PMID: 38298205 PMCID: PMC10827877 DOI: 10.3389/fnhum.2023.1287488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Early childhood malnutrition affects 200+ million children under 5 years of age worldwide and is associated with persistent cognitive, behavioral and psychiatric impairments in adulthood. However, very few studies have investigated the long-term effects of childhood protein-energy malnutrition (PEM) on brain function using a functional hemodynamic brain imaging technique. Objective and methods This study aims to investigate functional brain network alterations using near infrared spectroscopy (NIRS) in adults, aged 45-51 years, from the Barbados Nutrition Study (BNS) who suffered from a single episode of malnutrition restricted to their first year of life (n = 26) and controls (n = 29). A total of 55 individuals from the BNS cohort underwent NIRS recording at rest. Results and discussion Using functional connectivity and permutation analysis, we found patterns of increased Pearson's correlation with a specific vulnerability of the frontal cortex in the PEM group (ps < 0.05). Using a graph theoretical approach, mixed ANCOVAs showed increased segregation (ps = 0.0303 and 0.0441) and decreased integration (p = 0.0498) in previously malnourished participants compared to healthy controls. These results can be interpreted as a compensatory mechanism to preserve cognitive functions, that could also be related to premature or pathological brain aging. To our knowledge, this study is the first NIRS neuroimaging study revealing brain function alterations in middle adulthood following early childhood malnutrition limited to the first year of life.
Collapse
Affiliation(s)
- Kassandra Roger
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Phetsamone Vannasing
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Julie Tremblay
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maria L. Bringas Vega
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Arielle Rabinowitz
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro Antonio Valdes-Sosa
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, United States
| | - Anne Gallagher
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
7
|
Razzaq FA, Calzada-Reyes A, Tang Q, Guo Y, Rabinowitz AG, Bosch-Bayard J, Galan-Garcia L, Virues-Alba T, Suarez-Murias C, Miranda I, Riaz U, Bernardo Lagomasino V, Bryce C, Anderson SG, Galler JR, Bringas-Vega ML, Valdes-Sosa PA. Spectral quantitative and semi-quantitative EEG provide complementary information on the life-long effects of early childhood malnutrition on cognitive decline. Front Neurosci 2023; 17:1149102. [PMID: 37781256 PMCID: PMC10540225 DOI: 10.3389/fnins.2023.1149102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023] Open
Abstract
Objective This study compares the complementary information from semi-quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect the life-long effects of early childhood malnutrition on the brain. Methods Resting-state EEGs (N = 202) from the Barbados Nutrition Study (BNS) were used to examine the effects of protein-energy malnutrition (PEM) on childhood and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG (GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested the dependence of sqNPS and nutritional group. sqEEG was compared with scores on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. Multivariate LME was applied to assess each EEG modality separately and combined under longitudinal settings. Results The univariate LME showed highly significant differences between previously malnourished and control groups (p < 0.001); age (p = 0.01) was also significant, with no interaction between group and age detected. Childhood sqNPS (p = 0.02) and adulthood sqNPS (p = 0.003) predicted MoCA scores in adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had the highest predictive power (mean AUC 0.92 ± 0.005). Finally, multivariate LME showed that the combined spectral-qEEG+sqEEG models had the highest log-likelihood (-479.7). Conclusion This research has extended our prior work with spectral-qEEG and the long-term impact of early childhood malnutrition on the brain. Our findings showed that sqNPS was significantly linked to accelerated cognitive aging at 45-51 years of age. While sqNPS and spectral-qEEG produced comparable results, our study indicated that combining sqNPS and spectral-qEEG yielded better performance than either method alone, suggesting that a multimodal approach could be advantageous for future investigations. Significance Based on our findings, a semi-quantitative approach utilizing GTE could be a valuable diagnostic tool for detecting the lasting impacts of childhood malnutrition. Notably, sqEEG has not been previously explored or reported as a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, our observations suggest that sqEEG offers unique features and information not captured by spectral quantitative EEG analysis and could lead to its improvement.
Collapse
Affiliation(s)
- Fuleah A. Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanbo Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | | | | | | | - Ileana Miranda
- National Center for Animal and Plant Health, CENSA, San José de las Lajas, Mayabeque, Cuba
| | - Usama Riaz
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Cyralene Bryce
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
| | - Simon G. Anderson
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
| | - Janina R. Galler
- The George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Cave Hill, Barbados
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, United States
| | - Maria L. Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
| | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, La Habana, Cuba
| |
Collapse
|
8
|
Roger K, Vannasing P, Tremblay J, Bringas Vega ML, Bryce CP, Rabinowitz AG, Valdés-Sosa PA, Galler JR, Gallagher A. Impact of Early Childhood Malnutrition on Adult Brain Function: An Evoked-Related Potentials Study. Front Hum Neurosci 2022; 16:884251. [PMID: 35845242 PMCID: PMC9283562 DOI: 10.3389/fnhum.2022.884251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
More than 200 million children under the age of 5 years are affected by malnutrition worldwide according to the World Health Organization. The Barbados Nutrition Study (BNS) is a 55-year longitudinal study on a Barbadian cohort with histories of moderate to severe protein-energy malnutrition (PEM) limited to the first year of life and a healthy comparison group. Using quantitative electroencephalography (EEG), differences in brain function during childhood (lower alpha1 activity and higher theta, alpha2 and beta activity) have previously been highlighted between participants who suffered from early PEM and controls. In order to determine whether similar differences persisted into adulthood, our current study used recordings obtained during a Go-No-Go task in a subsample of the original BNS cohort [population size (N) = 53] at ages 45-51 years. We found that previously malnourished adults [sample size (n) = 24] had a higher rate of omission errors on the task relative to controls (n = 29). Evoked-Related Potentials (ERP) were significantly different in participants with histories of early PEM, who presented with lower N2 amplitudes. These findings are typically associated with impaired conflict monitoring and/or attention deficits and may therefore be linked to the attentional and executive function deficits that have been previously reported in this cohort in childhood and again in middle adulthood.
Collapse
Affiliation(s)
- Kassandra Roger
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Phetsamone Vannasing
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Julie Tremblay
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maria L. Bringas Vega
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | | | | | - Pedro A. Valdés-Sosa
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Janina R. Galler
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, United States
| | - Anne Gallagher
- LION Lab, Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Li M, Wang Y, Lopez-Naranjo C, Hu S, Reyes RCG, Paz-Linares D, Areces-Gonzalez A, Hamid AIA, Evans AC, Savostyanov AN, Calzada-Reyes A, Villringer A, Tobon-Quintero CA, Garcia-Agustin D, Yao D, Dong L, Aubert-Vazquez E, Reza F, Razzaq FA, Omar H, Abdullah JM, Galler JR, Ochoa-Gomez JF, Prichep LS, Galan-Garcia L, Morales-Chacon L, Valdes-Sosa MJ, Tröndle M, Zulkifly MFM, Abdul Rahman MRB, Milakhina NS, Langer N, Rudych P, Koenig T, Virues-Alba TA, Lei X, Bringas-Vega ML, Bosch-Bayard JF, Valdes-Sosa PA. Harmonized-Multinational qEEG norms (HarMNqEEG). Neuroimage 2022; 256:119190. [PMID: 35398285 DOI: 10.1016/j.neuroimage.2022.119190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022] Open
Abstract
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.
Collapse
Affiliation(s)
- Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Carlos Lopez-Naranjo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiang Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China
| | | | - Deirel Paz-Linares
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba
| | - Ariosky Areces-Gonzalez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Río, Cuba
| | - Aini Ismafairus Abd Hamid
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Alexander N Savostyanov
- Humanitarian Institute, Novosibirsk State University, Novosibirsk 630090, Russia; Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carlos A Tobon-Quintero
- Grupo Neuropsicología y Conducta - GRUNECO, Faculty of Medicine, Universidad de Antioquia, Colombia; Research Department, Institución Prestadora de Servicios de Salud IPS Universitaria, Colombia
| | - Daysi Garcia-Agustin
- Cuban Center for Neurocience, La Habana, Cuba; The Cuban center aging longevity and health, Havana Cuba
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu 611731, China
| | | | - Faruque Reza
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Fuleah Abdul Razzaq
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hazim Omar
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Universiti Sains Malaysia Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Janina R Galler
- Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, United States Massachusetts General Hospital for Children, Boston, MA, United States
| | - John F Ochoa-Gomez
- Grupo Neuropsicología y Conducta - GRUNECO, Faculty of Medicine, Universidad de Antioquia, Colombia; Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of Medicine. Medellín, Colombia
| | - Leslie S Prichep
- Research & Development, BrainScope Company, Inc. Bethesda, MD, United States; Department of Psychiatry (Ret.), Brain Research Laboratories, NYU School of Medicine, New York, NY, United States
| | | | - Lilia Morales-Chacon
- Department of Clinical Neurophysiology, International Center for Neurological Restoration, Playa, Havana 11300, Cuba
| | | | - Marius Tröndle
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Mohd Faizal Mohd Zulkifly
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada
| | - Muhammad Riddha Bin Abdul Rahman
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kota Bharu, Kelantan 16150, Malaysia; School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Natalya S Milakhina
- Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nicolas Langer
- Department of Methods of Plasticity Research, Institute of Psychology, University of Zurich, Zurich, Switzerland; University Research Priority Program "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Pavel Rudych
- Laboratory of Psychophysiology of Individual Differences, Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine, Novosibirsk 630117, Russia; Department of Information Technologies Novosibirsk State University, Novosibirsk 630090, Russia; Federal Research Center for Information and Computational Technologies, Biomedical Data Processing Lab, Novosibirsk 630090, Russia
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | | | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Maria L Bringas-Vega
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba.
| | - Jorge F Bosch-Bayard
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba; McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Canada.
| | - Pedro Antonio Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Cuban Center for Neurocience, La Habana, Cuba.
| |
Collapse
|