1
|
Usmani SS, Jung HG, Zhang Q, Kim MW, Choi Y, Caglayan AB, Cai D. Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer's disease-like pathologies in male mouse model. Nat Commun 2024; 15:9419. [PMID: 39482312 PMCID: PMC11528003 DOI: 10.1038/s41467-024-53507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer's disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.
Collapse
Affiliation(s)
- Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hyun-Gug Jung
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qichao Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Woo Kim
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuna Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ahmet Burak Caglayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
3
|
Yin H, Jiang M, Han T, Xu X. Intranasal oxytocin as a treatment for anxiety and autism: From subclinical to clinical applications. Peptides 2024; 176:171211. [PMID: 38579916 DOI: 10.1016/j.peptides.2024.171211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Animal and human studies have demonstrated that intranasal oxytocin (OT) can penetrate the brain and induce cognitive, emotional, and behavioral changes, particularly in social functioning. Consequently, numerous investigations have explored the potential of OT as a treatment for anxiety and autism, conditions characterized by social deficits. Although both subclinical and clinical studies provide converging evidence of the therapeutic effects of OT in reducing anxiety levels and improving social symptoms in autism, results are not always consistent. Additionally, the pharmacological mechanism of OT requires further elucidation for its effective clinical application. Therefore, this review aims to examine the contentious findings concerning the effects of OT on anxiety and autism, offer interpretations of the inconsistent results from the perspectives of individual differences and varying approaches to OT administration, and shed light on the underlying mechanisms of OT. Ultimately, standardization of dosage, frequency of administration, formulation characteristics, and nasal spray devices is proposed as essential for future human studies and clinical applications of OT treatment.
Collapse
Affiliation(s)
- Hailian Yin
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Meiyun Jiang
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Tao Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Xiaolei Xu
- School of psychology, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Szabó J, Mlynár M, Feješ A, Renczés E, Borbélyová V, Ostatníková D, Celec P. Intranasal oxytocin in a genetic animal model of autism. Mol Psychiatry 2024; 29:342-347. [PMID: 38102481 PMCID: PMC11116098 DOI: 10.1038/s41380-023-02330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders mainly characterized by deficient sociability and repetitive behaviors. Effective treatment for the core symptoms of ASD is still lacking. Behavioral interventions show limited effectiveness, while pharmacotherapy focuses on the amelioration of secondary symptomatology. Oxytocin (OXT) is a neuropeptide known for its prosocial impact, making it a candidate drug for ASD treatment. Its alleviating effect has been and still is widely researched, but outcomes reported by clinical studies are ambiguous. We examined the effect of daily intranasal OXT (0.8 IU/kg) administration for 4 weeks on the ASD-like phenotype in Shank3-/- adult mice. Animals treated with OXT spent twice as much time interacting with the social partner as early as after 2 weeks of treatment. Furthermore, OXT-treated mice exhibited reduced explorative behavior by 50%, after 4 weeks of treatment, and a 30% reduction in repetitive behavior, 4 weeks after treatment termination. One-fold higher sociability and 30% reduced exploration due to OXT lasted up to 4 weeks following the treatment termination. However, social disinterest was elevated by roughly 10% as well, indicating a form of social ambivalence. Obtained results support the therapeutic potential of intranasally administered OXT in alleviating social shortfalls in a genetic model of ASD. Subsequent research is necessary to elucidate the benefits and risks of the long-term OXT administration, as well as its applicability in other ASD models and the potential treatment effect on social communication, which was not measured in the present study.
Collapse
Affiliation(s)
- Jakub Szabó
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Matúš Mlynár
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
5
|
Pavăl D. The dopamine hypothesis of autism spectrum disorder: A comprehensive analysis of the evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:1-42. [PMID: 37993174 DOI: 10.1016/bs.irn.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite intensive research into the etiopathogenesis of autism spectrum disorder (ASD), limited progress has been achieved so far. Among the plethora of models seeking to clarify how ASD arises, a coherent dopaminergic model was lacking until recently. In 2017, we provided a theoretical framework that we designated "the dopamine hypothesis of ASD". In the meantime, numerous studies yielded empirical evidence for this model. 4 years later, we provided a second version encompassing a refined and reconceptualized framework that accounted for these novel findings. In this chapter, we will review the evidence backing the previous versions of our model and add the most recent developments to the picture. Along these lines, we intend to lay out a comprehensive analysis of the supporting evidence for the dopamine hypothesis of ASD.
Collapse
Affiliation(s)
- Denis Pavăl
- The Romanian Association for Autoimmune Encephalitis, Cluj-Napoca, Romania; Department of Psychiatry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|