1
|
Dickey CW, Verzhbinsky IA, Kajfez S, Rosen BQ, Gonzalez CE, Chauvel PY, Cash SS, Pati S, Halgren E. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. PLoS Biol 2024; 22:e3002855. [PMID: 39561183 PMCID: PMC11575773 DOI: 10.1371/journal.pbio.3002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
In the neocortex, ~90 Hz ripples couple to ~12 Hz sleep spindles on the ~1 Hz Down-to-Up state transition during non-rapid eye movement sleep. This conjunction of sleep waves is critical for the consolidation of memories into long-term storage. The widespread co-occurrences of ripples ("co-ripples") may integrate information across the neocortex and hippocampus to facilitate consolidation. While the thalamus synchronizes spindles and Up states in the cortex for memory, it is not known whether it may also organize co-ripples. Using human intracranial recordings during NREM sleep, we investigated whether cortico-cortical co-ripples and hippocampo-cortical co-ripples are either: (1) driven by directly projected thalamic ripples; or (2) coordinated by propagating thalamic spindles or Up states. We found ripples in the anterior and posterior thalamus, with similar characteristics as hippocampal and cortical ripples, including having a center frequency of ~90 Hz and coupling to local spindles on the Down-to-Up state transition. However, thalamic ripples rarely co-occur or phase-lock with cortical or hippocampal ripples. By contrast, spindles and Up states that propagate from the thalamus strongly coordinate co-ripples in the cortex and hippocampus. Thus, thalamo-cortical spindles and Up states, rather than thalamic ripples, may provide input facilitating spatially distributed co-rippling that integrates information for memory consolidation during sleep in humans.
Collapse
Affiliation(s)
- Charles W. Dickey
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
| | - Ilya A. Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Medical Scientist Training Program, University of California San Diego, La Jolla, California, United States of America
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Burke Q. Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Christopher E. Gonzalez
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Patrick Y. Chauvel
- Aix-Marseille Université, Marseille, France
- INSERM, Institut de Neurosciences des Systèmes UMR 1106, Marseille, France
- APHM (Assistance Publique–Hôpitaux de Marseille), Timone Hospital, Marseille, France
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sandipan Pati
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eric Halgren
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Zheng Q, Huang Y, Mu C, Hu X, Lai CSW. Selective Modulation of Fear Memory in Non-Rapid Eye Movement Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400662. [PMID: 39382074 PMCID: PMC11600212 DOI: 10.1002/advs.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 10/10/2024]
Abstract
Sleep stabilizes memories for their consolidation, but how to modify specific fear memory during sleep remains unclear. Here, it is reported that using targeted memory reactivation (TMR) to reactivate prior fear learning experience in non-slow wave sleep (NS) inhibits fear memory consolidation, while TMR during slow wave sleep (SWS) enhances fear memory in mice. Replaying conditioned stimulus (CS) during sleep affects sleep spindle occurrence, leading to the reduction or enhancement of slow oscillation-spindle (SO-spindle) coupling in NS and SWS, respectively. Optogenetic inhibition of pyramidal neurons in the frontal association cortex (FrA) during TMR abolishes the behavioral effects of NS-TMR and SWS-TMR by modulating SO-spindle coupling. Notably, calcium imaging of the L2/3 pyramidal neurons in the FrA shows that CS during SWS selectively enhances the activity of neurons previously activated during fear conditioning (FC+ neurons), which significantly correlates with CS-elicited spindle power spectrum density. Intriguingly, these TMR-induced calcium activity changes of FC+ neurons further correlate with mice freezing behavior, suggesting their contributions to the consolidation of fear memories. The findings indicate that TMR can selectively weaken or strengthen fear memory, in correlation with modulating SO-spindle coupling and the reactivation of FC+ neurons during substages of non-rapid eye movement (NREM) sleep.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
| | - Yuhua Huang
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Changrui Mu
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Xiaoqing Hu
- Department of PsychologyFaculty of Social SciencesThe University of Hong KongHong KongSARChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| | - Cora Sau Wan Lai
- School of Biomedical SciencesLKS Faculty of MedicineThe University of Hong KongHong KongSARChina
- Advanced Biomedical Instrumentation CentreHong Kong Science ParkShatin, New TerritoriesHong KongChina
- The State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
3
|
Zeltser A, Ochneva A, Riabinina D, Zakurazhnaya V, Tsurina A, Golubeva E, Berdalin A, Andreyuk D, Leonteva E, Kostyuk G, Morozova A. EEG Techniques with Brain Activity Localization, Specifically LORETA, and Its Applicability in Monitoring Schizophrenia. J Clin Med 2024; 13:5108. [PMID: 39274319 PMCID: PMC11395834 DOI: 10.3390/jcm13175108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: Electroencephalography (EEG) is considered a standard but powerful tool for the diagnosis of neurological and psychiatric diseases. With modern imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and magnetoencephalography (MEG), source localization can be improved, especially with low-resolution brain electromagnetic tomography (LORETA). The aim of this review is to explore the variety of modern techniques with emphasis on the efficacy of LORETA in detecting brain activity patterns in schizophrenia. The study's novelty lies in the comprehensive survey of EEG methods and detailed exploration of LORETA in schizophrenia research. This evaluation aligns with clinical objectives and has been performed for the first time. Methods: The study is split into two sections. Part I examines different EEG methodologies and adjuncts to detail brain activity in deep layers in articles published between 2018 and 2023 in PubMed. Part II focuses on the role of LORETA in investigating structural and functional changes in schizophrenia in studies published between 1999 and 2024 in PubMed. Results: Combining imaging techniques and EEG provides opportunities for mapping brain activity. Using LORETA, studies of schizophrenia have identified hemispheric asymmetry, especially increased activity in the left hemisphere. Cognitive deficits were associated with decreased activity in the dorsolateral prefrontal cortex and other areas. Comparison of the first episode of schizophrenia and a chronic one may help to classify structural change as a cause or as a consequence of the disorder. Antipsychotic drugs such as olanzapine or clozapine showed a change in P300 source density and increased activity in the delta and theta bands. Conclusions: Given the relatively low spatial resolution of LORETA, the method offers benefits such as accessibility, high temporal resolution, and the ability to map depth layers, emphasizing the potential of LORETA in monitoring the progression and treatment response in schizophrenia.
Collapse
Affiliation(s)
- Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Valeria Zakurazhnaya
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Elizaveta Golubeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Denis Andreyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Marketing, Faculty of Economics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Leonteva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Institute of Biodesign and Research of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education "Russian Biotechnological University (ROSBIOTECH)", Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
4
|
Cagle JN, de Araujo T, Johnson KA, Yu J, Fanty L, Sarmento FP, Little S, Okun MS, Wong JK, de Hemptinne C. Chronic intracranial recordings in the globus pallidus reveal circadian rhythms in Parkinson's disease. Nat Commun 2024; 15:4602. [PMID: 38816390 PMCID: PMC11139908 DOI: 10.1038/s41467-024-48732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.
Collapse
Affiliation(s)
- Jackson N Cagle
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Tiberio de Araujo
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kara A Johnson
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - John Yu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Lauren Fanty
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Filipe P Sarmento
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Michael S Okun
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Coralie de Hemptinne
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Ellenbogen JM, Kellam CB, Hankard M. Noise-induced sleep disruption from wind turbines: scientific updates and acoustical standards. Sleep 2024; 47:zsad286. [PMID: 37942938 DOI: 10.1093/sleep/zsad286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Wind energy appears to place global environmental benefits against local human health, particularly sleep. The result is a significant challenge to wind-energy development for the achievement of large-scale alternative energy. Our purpose is to examine noise from wind turbines and its potential to disrupt sleep, to examine the human health literature addressing these concerns, and to provide insight into how developers and communities can employ these concepts to pursue wind energy without impacting human health. The latest and most rigorous research on noise from wind turbines points to healthy sleep, when turbines are sited reasonably. This includes audible noise, low-frequency noise, and infrasound. Recent advances in acoustical standards provide practical methods to ensure adherence to these scientific findings. There now exist key data concerning wind-turbine noise, and its impact on sleep. Knowing that information, and how to deploy it with modern engineering standards should simultaneously facilitate wind development and protect human health.
Collapse
Affiliation(s)
| | - Colleen B Kellam
- Department of Aeronautical Engineering, United States Air Force Academy, Colorado Springs, CO, USA
| | | |
Collapse
|