1
|
Zhang Y, Banihashemi L, Versace A, Samolyk A, Taylor M, English G, Schmithorst VJ, Lee VK, Stiffler R, Aslam H, Panigrahy A, Hipwell AE, Phillips ML. Early Infant Prefrontal Cortical Microstructure Predicts Present and Future Emotionality. Biol Psychiatry 2024; 96:959-970. [PMID: 38604525 PMCID: PMC11461701 DOI: 10.1016/j.biopsych.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND High levels of infant negative emotionality (NE) and low positive emotionality (PE) predict future emotional and behavioral problems. The prefrontal cortex (PFC) supports emotional regulation, with each PFC subregion specializing in specific emotional processes. Neurite orientation dispersion and density imaging estimates microstructural integrity and myelination via the neurite density index (NDI) and dispersion via the orientation dispersion index (ODI), with potential to more accurately evaluate microstructural alterations in the developing brain. Yet, no study has used these indices to examine associations between PFC microstructure and concurrent or developing infant emotionality. METHODS We modeled PFC subregional NDI and ODI at 3 months with caregiver-reported infant NE and PE at 3 months (n = 61) and at 9 months (n = 50), using multivariable and subsequent bivariate regression models. RESULTS The most robust statistically significant findings were positive associations among 3-month rostral anterior cingulate cortex (ACC) ODI and caudal ACC NDI and concurrent NE, a positive association between 3-month lateral orbitofrontal cortex ODI and prospective NE, and a negative association between 3-month dorsolateral PFC ODI and concurrent PE. Multivariate models also revealed that other PFC subregional microstructure measures, as well as infant and caregiver sociodemographic and clinical factors, predicted infant 3- and 9-month NE and PE. CONCLUSIONS Greater NDI and ODI, reflecting greater microstructural complexity, in PFC regions supporting salience perception (rostral ACC), decision making (lateral orbitofrontal cortex), action selection (caudal ACC), and attentional processes (dorsolateral PFC) might result in greater integration of these subregions with other neural networks and greater attention to salient negative external cues, thus higher NE and/or lower PE. These findings provide potential infant cortical markers of future psychopathology risk.
Collapse
Affiliation(s)
- Yicheng Zhang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alyssa Samolyk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Megan Taylor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabrielle English
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vanessa J Schmithorst
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent K Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Khodanovich MY, Svetlik MV, Naumova AV, Usova AV, Pashkevich VY, Moshkina MV, Shadrina MM, Kamaeva DA, Obukhovskaya VB, Kataeva NG, Levina AY, Tumentceva YA, Yarnykh VL. Global and Regional Sex-Related Differences, Asymmetry, and Peak Age of Brain Myelination in Healthy Adults. J Clin Med 2024; 13:7065. [PMID: 39685523 DOI: 10.3390/jcm13237065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The fundamental question of normal brain myelination in human is still poorly understood. Methods: Age-dependent global, regional, and interhemispheric sex-related differences in brain myelination of 42 (19 men, 23 women) healthy adults (19-67 years) were explored using the MRI method of fast macromolecular fraction (MPF) mapping. Results: Higher brain myelination in males compared to females was found in global white matter (WM), most WM tracts, juxtacortical WM regions, and putamen. The largest differences between men and women, exceeding 4%, were observed bilaterally in the frontal juxtacortical WM; angular, inferior occipital, and cuneus WM; external capsule; and inferior and superior fronto-orbital fasciculi. The majority of hemispheric differences in MPF were common to men and women. Sex-specific interhemispheric differences were found in juxtacortical WM; men more often had left-sided asymmetry, while women had right-sided asymmetry. Most regions of deep gray matter (GM), juxtacortical WM, and WM tracts (except for projection pathways) showed a later peak age of myelination in women compared to men, with a difference of 3.5 years on average. Body mass index (BMI) was associated with higher MPF and later peak age of myelination independent of age and sex. Conclusions: MPF mapping showed high sensitivity to assess sex-related differences in normal brain myelination, providing the basis for using this method in clinics.
Collapse
Affiliation(s)
- Marina Y Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Mikhail V Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Anna V Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Anna V Usova
- Cancer Research Institute, Branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny St., Tomsk 634009, Russia
| | - Valentina Y Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Marina V Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Maria M Shadrina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Daria A Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya St., Tomsk 634014, Russia
| | - Victoria B Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda G Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Y Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Medica Diagnostic and Treatment Center, 86 Sovetskaya St., Tomsk 634510, Russia
| | - Yana A Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Vasily L Yarnykh
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
3
|
Lee CH, Holloman M, Salzer JL, Zhang J. Multi-parametric MRI can detect enhanced myelination in the Gli1 -/- mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567957. [PMID: 38045415 PMCID: PMC10690149 DOI: 10.1101/2023.11.20.567957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
This study investigated the potential of combining multiple MR parameters to enhance the characterization of myelin in the mouse brain. We collected ex vivo multi-parametric MR data at 7 Tesla from control and Gli1 -/- mice; the latter exhibit enhanced myelination at postnatal day 10 (P10) in the corpus callosum and cortex. The MR data included relaxivity, magnetization transfer, and diffusion measurements, each targeting distinct myelin properties. This analysis was followed by and compared to myelin basic protein (MBP) staining of the same samples. Although a majority of the MR parameters included in this study showed significant differences in the corpus callosum between the control and Gli1 -/- mice, only T 2 , T 1 /T 2, and radial diffusivity (RD) demonstrated a significant correlation with MBP values. Based on data from the corpus callosum, partial least square regression suggested that combining T 2 , T 1 /T 2 , and inhomogeneous magnetization transfer ratio could explain approximately 80% of the variance in the MBP values. Myelin predictions based on these three parameters yielded stronger correlations with the MBP values in the P10 mouse brain corpus callosum than any single MR parameter. In the motor cortex, combining T 2 , T 1 /T 2, and radial kurtosis could explain over 90% of the variance in the MBP values at P10. This study demonstrates the utility of multi-parametric MRI in improving the detection of myelin changes in the mouse brain.
Collapse
|
4
|
Khodanovich M, Svetlik M, Naumova A, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Wasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Yarnykh V. Age-Related Decline in Brain Myelination: Quantitative Macromolecular Proton Fraction Mapping, T2-FLAIR Hyperintensity Volume, and Anti-Myelin Antibodies Seven Years Apart. Biomedicines 2023; 12:61. [PMID: 38255168 PMCID: PMC10812983 DOI: 10.3390/biomedicines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Age-related myelination decrease is considered one of the likely mechanisms of cognitive decline. The present preliminary study is based on the longitudinal assessment of global and regional myelination of the normal adult human brain using fast macromolecular fraction (MPF) mapping. Additional markers were age-related changes in white matter (WM) hyperintensities on FLAIR-MRI and the levels of anti-myelin autoantibodies in serum. Eleven healthy subjects (33-60 years in the first study) were scanned twice, seven years apart. An age-related decrease in MPF was found in global WM, grey matter (GM), and mixed WM-GM, as well as in 48 out of 82 examined WM and GM regions. The greatest decrease in MPF was observed for the frontal WM (2-5%), genu of the corpus callosum (CC) (4.0%), and caudate nucleus (5.9%). The age-related decrease in MPF significantly correlated with an increase in the level of antibodies against myelin basic protein (MBP) in serum (r = 0.69 and r = 0.63 for global WM and mixed WM-GM, correspondingly). The volume of FLAIR hyperintensities increased with age but did not correlate with MPF changes and the levels of anti-myelin antibodies. MPF mapping showed high sensitivity to age-related changes in brain myelination, providing the feasibility of this method in clinics.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Anna Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Daria Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia;
| | - Anna Usova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh St., Tomsk 634009, Russia;
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Irina Wasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya st., Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|