1
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
2
|
Aranberri Ruiz A. Transcutaneous Auricular Vagus Nerve Stimulation to Improve Emotional State. Biomedicines 2024; 12:407. [PMID: 38398009 PMCID: PMC10886536 DOI: 10.3390/biomedicines12020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Emotional experiences are a part of our lives. The maladaptive functioning of an individual's emotional field can lead to emotional disturbances of various kinds, such as anxiety and depression. Currently, there is an increasing prevalence of emotional disorders that cause great human suffering and high socioeconomic costs. Emotional processing has a biological basis. The major neuroscientific theories of emotion are based on biological functioning, and all of them take into account the anatomy and function of the tenth cranial nerve: the vagus nerve. The vagus nerve connects the subdiaphragmatic and supradiaphragmatic areas and modulates emotional processing as the basis of interoceptive functioning. Auricular vagus nerve stimulation is a new and innovative neuromodulation technique based on the function of the vagus nerve. Several interventions have shown that this new neurostimulation technique is a very promising resource for treating emotional disorders. In this paper, we summarise three neuroscientific theories of emotion, explain what transcutaneous auricular nerve stimulation is, and present arguments for its use and continued research.
Collapse
Affiliation(s)
- Ainara Aranberri Ruiz
- Department of Basic Psychological Process and Development, University of the Basque Country, 20018 San Sebastian, Spain
| |
Collapse
|
3
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
4
|
Schmitt O, Eipert P, Wang Y, Kanoke A, Rabiller G, Liu J. Connectome-based prediction of functional impairment in experimental stroke models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539601. [PMID: 37205373 PMCID: PMC10187266 DOI: 10.1101/2023.05.05.539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Experimental rat models of stroke and hemorrhage are important tools to investigate cerebrovascular disease pathophysiology mechanisms, yet how significant patterns of functional impairment induced in various models of stroke are related to changes in connectivity at the level of neuronal populations and mesoscopic parcellations of rat brains remain unresolved. To address this gap in knowledge, we employed two middle cerebral artery occlusion models and one intracerebral hemorrhage model with variant extent and location of neuronal dysfunction. Motor and spatial memory function was assessed and the level of hippocampal activation via Fos immunohistochemistry. Contribution of connectivity change to functional impairment was analyzed for connection similarities, graph distances and spatial distances as well as the importance of regions in terms of network architecture based on the neuroVIISAS rat connectome. We found that functional impairment correlated with not only the extent but also the locations of the injury among the models. In addition, via coactivation analysis in dynamic rat brain models, we found that lesioned regions led to stronger coactivations with motor function and spatial learning regions than with other unaffected regions of the connectome. Dynamic modeling with the weighted bilateral connectome detected changes in signal propagation in the remote hippocampus in all 3 stroke types, predicting the extent of hippocampal hypoactivation and impairment in spatial learning and memory function. Our study provides a comprehensive analytical framework in predictive identification of remote regions not directly altered by stroke events and their functional implication.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Peter Eipert
- Medical School Hamburg - University of Applied Sciences, Department of Anatomy; University of Rostock, Institute of Anatomy
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Yonggang Wang
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurological Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China, 100050
| | - Atsushi Kanoke
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Gratianne Rabiller
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| | - Jialing Liu
- Department of Neurological Surgery, UCSF
- SFVAMC, 1700 Owens Street, San Francisco, CA 94158
| |
Collapse
|