1
|
Xu X, Xuan S, Chen S, Liu D, Xiao Q, Tu J. Increased excitatory amino acid transporter 2 levels in basolateral amygdala astrocytes mediate chronic stress-induced anxiety-like behavior. Neural Regen Res 2025; 20:1721-1734. [PMID: 39104111 PMCID: PMC11688569 DOI: 10.4103/nrr.nrr-d-23-01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00024/figure1/v/2024-08-05T133530Z/r/image-tiff The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions. Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress-induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2 agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice. After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
Collapse
Affiliation(s)
- Xirong Xu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Shoumin Xuan
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Shuai Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
| | - Dan Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Qian Xiao
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Jie Tu
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- University of Chinese of Academy of Sciences, Beijing, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Kirk PA, Pine DS, Kircanski K. Extending insights from LeDoux: using movies to study subjective, clinically meaningful experiences in neuroscience. Cereb Cortex 2025; 35:58-64. [PMID: 39422490 PMCID: PMC11712263 DOI: 10.1093/cercor/bhae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroscience research with public health relevance to emotional disorders examines brain-behavior relations. Joe LeDoux's legacy advances these efforts in ways that remain truly unique. While recognized for his basic science research, he also inspires applied researchers, guiding an agenda for clinical scientists: understanding the pathophysiology of altered subjective experiences in emotional disorders. For brain imaging, movie-watching approaches help clinicians realize this agenda due to movies' relative strength in evoking rich, meaningful subjective experiences. Here, we describe methodological advances in movie-watching paradigms that might sustain LeDoux's impact by facilitating the discovery of neural mechanisms generating complex emotional responses. Of note, while linking subjective emotion to pathophysiology is a first step, innovations in movie-watching designs, especially involving therapeutic techniques for emotional disorders, can boost clinical application. Leveraging research on pathophysiology to generate novel therapy reflects the clinical legacy sustained through Joe LeDoux's rousing career.
Collapse
Affiliation(s)
- Peter A Kirk
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Katharina Kircanski
- Emotion and Development Branch, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| |
Collapse
|
3
|
Schoeller F, Jain A, Pizzagalli DA, Reggente N. The neurobiology of aesthetic chills: How bodily sensations shape emotional experiences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:617-630. [PMID: 38383913 PMCID: PMC11233292 DOI: 10.3758/s13415-024-01168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
The phenomenon of aesthetic chills-shivers and goosebumps associated with either rewarding or threatening stimuli-offers a unique window into the brain basis of conscious reward because of their universal nature and simultaneous subjective and physical counterparts. Elucidating the neural mechanisms underlying aesthetic chills can reveal fundamental insights about emotion, consciousness, and the embodied mind. What is the precise timing and mechanism of bodily feedback in emotional experience? How are conscious feelings and motivations generated from interoceptive predictions? What is the role of uncertainty and precision signaling in shaping emotions? How does the brain distinguish and balance processing of rewards versus threats? We review neuroimaging evidence and highlight key questions for understanding how bodily sensations shape conscious feelings. This research stands to advance models of brain-body interactions shaping affect and may lead to novel nonpharmacological interventions for disorders of motivation and pleasure.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Abhinandan Jain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA
| |
Collapse
|
4
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
5
|
Lettieri G, Handjaras G, Cappello EM, Setti F, Bottari D, Bruno V, Diano M, Leo A, Tinti C, Garbarini F, Pietrini P, Ricciardi E, Cecchetti L. Dissecting abstract, modality-specific and experience-dependent coding of affect in the human brain. SCIENCE ADVANCES 2024; 10:eadk6840. [PMID: 38457501 PMCID: PMC10923499 DOI: 10.1126/sciadv.adk6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a more abstract manner is unclear. Here, we answer this question by measuring the association between emotion ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity recorded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are encoded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and previous sensory experience, and the posterior superior temporal cortex maps the valence dimension using an abstract code. Sensory experience more than modality affects how the brain organizes emotional information outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states where sensory inputs during development shape its functioning.
Collapse
Affiliation(s)
- Giada Lettieri
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology & Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giacomo Handjaras
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa M. Cappello
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Setti
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Bottari
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Leo
- Department of of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Pietro Pietrini
- Forensic Neuroscience and Psychiatry Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Emiliano Ricciardi
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|