1
|
Du J, Yang Y, Shao T, Qi S, Zhang P, Zhuo S, Zhu C. Yellow emission carbon dots for highly selective and sensitive OFF-ON sensing of ferric and pyrophosphate ions in living cells. J Colloid Interface Sci 2020; 587:376-384. [PMID: 33360907 DOI: 10.1016/j.jcis.2020.11.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/08/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
A simple "OFF-ON" fluorescent system was proposed for selective and sensitive detection of ferric ion (Fe3+) and pyrophosphate (PPi) in living cells. The method was constructed based on the bright yellow emission of carbon dots (y-CDs), which were prepared using o-phenylenediamine (OPD) as the precursor via a facile hydrothermal treatment. The as-obtained y-CDs, with an average size of 2.6 nm, exhibited an excitation-independent emission peak at 574 nm. The fluorescence of y-CDs can be remarkably quenched by Fe3+ with high selectivity and sensitivity. Interestingly, the quenched fluorescence can be recovered regularly upon addition of PPi, showing a promising detection for PPi. The linear ranges for Fe3+ and PPi detections were 0.05-80 and 0.5-120 μM, respectively, and the corresponding limit of detections (LODs) were 22.1 and 73.9 nM. As we proved the y-CDs have negligible cytotoxicity and excellent biocompatibility, further application to the fluorescence imaging of intracellular Fe3+ and PPi were conducted, suggesting the prepared y-CDs can be used to monitor Fe3+ and PPi variation in living cells. Overall, our developed y-CDs-based OFF-ON switch fluorescent probe has the advantages of simplicity, agility, high sensitivity and selectivity, which provides a promising platform for environmental and biology applications, and paves a new avenue for monitoring the hydrolysis process of adenosine triphosphate disodium salt (ATP) by detection of PPi in organisms.
Collapse
Affiliation(s)
- Jinyan Du
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| | - Ying Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, School of Pharmacy, Wannan Medical College, Wuhu 241000, PR China.
| | - Shuangqing Qi
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Ping Zhang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Shujuan Zhuo
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Changqing Zhu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| |
Collapse
|
2
|
Yu A, Tang Y, Li K, Gao J, Zheng Y, Zeng Z. Tunable photoluminescence studies based on blue-emissive carbon dots and sequential determination of Fe(III) and pyrophosphate ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117231. [PMID: 31177000 DOI: 10.1016/j.saa.2019.117231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Fluorescence has been well documented and the optical feature of carbon dots generates considerable interests. Here the nitrogen-doped carbon dots with a relative quantum yield of 25% have been prepared. It displays stable blue emission based on the excitation at 355 nm. The carbon nanomaterial is highly dispersible in aqueous solution and can be employed as an effective optical probe for label-free detection of Fe3+ (0.87 μM) via a switched off change. Additionally, such sensing nanoplatform can be recovered in the presence of pyrophosphate (PPi) and an "off-on" process has been identified. It is expected that this on-off-on strategy will allow new possibilities for developing efficient sensors in industrial fields.
Collapse
Affiliation(s)
- Aiwen Yu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yiping Tang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kai Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jinwei Gao
- Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials, South China Normal University, Guangzhou 510006, PR China
| | - Yuhui Zheng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| | - Zhi Zeng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Effect of low dose gamma rays on certain essential metals and oxidative stress in different rat organs. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2013.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Conte-Daban A, Day A, Faller P, Hureau C. How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study. Dalton Trans 2016; 45:15671-15678. [PMID: 27711738 PMCID: PMC5123634 DOI: 10.1039/c6dt02308h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/23/2016] [Indexed: 01/31/2023]
Abstract
The role of Cu and Zn ions in Alzheimer's disease is linked to the consequences of their coordination to the amyloid-β (Aβ) peptide, i.e. to the modulation of Aβ aggregation and to the production of Reactive Oxygen Species (ROS), two central events of the so-called amyloid cascade. The role of both ions in Aβ aggregation is still controversial. Conversely the higher toxicity of the redox competent Cu ions (compared to the redox inert Zn ions) in ROS production is acknowledged. Thus the Cu ions can be considered as the main therapeutic target. Because Zn ions are present in higher quantity than Cu ions in the synaptic cleft, they can prevent detoxification of Cu by chelators unless they have an unusually high Cu over Zn selectivity. We describe a proof-of-concept study where the role of Zn on the metal swap reaction between two prototypical ligands and the Cu(Aβ) species has been investigated by several complementary spectroscopic techniques (UV-Vis, EPR and XANES). The first ligand has a higher Cu over Zn selectivity relative to the one of Aβ peptide while the second one exhibits a classical Cu over Zn selectivity. How Zn impacts the effect of the ligands on Cu-induced ROS production and Aβ aggregation is also reported.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Adam Day
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse Cedex 4, France. and University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
5
|
Zhang L, Wang D, Huang H, Liu L, Zhou Y, Xia X, Deng K, Liu X. Preparation of Gold-Carbon Dots and Ratiometric Fluorescence Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6646-55. [PMID: 26905318 DOI: 10.1021/acsami.5b12084] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we synthesized novel gold-carbon dots (GCDs) with unique properties by microwave-assisted method. The characterization of high-resolution transmission electron microscope (HRTEM), XRD, high-angle annular dark field scanning transmission electron microscope (HAADF-STEM), and energy dispersive spectrometer demonstrates that GCDs are composed of carbon and Au. Tiny Au clusters are dispersed in a 2 nm-size carbon skeleton, which integrates the properties of typical CDs and gold nanoclusters (AuNCs), displaying fascinating peroxidase-like activity and single excitation/dual emission. Dual emission of the GCDs exhibits different fluorescent response to the target species and enables the GCDs to be exploited for sensing and bioimaging. The highly photostable and biocompatible GCDs were applied to dual fluorescent imaging for breast cancer cells and normal rat osteoblast cells under a single excitation. Moreover, ratiometric fluorescence imaging was used to monitor Fe(3+) level in normal rat osteoblast cells.
Collapse
Affiliation(s)
- Lingyang Zhang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Lanfang Liu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Yuan Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Xiaodong Xia
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Keqin Deng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan Provincial University Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology , Xiangtan 411201, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| |
Collapse
|
6
|
Prakash A, Bharti K, Majeed ABA. Zinc: indications in brain disorders. Fundam Clin Pharmacol 2015; 29:131-49. [PMID: 25659970 DOI: 10.1111/fcp.12110] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/08/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
Collapse
Affiliation(s)
- Atish Prakash
- Brain Degeneration and Therapeutics Group, Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Malaysia; Department of Pharmacology, ISF college of Pharmacy, Ghal kalan, Moga, 142-001, India; Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), Bandar Puncak Alam, 42300, Malaysia
| | | | | |
Collapse
|
7
|
Jain K, Dhawan DK. Regulation of Biokinetics of 65Zn by Curcumin and Zinc in Experimentally Induced Colon Carcinogenesis in Rats. Cancer Biother Radiopharm 2014; 29:310-6. [DOI: 10.1089/cbr.2014.1670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kinnri Jain
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| | - Devinder K. Dhawan
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| |
Collapse
|
8
|
Singla N, Dhawan DK. Influence of zinc on the biokinetics of (65)Zn in brain and whole body and its bio-distribution in aluminium-intoxicated rats. Cell Mol Neurobiol 2014; 34:269-76. [PMID: 24287498 DOI: 10.1007/s10571-013-0010-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/19/2013] [Indexed: 12/24/2022]
Abstract
The present study was designed to understand the influence of zinc (Zn) if any, on the biokinetics of (65)Zn in brain as well as whole body and its bio-distribution following aluminium (Al) treatment to rats. Male Sprague-Dawley rats weighing 140-160 g were divided into four different groups viz: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/L in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment showed a significant increase in fast component (Tb1) but revealed a significant decrease in slow component (Tb2) of biological half-life in brain as well as in whole body. However, Zn supplementation to Al-treated rats reversed the trend in both brain and whole body, which indicates a significant decrease in Tb1 component while the Tb2 component was significantly increased. Further, Al treatment showed an increased percent uptake value of (65)Zn in cerebrum, cerebellum, heart, liver and lungs whereas a decrease in uptake was found only in blood. On the other hand, there was a significant decline in (65)Zn activity in nuclear and mitochondrial fractions of brain of Al-treated rats. However, Zn treatment reversed the altered (65)Zn uptake values in different organs as well as in various subcellular fractions. The study demonstrates that Zn shall prove to be effective in regulating the biokinetics of (65)Zn in brain and whole body and its distribution at the tissue and subcellular levels in Al-treated rats.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Panjab University, Sector-14, Chandigarh, 160014, India,
| | | |
Collapse
|
9
|
Moshtaghie AA, Malekpouri P, Moshtaghie M, Mohammadi-Nejad M, Ani M. Protective effects of copper against aluminum toxicity on acetylcholinesterase and catecholamine contents of different regions of rat's brain. Neurol Sci 2013; 34:1639-50. [PMID: 23354609 DOI: 10.1007/s10072-013-1305-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The probable protective effects of copper on the acetylcholinesterase activity and the catecholamine levels in cerebellum, cortex and mid-brain of rat, which was intoxicated by aluminum, were studied during short and long terms. In this respect, male Wistar rats weighing 200-250 g were received daily intraperitoneal doses of aluminum, copper and also combined doses of both metals for 15 days (Al 10 mg kg(-1) BW and Cu 1 mg kg(-1) BW), 30 days (Al 5 mg kg(-1) BW and Cu 0.5 mg kg(-1) BW) and 60 days (Al 1 mg kg(-1) BW and Cu 0.1 mg kg(-1) BW), respectively. The results obtained from the short period of exposure (15 days) showed that aluminum produced significant (P < 0.05) decreases in the acetylcholinesterase activity by 24.14, 23.30 and 25.81 %. Similarly, the catecholamine levels were reduced by 10.69, 12.25 and 12.64 % in cerebellum, cortex and mid-brain, respectively. Treatment with copper increases both acetylcholinesterase activity and catecholamine contents of cerebellum, cortex and mid-brain. Simultaneous injection of copper and aluminum increased both acetylcholinesterase activity and catecholamine contents in all three parts of rat brain when compared to aluminum-treated group. Same results were also observed following 30 and 60 days of exposures. In overall, it has been found that copper may have a protective-like ability to hinder aluminum toxicity in the brain.
Collapse
Affiliation(s)
- Ali Asghar Moshtaghie
- Department of Clinical Biochemistry, School of Pharmacy, Isfahan University of Medical Science, Isfahan, Iran
| | | | | | | | | |
Collapse
|
10
|
Martínez-Criado G, Tucoulou R, Cloetens P, Bleuet P, Bohic S, Cauzid J, Kieffer I, Kosior E, Labouré S, Petitgirard S, Rack A, Sans JA, Segura-Ruiz J, Suhonen H, Susini J, Villanova J. Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:10-18. [PMID: 22186639 DOI: 10.1107/s090904951104249x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.
Collapse
Affiliation(s)
- Gema Martínez-Criado
- European Synchrotron Radiation Facility, Experiments Division, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|