1
|
Secco V, Tiago T, Staats R, Preet S, Chia S, Vendruscolo M, Carra S. HSPB6: A lipid-dependent molecular chaperone inhibits α-synuclein aggregation. iScience 2024; 27:110657. [PMID: 39280615 PMCID: PMC11402235 DOI: 10.1016/j.isci.2024.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
The process of protein misfolding and aggregation is associated with various cytotoxic effects. Understanding how this phenomenon is regulated by the protein homeostasis system, however, is difficult, since it takes place through a complex non-linear network of coupled microscopic steps, including primary nucleation, fibril elongation, and secondary nucleation, which depend on environmental factors. To address this problem, we studied how the aggregation of α-synuclein, a protein associated with Parkinson's disease, is modulated by molecular chaperones and lipid membranes. We focused on small heat shock proteins (sHSPs/HSPBs), which interact with proteins and lipids and are upregulated during aging, a major risk factor for protein misfolding diseases. HSPBs act on different microscopic steps to prevent α-synuclein aggregation, with HSPB6 showing a lipid-dependent chaperone activity. Our findings provide an example of how HSPBs diversified their mechanisms of action to reach an efficient regulation of protein misfolding and aggregation within the complex cellular environment.
Collapse
Affiliation(s)
- Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Swapan Preet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Niyonzima YB, Asato Y, Murakami T, Kadokawa H. Alpha-synuclein expression in GnRH neurons of young and old bovine hypothalami. Reprod Fertil Dev 2024; 36:RD24033. [PMID: 39283977 DOI: 10.1071/rd24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Context Understanding of central nervous system mechanisms related to age-related infertility remains limited. Fibril α-synuclein, distinct from its monomer form, is implicated in age-related diseases and propagates among neurons akin to prions. Aims We compared α-synuclein expression in gonadotropin-releasing hormone-expressing neurons (GnRH neurons) in the pre-optic area, arcuate nucleus, and median eminence of healthy heifers and aged cows to determine its role in age-related infertility. Methods We analysed mRNA and protein expression, along with fluorescent immunohistochemistry for GnRH and α-synuclein, followed by Congo red staining to detect amyloid deposits, and confocal microscopy. Key results Both mRNA and protein expressions of α-synuclein were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and western blots in bovine cortex, hippocampus, and anterior and posterior hypothalamus tissues. Significant differences in α-synuclein mRNA expression were observed in the cortex and hippocampus between young and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomer, dimer, and oligomers, in the cortex, hippocampus, hypothalamus tissues, and there were significant differences in some bands between young and old cows. Bright-field and polarised light microscopy did not detect obvious amyloid deposition in aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signal of Congo red and α-synuclein in GnRH neurons in aged hypothalami. Additionally, α-synuclein expression was detected in immortalised GnRH neurons, GT1-7 cells. Conclusion Alpha-synuclein was expressed in GnRH neurons, and some differences were observed between young and old hypothalami. Implications Alpha-synuclein may play an important role in aging-related infertility.
Collapse
Affiliation(s)
- Yvan Bienvenu Niyonzima
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Yuuki Asato
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Tomoaki Murakami
- Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| |
Collapse
|
3
|
Niyonzima YB, Asato Y, Kadokawa H. Alpha-synuclein expression in oxytocin neurons of young and old bovine brains. J Reprod Dev 2024; 70:213-222. [PMID: 38684411 PMCID: PMC11310384 DOI: 10.1262/jrd.2024-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Understanding of central nervous system mechanisms underlying age-related infertility remains limited. Fibril α-synuclein, distinct from its monomeric form, is implicated in age-related diseases. Notably, fibril α-synuclein spreads among neurons, similar to prions, from damaged old neurons in cortex and hippocampus to healthy neurons. However, less is known whether α-synuclein propagates into oxytocin neurons, which play crucial roles in reproduction. We compared α-synuclein expression in the oxytocin neurons in suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular hypothalamic nucleus (PVN), and posterior pituitary (PP) gland of healthy heifers and aged cows to determine its role in age-related infertility. We analyzed mRNA and protein expression, along with Congo red histochemistry and fluorescent immunohistochemistry for oxytocin and α-synuclein, followed by confocal microscopy with Congo red staining. Both mRNA and protein expressions of α-synuclein were confirmed in the bovine cortex, hippocampus, SCN, SON, PVN, and PP tissues. Significant differences in α-synuclein mRNA expressions were observed in the cortex and hippocampus between young heifers and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomers, dimers, and oligomers, in the cortex, hippocampus, SCN, SON, PVN, and PP tissues, and there were significant differences in some bands between the young heifers and old cows. Bright-field and polarized light microscopy did not detect obvious amyloid deposition in the aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signals for Congo red and α-synuclein in oxytocin neurons in the aged hypothalami. α-synuclein was expressed in oxytocin neurons, and some differences were observed between young and old hypothalami.
Collapse
Affiliation(s)
| | - Yuuki Asato
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
4
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-Domain Antibody-Based Protein Degrader for Synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584473. [PMID: 38558982 PMCID: PMC10979981 DOI: 10.1101/2024.03.11.584473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30 Street, New York NY 10016, USA
| |
Collapse
|
6
|
Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS OMEGA 2022; 7:31271-31288. [PMID: 36092583 PMCID: PMC9453792 DOI: 10.1021/acsomega.2c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Prions are unconventional pathogens that encode the pathogenic information in conformations of the constituent abnormal isoform of prion protein (PrPSc), independently of the nucleotide genome. Therefore, conformational diversity of PrPSc underlies the existence of many prion strains and species barriers of prions, although the conformational information is extremely limited. Interestingly, differences between polymorphic or species-specific residues responsible for the species/strain barriers are often caused by conservative replacements between hydrophobic amino acids. This implies that subtle differences among hydrophobic amino acids are significant for PrPSc structures. Here we analyzed the influence of different hydrophobic residues on the structures of an in-register parallel β-sheet amyloid of α-synuclein (αSyn) using molecular dynamics (MD) simulation and applied the knowledge from the αSyn amyloid to modeling a local structure of human PrPSc encompassing residues 107-143. We found that mutations equivalent to polymorphisms that cause transmission barriers substantially affect the stabilities of the local structures; for example, the G127V mutation, which makes the host resistant to various human prion diseases, greatly destabilized the local structure of the model amyloid. Our study indicates that subtle differences among hydrophobic side chains can considerably affect the interaction network, including hydrogen bonds, and demonstrates specifically how and in what structures hydrophobic residues can exert unique effects on in-register parallel β-sheet amyloids.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center
for Bioinformatics and Molecular Medicine, Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuzuru Taguchi
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
Höllerhage M, Wolff A, Chakroun T, Evsyukov V, Duan L, Chua OWH, Tang Q, Koeglsperger T, Höglinger GU. Binding Stability of Antibody-α-Synuclein Complexes Predicts the Protective Efficacy of Anti-α-synuclein Antibodies. Mol Neurobiol 2022; 59:3980-3995. [PMID: 35460053 PMCID: PMC9167191 DOI: 10.1007/s12035-022-02824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/01/2022] [Indexed: 01/01/2023]
Abstract
Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson's disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany.
| | - Andreas Wolff
- Department of Neurology, Technical University of Munich (TUM), D-81675, Munich, Germany
| | - Tasnim Chakroun
- Department of Neurology, Technical University of Munich (TUM), D-81675, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Valentin Evsyukov
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Linghan Duan
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Oscar Wing-Ho Chua
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Qilin Tang
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Thomas Koeglsperger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
- Department of Neurology, Ludwig Maximilian University Munich, D-81377, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| |
Collapse
|
8
|
Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022; 37:464-477. [PMID: 35040520 DOI: 10.1002/mds.28925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
α-synucleinopathies, encompassing Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are devastating neurodegenerative diseases for which available therapeutic options are scarce, mostly because of our limited understanding of their pathophysiology. Although these pathologies are attributed to an intracellular accumulation of the α-synuclein protein in the nervous system with subsequent neuronal loss, the trigger(s) of this accumulation is/are not clearly identified. Among the existing hypotheses, interest in the hypothesis advocating the involvement of infectious agents in the onset of these diseases is renewed. In this article, we aimed to review the ongoing relevant factors favoring and opposing this hypothesis, focusing on (1) the potential antimicrobial role of α-synuclein, (2) potential entry points of pathogens in regard to early symptoms of diverse α-synucleinopathies, (3) pre-existing literature reviews assessing potential associations between infectious agents and Parkinson's disease, (4) original studies assessing these associations for dementia with Lewy bodies and multiple system atrophy (identified through a systematic literature review), and finally (5) potential susceptibility factors modulating the effects of infectious agents on the nervous system. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Morgane Linard
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Louisa Mougué
- Cognitive-Behavioral Unit and Memory Consultations, Hospital of Sens, Sens, France
| | - Iris Grgurina
- University of Strasbourg, UMR7364 CNRS, LNCA, Strasbourg, France
| | | | - Alexandra Foubert-Samier
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France.,French Reference Centre for MSA, University Hospital of Bordeaux, Bordeaux, France
| | - Frédéric Blanc
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| |
Collapse
|
9
|
Kim C, Hovakimyan A, Zagorski K, Antonyan T, Petrushina I, Davtyan H, Chailyan G, Hasselmann J, Iba M, Adame A, Rockenstein E, Szabo M, Blurton-Jones M, Cribbs DH, Ghochikyan A, Masliah E, Agadjanyan MG. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: prelude for IND enabling studies. NPJ Vaccines 2022; 7:1. [PMID: 35013319 PMCID: PMC8748802 DOI: 10.1038/s41541-021-00424-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85-99 (PV-1947D), aa109-126 (PV-1948D), aa126-140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.
Collapse
Affiliation(s)
- Changyoun Kim
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Jonathan Hasselmann
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Michiyo Iba
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Marcell Szabo
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
10
|
Tran AA, De Smet M, Grant GD, Khoo TK, Pountney DL. Investigating the Convergent Mechanisms between Major Depressive Disorder and Parkinson's Disease. Complex Psychiatry 2021; 6:47-61. [PMID: 34883500 DOI: 10.1159/000512657] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) affects more than cognition, having a temporal relationship with neuroinflammatory pathways of Parkinson's disease (PD). Although this association is supported by epidemiological and clinical studies, the underlying mechanisms are unclear. Microglia and astrocytes play crucial roles in the pathophysiology of both MDD and PD. In PD, these cells can be activated by misfolded forms of the protein α-synuclein to release cytokines that can interact with multiple different physiological processes to produce depressive symptoms, including monoamine transport and availability, the hypothalamus-pituitary axis, and neurogenesis. In MDD, glial cell activation can be induced by peripheral inflammatory agents that cross the blood-brain barrier and/or c-Fos signalling from neurons. The resulting neuroinflammation can cause neurodegeneration due to oxidative stress and glutamate excitotoxicity, contributing to PD pathology. Astrocytes are another major link due to their recognized role in the glymphatic clearance mechanism. Research suggesting that MDD causes astrocytic destruction or structural atrophy highlights the possibility that accumulation of α-synuclein in the brain is facilitated as the brain cannot adequately clear the protein aggregates. This review examines research into the overlapping pathophysiology of MDD and PD with particular focus on the roles of glial cells and neuroinflammation.
Collapse
Affiliation(s)
- Angela A Tran
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Myra De Smet
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Southport, Queensland, Australia
| | - Tien K Khoo
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
11
|
Yu G, Wang Y, Zhao J. Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson's disease. Biol Chem 2021; 403:253-263. [PMID: 34653323 DOI: 10.1515/hsz-2021-0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson's disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.
Collapse
Affiliation(s)
- Gege Yu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Yonghui Wang
- Department of Neurosurgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Weifang, Shandong, 262500, China.,Department of Neurosurgery, Qingzhou People's Hospital, Weifang, 262500, China
| | - Jinhua Zhao
- Department of Neurology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
12
|
Jellinger KA, Wenning GK, Stefanova N. Is Multiple System Atrophy a Prion-like Disorder? Int J Mol Sci 2021; 22:10093. [PMID: 34576255 PMCID: PMC8472631 DOI: 10.3390/ijms221810093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive, fatal neurodegenerative disease of uncertain aetiology that belongs to the family of α-synucleinopathies. It clinically presents with parkinsonism, cerebellar, autonomic, and motor impairment in variable combinations. Pathological hallmarks are fibrillary α-synuclein (αSyn)-rich glial cytoplasmic inclusions (GCIs) mainly involving oligodendroglia and to a lesser extent neurons, inducing a multisystem neurodegeneration, glial activation, and widespread demyelinization. The neuronal αSyn pathology of MSA has molecular properties different from Lewy bodies in Parkinson's disease (PD), both of which could serve as a pool of αSyn (prion) seeds that could initiate and drive the pathogenesis of synucleinopathies. The molecular cascade leading to the "prion-like" transfer of "strains" of aggregated αSyn contributing to the progression of the disease is poorly understood, while some presented evidence that MSA is a prion disease. However, this hypothesis is difficult to reconcile with postmortem analysis of human brains and the fact that MSA-like pathology was induced by intracerebral inoculation of human MSA brain homogenates only in homozygous mutant 53T mice, without production of disease-specific GCIs, or with replication of MSA prions in primary astrocyte cultures from transgenic mice expressing human αSyn. Whereas recent intrastriatal injection of Lewy body-derived or synthetic human αSyn fibrils induced PD-like pathology including neuronal αSyn aggregates in macaques, no such transmission of αSyn pathology in non-human primates by MSA brain lysate has been reported until now. Given the similarities between αSyn and prions, there is a considerable debate whether they should be referred to as "prions", "prion-like", "prionoids", or something else. Here, the findings supporting the proposed nature of αSyn as a prion and its self-propagation through seeding as well as the transmissibility of neurodegenerative disorders are discussed. The proof of disease causation rests on the concordance of scientific evidence, none of which has provided convincing evidence for the classification of MSA as a prion disease or its human transmission until now.
Collapse
Affiliation(s)
| | - Gregor K. Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (G.K.W.); (N.S.)
| |
Collapse
|
13
|
Blood-Derived α-Synuclein Aggregated in the Substantia Nigra of Parabiotic Mice. Biomolecules 2021; 11:biom11091287. [PMID: 34572500 PMCID: PMC8471402 DOI: 10.3390/biom11091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
As a pathological biomarker of Parkinson’s disease, α-synuclein is thought to be a prion-like protein, but evidence for the transmission of α-synuclein from blood to the brain is unclear. The goals of this study were to determine whether blood-derived α-synuclein could enter the brains of mice and whether α-synuclein in the brain could be cleared by parabiosis. Heterochronic parabiosis was performed on SNCAA53T transgenic mice (A53T mice) and wildtype mice. The levels of human α-synuclein in the blood and substantia nigra of wildtype mice were significantly increased after 4-month parabiosis with A53T mice. Moreover, the expression of α-synuclein filament, but not of total α-synuclein, was significantly increased in the substantia nigra of wildtype mice that were paired with A53T mice. However, the levels of human α-synuclein displayed no significant change in the serum, blood, or substantia nigra of A53T mice. These results provide direct evidence that pathological α-synuclein can be transmitted from blood to the brain in the heterochronic parabiosis system; however, it appears to be difficult to clear it from the brain in a short period of time.
Collapse
|
14
|
Beekes M. The Neural Gut-Brain Axis of Pathological Protein Aggregation in Parkinson's Disease and Its Counterpart in Peroral Prion Infections. Viruses 2021; 13:1394. [PMID: 34372600 PMCID: PMC8310171 DOI: 10.3390/v13071394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
A neuropathological hallmark of Parkinson's disease (PD) is the cerebral deposition of abnormally aggregated α-synuclein (αSyn). PD-associated αSyn (αSynPD) aggregates are assumed to act, in a prion-like manner, as proteinaceous nuclei ("seeds") capable of self-templated propagation. Braak and colleagues put forward the idea of a neural gut-brain axis mediating the centripetal spread of αSynPD pathology from the enteric nervous system (ENS) to the brain in PD. This has sparked great interest and initiated passionate discussions both in support of and opposing the suggested hypothesis. A precedent for the spread of protein seeds or seeding from the gastro-intestinal (GI) tract to the central nervous system (CNS) had been previously revealed for pathological prion protein in peroral prion infections. This article scrutinizes the similarities and dissimilarities between the pathophysiological spread of disease-associated protein aggregation along the neural gut-brain axis in peroral prion infections and PD. On this basis, evidence supporting the proposed neural gut-brain axis in PD is concluded to be not as robust as that established for peroral prion infections. New tools for the ultrasensitive detection of αSynPD-associated seeding activity in archived or fresh human tissue samples such as real-time quaking induced conversion (RT-QuIC) or protein misfolding cyclic amplification (PMCA) assays can possibly help to address this deficit in the future.
Collapse
Affiliation(s)
- Michael Beekes
- Prion and Prionoid Research Unit, ZBS 6-Proteomics and Spectroscopy, ZBS-Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
15
|
Bender H, Fietz SA, Richter F, Stanojlovic M. Alpha-Synuclein Pathology Coincides With Increased Number of Early Stage Neural Progenitors in the Adult Hippocampus. Front Cell Dev Biol 2021; 9:691560. [PMID: 34307368 PMCID: PMC8293917 DOI: 10.3389/fcell.2021.691560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Alpha-synuclein pathology driven impairment in adult neurogenesis was proposed as a potential cause of, or at least contributor to, memory impairment observed in both patients and animal models of Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Mice overexpressing wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn, line 61) uniquely replicate early cognitive deficits together with multiple other characteristic motor and non-motor symptoms, alpha-synuclein pathology and dopamine loss. Here we report overt intracellular accumulation of phosphorylated alpha-synuclein in the hippocampus of these transgenic mice. To test whether this alters adult neurogenesis and total number of mature neurons, we employed immunohistochemistry and an unbiased stereology approach to quantify the distinct neural progenitor cells and neurons in the hippocampal granule cell layer and subgranular zone of 6 (prodromal stage) and 16-month (dopamine loss) old Thy1-aSyn mice. Surprisingly, we observed an increase in the number of early stage, i.e., Pax6 expressing, progenitors whereas the numbers of late stage, i.e., Tbr2 expressing, progenitors and neurons were not altered. Astroglia marker was increased in the hippocampus of transgenic mice, but this was not specific to the regions where adult neurogenesis takes place, arguing against a commitment of additional early stage progenitors to the astroglia lineage. Together, this uncovers a novel aspect of alpha-synuclein pathology in adult neurogenesis. Studying its mechanisms in Thy1-aSyn mice could lead to discovery of effective therapeutic interventions for cognitive dysfunction in PD and DLB.
Collapse
Affiliation(s)
- Hannah Bender
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
16
|
Marvastizadeh N, Dabirmanesh B, Sajedi RH, Khajeh K. Anti-amyloidogenic effect of artemin on α-synuclein. Biol Chem 2021; 401:1143-1151. [PMID: 32673279 DOI: 10.1515/hsz-2019-0446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
α-Synuclein fibrillation is now regarded as a major pathogenic process in Parkinson's disease and its proteinaceous deposits are also detected in other neurological disorders including Alzheimer's disease. Therefore anti-amyloidegenic compounds may delay or prevent the progression of synucleinopathies disease. Molecular chaperones are group of proteins which mediate correct folding of proteins by preventing unsuitable interactions which may lead to aggregation. The objective of this study was to investigate the anti-amyloidogenic effect of molecular chaperone artemin on α-synuclein. As the concentration of artemin was increased up to 4 μg/ml, a decrease in fibril formation of α-synuclein was observed using thioflavin T (ThT) fluorescence and congo red (CR) assay. Transmission electron microscopy (TEM) images also demonstrated a reduction in fibrils in the presence of artemin. The secondary structure of α-synuclein was similar to its native form prior to fibrillation when incubated with artemin. A cell-based assay has shown that artemin inhibits α-synuclein aggregation and reduce cytotoxicity, apoptosis and reactive oxygen species (ROS) production. Our results revealed that artemin has efficient chaperon activity for preventing α-synuclein fibril formation and toxicity.
Collapse
Affiliation(s)
- Narges Marvastizadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
17
|
Thomzig A, Wagenführ K, Pinder P, Joncic M, Schulz-Schaeffer WJ, Beekes M. Transmissible α-synuclein seeding activity in brain and stomach of patients with Parkinson's disease. Acta Neuropathol 2021; 141:861-879. [PMID: 33895878 PMCID: PMC8068459 DOI: 10.1007/s00401-021-02312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 02/02/2023]
Abstract
Cerebral deposition of abnormally aggregated α-synuclein (αSyn) is a neuropathological hallmark of Parkinson’s disease (PD). PD-associated αSyn (αSynPD) aggregates can act as proteinaceous nuclei (“seeds”) able of self-templated propagation. Since this is strikingly reminiscent to properties of proteinaceous infectious particles (prions), lessons learned from prion diseases suggest to test whether transferred αSynPD can propagate and induce neurological impairments or disease in a new host. Two studies that addressed this question provided divergent results. Intracerebral (i.c.) injection of Lewy body extracts from PD patients caused cerebral αSyn pathology, as well as nigrostriatal neurodegeneration, of wild-type mice and macaques, with the mice also showing motor impairments (Recasens et al. 2014, Ann Neurol 75:351–362). In contrast, i.c. transmission of homogenates from PD brains did not stimulate, after “> 360” days post-injection (dpi), pathological αSyn conversion or clinical symptoms in transgenic TgM83+/− mice hemizygously expressing mutated (A53T) human αSyn (Prusiner et al. 2015, PNAS 112:E5308–E5317). To advance the assessment of possible αSynPD hazards by providing further data, we examined neuropathological and clinical effects upon i.c. transmission of brain, stomach wall and muscle tissue as well as blood from PD patients in TgM83+/− mice up to 612 dpi. This revealed a subtle, yet distinctive stimulation of localized αSyn aggregation in the somatodendritic compartment and dystrophic neurites of individual or focally clustered cerebral neurons after challenge with brain and stomach wall homogenates. No such effect was observed with transmitted blood or homogenized muscle tissue. The detected stimulation of αSyn aggregation was not accompanied by apparent motor impairments or overt neurological disease in TgM83+/− mice. Our study substantiated that transmitted αSynPD seeds, including those from the stomach wall, are able to propagate in new mammalian hosts. The consequences of such propagation and potential safeguards need to be further investigated.
Collapse
|
18
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Pinder P, Thomzig A, Schulz-Schaeffer WJ, Beekes M. Alpha-synuclein seeds of Parkinson's disease show high prion-exceeding resistance to steam sterilization. J Hosp Infect 2020; 108:25-32. [PMID: 33137444 DOI: 10.1016/j.jhin.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Cerebral deposition of abnormally misfolded and aggregated alpha-synuclein (αSyn) is a neuropathological hallmark of Parkinson's disease (PD). Pathologically aggregated αSyn species of PD (αSynPD) can act, in a 'prion-like' manner, as proteinaceous nuclei ('seeds') which are capable of self-templated propagation. This has raised concerns that αSynPD seeds transmitted iatrogenically between humans may stimulate αSyn pathologies or clinically harmful effects in the recipients. Effective decontamination when reprocessing medical devices could significantly counteract such risks. Steam sterilization at 134°C is recommended as an essential pathogen inactivation step in many reprocessing guidelines for medical devices, and also shows effectiveness against prions, the self-propagating biological agents long thought to exhibit the highest resistance to steam sterilization. METHODS This study examined the reduction in αSynPD seeding activity in brain tissue homogenates from patients with PD after steam sterilization at 134°C using a specifically adapted real-time quaking induced conversion assay. FINDINGS Titres of approximately 1010 50% seeding doses per gram were detected in non-steam-sterilized caudate nucleus tissue of patients with PD by endpoint titration. Five minutes of steam sterilization reduced this titre by only 2.25 ± 0.15 decadic-logarithmic units, with an extension of the sterilization time to 90 min not causing additional inactivation. These findings reveal that αSynPD species are disease-associated biological agents with seeding activity that has higher resistance to steam sterilization than prions. CONCLUSION The remarkable heat resistance of αSynPD seeds calls for thoroughly validated cleaning and disinfection methods that reliably remove or inactivate possible contaminations of seeding-active αSyn aggregates when reprocessing medical devices.
Collapse
Affiliation(s)
- P Pinder
- Prion and Prionoid Research Unit, ZBS 6 - Proteomics and Spectroscopy, ZBS - Centre for Biological Threads and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Thomzig
- Prion and Prionoid Research Unit, ZBS 6 - Proteomics and Spectroscopy, ZBS - Centre for Biological Threads and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - W J Schulz-Schaeffer
- Institute of Neuropathology, Saarland University Medical Centre, Homburg, Germany
| | - M Beekes
- Prion and Prionoid Research Unit, ZBS 6 - Proteomics and Spectroscopy, ZBS - Centre for Biological Threads and Special Pathogens, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
20
|
Plasma cytokine profile in synucleinophaties with dementia. J Clin Neurosci 2020; 78:323-326. [DOI: 10.1016/j.jocn.2020.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
|
21
|
Regulation of immune-driven pathogenesis in Parkinson's disease by gut microbiota. Brain Behav Immun 2020; 87:890-897. [PMID: 31931152 DOI: 10.1016/j.bbi.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most significant medical and social burdens of our time. The prevalence of PD increases with age and the number of individuals diagnosed with PD is expected to double from 6.9 million in 2015 to 14.2 million in 2040. To date, no drugs can stop the ongoing neurodegeneration caused by PD due to its unclear and complex pathogenic mechanisms. It has been wildly recognized that both gut microbiota and neuro-immunity are involved in the pathology of PD. In this review, we intend to provide a comprehensive overview of current knowledge on how gut microbiota involved in immune-driven pathogenesis of PD, and its potential as a new target of dietary and/or therapeutic interventions for PD.
Collapse
|
22
|
Chatterjee D, Kordower JH. Immunotherapy in Parkinson’s disease: Current status and future directions. Neurobiol Dis 2019; 132:104587. [DOI: 10.1016/j.nbd.2019.104587] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
|
23
|
Biagioni F, Ferese R, Limanaqi F, Madonna M, Lenzi P, Gambardella S, Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res 2019; 1719:157-175. [DOI: 10.1016/j.brainres.2019.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
|
24
|
NLRP3 inflammasome pathway is involved in olfactory bulb pathological alteration induced by MPTP. Acta Pharmacol Sin 2019; 40:991-998. [PMID: 30728466 DOI: 10.1038/s41401-018-0209-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Olfactory bulb, as one of sensory organs opening to the outside, is susceptible to toxic environment and easy to deteriorate. Recent studies in Parkinson's disease (PD) patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys have shown that abnormal α-synuclein is accumulated in the olfactory glomeruli, suggesting that the lesions of PD are not only confined to the substantia nigra (SN) but also located in the olfactory bulb. Thus, olfactory bulb might be the region of onset in PD pathogenesis and a targeted region for diagnosis and treatment of PD. However, the relationship between olfactory bulb and pathogenesis of PD remains unclear. In the present study, we investigated the inflammatory pathological alterations in olfactory bulb and the underlying mechanisms in chronic MPTP mice. Mice were treated with MPTP/P, i.e., MPTP (25 mg/kg, s.c.) plus probenecid (250 mg/kg, i.p.) every 4 days, for ten times. The mice displayed typical parkinsonian syndrome. Then we examined their olfactory function and the pathologic changes in olfactory bulb. The mice showed obvious olfactory dysfunction in a buried pellet test. Immunohistochemical studies revealed that tyrosine hydroxylase (TH) protein levels were significantly decreased, whereas abnormal α-synuclein was significantly increased in the olfactory bulbs. Furthermore, the olfactory bulbs in MPTP/P-treated mice showed significantly increased levels of interleukin-1β (IL-1β), caspase-1, glial fibrillary acidic protein (GFAP), Toll receptor 4 (TLR4), phosphorylation of p65, as well as activated molecules of NOD-like receptor protein 3 (NLRP3) that were associated with neuroinflammation. Our results demonstrate that MPTP/P-caused olfactory bulb damage might be related to NLRP3-mediated inflammation.
Collapse
|
25
|
Brundin P, Coetzee GA. Genetically engineered stem cell-derived neurons can be rendered resistant to alpha-synuclein aggregate pathology. Eur J Neurosci 2019; 49:316-319. [PMID: 30614081 DOI: 10.1111/ejn.14333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerhard A Coetzee
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|