1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
2
|
Wang J, Wu J. Efficacy of combined electroacupuncture and moxibustion for treatment of neurogenic bladder after spinal cord injury: A retrospective analysis. Medicine (Baltimore) 2024; 103:e40909. [PMID: 39705425 DOI: 10.1097/md.0000000000040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
This retrospective study evaluates the clinical efficacy of combined electroacupuncture and moxibustion for the treatment of neurogenic bladder in patients with spinal cord injury. Ninety patients with neurogenic bladder after spinal cord injury who were admitted to the hospital between January 2021 and August 2023 were included. The patients were divided into the study and control groups (n = 45 each) using a random number table method. The study group was treated with electroacupuncture combined with moxibustion, while the control group was treated with electroacupuncture alone. The variables evaluated to assess the clinical efficacy of each treatment included number of cases in which bladder function reached a balanced state, initial bladder capacity sensation, maximum detrusor pressure before versus after treatment, maximum urine flow rate, maximum renal pelvic separation width, urine white blood cell count, and subjective quality of life profile score. In the study group, bladder pressure, residual urine volume, frequency of urination, and subjective quality of life profile score increased after versus before treatment (P < .05), whereas the maximal renal pelvis separation width and urinary white blood cell count decreased after versus before treatment (P < .05). Moreover, the study group exhibited significantly greater improvement than the control group (P < .05). The efficacy rates in the study and control groups were 75.6% and 95.6%, respectively; this difference was statistically significant (P < .05). Compared to electroacupuncture alone, electroacupuncture combined with moxibustion reduced the incidence of urinary tract infection, reduced residual urine volume, increased bladder capacity, and achieved balanced bladder function in patients with neurogenic bladder.
Collapse
Affiliation(s)
- Juan Wang
- Jingxing County Hospital, Shijiazhuang, Hebei Province, China
| | | |
Collapse
|
3
|
Marques Dantas RL, Vilela DN, Melo MC, Fernandes G, Lemos N, Faber J. Neurostimulation on lumbosacral nerves as a new treatment for spinal cord injury impairments and its impact on cortical activity: a narrative review. Front Hum Neurosci 2024; 18:1478423. [PMID: 39734668 PMCID: PMC11671511 DOI: 10.3389/fnhum.2024.1478423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause significant motor, sensory, and autonomic dysfunction by disrupting neural connections. As a result, it is a global health challenge that requires innovative interventions to improve outcomes. This review assesses the wide-ranging impacts of SCI and focuses on the laparoscopic implantation of neuroprosthesis (LION) as an emerging and promising rehabilitation technique. The LION technique involves the surgical implantation of electrodes on lumbosacral nerves to stimulate paralyzed muscles. Recent findings have demonstrated significant improvements in mobility, sexual function, and bladder/bowel control in chronic SCI patients following LION therapy. This manuscript revisits the potential physiological mechanisms underlying these results, including neuroplasticity and modulation of autonomic activity. Additionally, we discuss potential future applications and amendments of LION therapy. This study emphasizes the potential of neuromodulation as a complementary approach to traditional rehabilitation, that can provide a beacon of hope for improving functionality and quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Rodrigo Lantyer Marques Dantas
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Diego N. Vilela
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Mariana Cardoso Melo
- Biomedical Engineering Division, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Gustavo Fernandes
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
- Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Nucelio Lemos
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
- Department of Gynecology and Neuropelveology, Increasing-Institute of Care and Rehabilitation in Neuropelveology and Gynecology, São Paulo, Brazil
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jean Faber
- Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Biomedical Engineering Division, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| |
Collapse
|
4
|
Wu F, Li L, Li Z, Zhou D, Huang Z, Sang D, Hao C. Mechanism of Mettl14 regulating AIM2 inflammasome activation and neuronal apoptosis and pyroptosis in spinal cord injury by mediating PPARγ m6A methylation. J Physiol Biochem 2024; 80:881-894. [PMID: 39400644 DOI: 10.1007/s13105-024-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Spinal cord injury (SCI) represents a destructive pathological and neurological state. Methyltransferase-like 14 (Mettl14)-mediated m6A modification links to spinal cord injury (SCI), and we explored its mechanism. SCI mouse models were subjected to si-Mettl14 and si-negative control treatments and mouse behavior, pathological condition and apoptosis assessments. The oxygen/glucose deprivation (OGD)-induced spinal cord neuronal cell models were processed with si-Mettl14 and si-peroxisome proliferator-activated receptor γ (PPARγ) plasmids, and pcDNA3.1-YTHDF2 or synthetic dsDNA Poly(dA: dT), followed by viability and apoptosis evaluation by MTT and flow cytometry. Levels of Mettl14, PPARγ, and YTHDF2 mRNAs and proteins, AIM2 inflammasome activation-associated and pyroptosis marker proteins, PPARγ m6A methylation and pyroptosis-related inflammatory factors were determined by RT-qPCR, Western blot, Me-RIP and ELISA, with PPARγ mRNA stability and YTHDF2-PPARγ interaction assessed. Mettl14 and PPARγ m6A modification levels rose in SCI spinal cord tissues, while PPARγ levels dropped. Mettl14 knockdown dampened m6A modification, up-regulated PPARγ levels, weakened neuronal apoptosis, and ameliorated SCI in mice. OGD down-regulated PPARγ and accelerated OGD-induced neuronal apoptosis and pyroptosis via inducing Mettl14-mediated m6A modification. Mettl14 amplified PPARγ mRNA degradation and down-regulated PPARγ by mediating m6A methylation via the YTHDF2-dependent pathway. Mettl14 silencing-mediated PPARγ m6A methylation mitigated OGD-induced neuronal apoptosis and pyroptosis by inactivating AIM2 inflammasome. Mettl14 triggered activated AIM2 inflammasomes, promoted neuronal apoptosis and pyroptosis, and worsened SCI in SCI mice via mediating PPARγ m6A methylation. Mettl14 regulates AIM2 inflammasome activation, and redounds to spinal cord neuronal apoptosis and pyroptosis in SCI by mediating m6A methylation of PPARγ.
Collapse
Affiliation(s)
- Fan Wu
- Department of Orthopedics, Geriatric Hospital Affiliated of Wuhan University of Science and Technology, Wuhan, Hubei, 430075, People's Republic of China
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Liqun Li
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Zhigang Li
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China
| | - Dabiao Zhou
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People's Republic of China
| | - Zhihui Huang
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People's Republic of China
| | - Dawei Sang
- Department of Orthopedics, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, People's Republic of China.
| | - Chizi Hao
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
5
|
Tang W, Zhao K, Li X, Zhou X, Liao P. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote the Recovery of Spinal Cord Injury and Inhibit Ferroptosis by Inactivating IL-17 Pathway. J Mol Neurosci 2024; 74:33. [PMID: 38536541 DOI: 10.1007/s12031-024-02209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell (MSC)-derived exosomes are considered as alternative to cell therapy in various diseases. This study aimed to understand the effect of bone marrow MSC-derived exosomes (BMMSC-exos) on spinal cord injury (SCI) and to unveil its regulatory mechanism on ferroptosis. Exosomes were isolated from BMMSCs and the uptake of BMMSCs-exos by PC12 cells was determined using PKH67 staining. The effect of BMMSC-exos on SCI in rats was studied by evaluating pathological changes of spinal cord tissues, inflammatory cytokines, and ferroptosis-related proteins. Transcriptome sequencing was used to discover the differential expressed genes (DEGs) between SCI rats and BMMSC-exos-treated rats followed by functional enrichment analyses. The effect of BMMSC-exos on ferroptosis and interleukin 17 (IL-17) pathway was evaluated in SCI rats and oxygen-glucose deprivation (OGD)-treated PC12 cells. The results showed that particles extracted from BMMSCs were exosomes that could be taken up by PC12 cells. BMMSC-exos treatment ameliorated injuries of spinal cord, suppressed the accumulation of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS), with the elevated glutathione (GSH). Also, BMMSC-exos downregulated the expression of acyl-CoA synthetase long chain family member 4 (ACSL4) and upregulated glutathione peroxidase 4 (GPX4) and cysteine/glutamate antiporter xCT. A total of 110 DEGs were discovered and they were mainly enriched in IL-17 signaling pathway. Further in vitro and in vivo experiments showed that BMMSC-exos inactivated IL-17 pathway. BMMSC-exos promote the recovery of SCI and inhibit ferroptosis by inhibiting the IL-17 pathway, which provides BMMSC-exos as an alternative to the management of SCI.
Collapse
Affiliation(s)
- Wen Tang
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China.
| | - Kai Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Xiaobo Li
- Center for Technology of Information and Network Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaozhong Zhou
- Department of Trauma Center, The First Affiliated Hospital of Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| | - Peigen Liao
- The First Clinical Medical College, Gannan Medical University, No. 128, West Jinling Road, Ganzhou, 341000, China
| |
Collapse
|
6
|
Tajali S, Balbinot G, Pakosh M, Sayenko DG, Zariffa J, Masani K. Modulations in neural pathways excitability post transcutaneous spinal cord stimulation among individuals with spinal cord injury: a systematic review. Front Neurosci 2024; 18:1372222. [PMID: 38591069 PMCID: PMC11000807 DOI: 10.3389/fnins.2024.1372222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Transcutaneous spinal cord stimulation (TSCS), a non-invasive form of spinal cord stimulation, has been shown to improve motor function in individuals living with spinal cord injury (SCI). However, the effects of different types of TSCS currents including direct current (DC-TSCS), alternating current (AC-TSCS), and spinal paired stimulation on the excitability of neural pathways have not been systematically investigated. The objective of this systematic review was to determine the effects of TSCS on the excitability of neural pathways in adults with non-progressive SCI at any level. Methods The following databases were searched from their inception until June 2022: MEDLINE ALL, Embase, Web of Science, Cochrane Library, and clinical trials. A total of 4,431 abstracts were screened, and 23 articles were included. Results Nineteen studies used TSCS at the thoracolumbar enlargement for lower limb rehabilitation (gait & balance) and four studies used cervical TSCS for upper limb rehabilitation. Sixteen studies measured spinal excitability by reporting different outcomes including Hoffmann reflex (H-reflex), flexion reflex excitability, spinal motor evoked potentials (SMEPs), cervicomedullay evoked potentials (CMEPs), and cutaneous-input-evoked muscle response. Seven studies measured corticospinal excitability using motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS), and one study measured somatosensory evoked potentials (SSEPs) following TSCS. Our findings indicated a decrease in the amplitude of H-reflex and long latency flexion reflex following AC-TSCS, alongside an increase in the amplitudes of SMEPs and CMEPs. Moreover, the application of the TSCS-TMS paired associative technique resulted in spinal reflex inhibition, manifested by reduced amplitudes in both the H-reflex and flexion reflex arc. In terms of corticospinal excitability, findings from 5 studies demonstrated an increase in the amplitude of MEPs linked to lower limb muscles following DC-TSCS, in addition to paired associative stimulation involving repetitive TMS on the brain and DC-TSCS on the spine. There was an observed improvement in the latency of SSEPs in a single study. Notably, the overall quality of evidence, assessed by the modified Downs and Black Quality assessment, was deemed poor. Discussion This review unveils the systematic evidence supporting the potential of TSCS in reshaping both spinal and supraspinal neuronal circuitries post-SCI. Yet, it underscores the critical necessity for more rigorous, high-quality investigations.
Collapse
Affiliation(s)
- Shirin Tajali
- KITE Research Institute – University Health Network, Toronto, ON, Canada
| | - Gustavo Balbinot
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application – CRANIA, University Health Network, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, University Health Network, Toronto Rehabilitation Institute, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jose Zariffa
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Hong H, Xu G, Bao G, Zhang J, Chen C, Chen J, Wu C, Jiang J, Huang J, Huang H, Cui Z. VIRMA promotes neuron apoptosis via inducing m6A methylation of STK10 in spinal cord injury animal models. CNS Neurosci Ther 2024; 30:e14453. [PMID: 37721438 PMCID: PMC10916435 DOI: 10.1111/cns.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) occurs as a devastating neuropathic disease. The role of serine-threonine kinase 10 (STK10) in the development of SCI remains unclear. OBJECTIVE This study aimed to investigate the action of m6A methylation on STK10 in the apoptosis of spinal cord neurons in the pathogenesis of SCI and the possible underlying mechanisms. METHODS Rat model of SCI was established and subsequently evaluated for motor function, pathological conditions, and apoptosis of spinal cord neurons. And the effects of overexpression of STK10 on neuronal cells in animal models of spinal cord injury and glyoxylate deprivation (OGD) cell models were evaluated. m6A2Target database and SRAMP database were used to predict the m6A methylation sites of STK10. The methylation kits were used to detect overall m6A methylation. Finally, the interaction between STK10 and vir like m6A methyltransferase associated (VIRMA) was explored in animal and cellular models. RESULTS STK10 is markedly decreased in spinal cord injury models and overexpression of STK10 inhibits neuronal apoptosis. VIRMA can induce m6A methylation of STK10. VIRMA is over-expressed in spinal cord injury models and negatively regulates the expression of STK10. m6A methylation and apoptosis of neuronal cells are reduced by the knockdown of VIRMA and STK10 shRNA have shown the opposite effects. CONCLUSIONS VIRMA promotes neuronal apoptosis in spinal cord injury by regulating STK10 m6A methylation.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Guanhua Xu
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
- Research Institute for Spine and Spinal Cord Disease of Nantong UniversityNantongChina
| | - Guofeng Bao
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Jinlong Zhang
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Chu Chen
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Jiajia Chen
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Chunshuai Wu
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Jiawei Jiang
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Jiayi Huang
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
| | - Haiming Huang
- Department of UltrasonographyThe Second Affiliated Hospital of Nantong UniversityNantong UniversityNantongChina
| | - Zhiming Cui
- Department of Spine SurgeryThe second Affiliated Hospital of Nantong UniversityNantongChina
- Research Institute for Spine and Spinal Cord Disease of Nantong UniversityNantongChina
| |
Collapse
|
8
|
Taheri T, Hosseindoost S, Kazemi H, Kamali S, Kolivand P, Gharaylou Z. Comorbidity in spinal cord injury in Iran: A narrative review. Transl Neurosci 2024; 15:20220343. [PMID: 38979518 PMCID: PMC11229886 DOI: 10.1515/tnsci-2022-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 07/10/2024] Open
Abstract
Spinal cord injury (SCI) is a severe medical condition that affects millions of people worldwide each year. In Iran, an estimated 9 out of every 100,000 individuals experience traumatic SCI occurrences. Long-term disabilities and comorbidities stemming from SCI often necessitate multiple therapeutic interventions. The aim of this study is to evaluate the morbidity in Iranian SCI patients. In this study, a four-step process was used to select, extract, analyze, and synthesize relevant literature. The search covered 750 records from five databases, resulting in 25 articles included in the review. These articles, published between 2000 and 2023, utilized cross-sectional, qualitative, or cohort designs. The findings explored the prevalence, risk factors, and consequences of comorbidities associated with SCI, categorized into four themes: physical, sexual, psychological, and metabolic morbidity. Physical morbidity refers to medical conditions or complications affecting body functions or structures in SCI patients. The most frequently reported cases include pressure ulcers, pain, osteoporosis, fractures, impaired pulmonary function, renal failure, and obesity. Metabolic morbidity includes conditions such as vitamin D deficiency and cardiometabolic risk factors. Psychological morbidity encompasses depression, anxiety, and adjustment disorders. Sexual morbidity refers to conditions or complications affecting the sexual function or satisfaction of SCI patients. This narrative literature review offers a comprehensive examination of various aspects of SCI in Iranian patients. The review identifies numerous challenges and difficulties faced by SCI patients while also highlighting protective factors that can improve their well-being. Additionally, the review acknowledges gaps and limitations within the current literature and suggests possible avenues for future research.
Collapse
Affiliation(s)
- Taher Taheri
- Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Kazemi
- Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran
| | - Seyedehalia Kamali
- Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran
| | | | - Zeinab Gharaylou
- Shefa Neuroscience Research Center, Khatamolanbia Hospital, Tehran, Iran
| |
Collapse
|
9
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
10
|
Li JL, Fu GQ, Wang YY, Bian MM, Xu YM, Zhang L, Chen YQ, Zhang N, Ding SQ, Wang R, Fang R, Tang J, Hu JG, Lü HZ. The polarization of microglia and infiltrated macrophages in the injured mice spinal cords: a dynamic analysis. PeerJ 2023; 11:e14929. [PMID: 36846458 PMCID: PMC9951800 DOI: 10.7717/peerj.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Background Following spinal cord injury (SCI), a large number of peripheral monocytes infiltrate into the lesion area and differentiate into macrophages (Mø). These monocyte-derived Mø are very difficult to distinguish from the local activated microglia (MG). Therefore, the term Mø/MG are often used to define the infiltrated Mø and/or activated MG. It has been recognized that pro-inflammatory M1-type Mø/MG play "bad" roles in the SCI pathology. Our recent research showed that local M1 cells are mainly CD45-/lowCD68+CD11b+ in the subacute stage of SCI. Thus, we speculated that the M1 cells in injured spinal cords mainly derived from MG rather than infiltrating Mø. So far, their dynamics following SCI are not yet entirely clear. Methods Female C57BL/6 mice were used to establish SCI model, using an Infinite Horizon impactor with a 1.3 mm diameter rod and a 50 Kdynes force. Sham-operated (sham) mice only underwent laminectomy without contusion. Flow cytometry and immunohistofluorescence were combined to analyze the dynamic changes of polarized Mø and MG in the acute (1 day), subacute (3, 7 and 14 days) and chronic (21 and 28 days) phases of SCI. Results The total Mø/MG gradually increased and peaked at 7 days post-injury (dpi), and maintained at high levels 14, 21 and 28 dpi. Most of the Mø/MG were activated, and the Mø increased significantly at 1 and 3 dpi. However, with the pathological process, activated MG increased nearly to 90% at 7, 14, 21 and 28 dpi. Both M1 and M2 Mø were increased significantly at 1 and 3 dpi. However, they decreased to very low levels from 7 to 28 dpi. On the contrary, the M2-type MG decreased significantly following SCI and maintained at a low level during the pathological process.
Collapse
Affiliation(s)
- Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Fang
- Department of Clinical Medical, Bengbu Medical College, Bengbu, China
| | - Jie Tang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Liao S, Liu Y, Kong Y, Shi H, Xu B, Tang B, Li C, Chen Y, Chen J, Du J, Zhang Y. A bionic multichannel nanofiber conduit carrying Tubastatin A for repairing injured spinal cord. Mater Today Bio 2022; 17:100454. [PMID: 36310542 PMCID: PMC9615035 DOI: 10.1016/j.mtbio.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord injury is a kind of nerve injury disease with high disability rate. The bioscaffold, which presents a biomimetic structure, can be used as “bridge” to fill the cavity formed by the liquefaction and necrosis of spinal nerve cells, and connects the two ends of the fracture to promote the effective recovery of nerve function. Tubasatin A (TUBA) is a potent selective histone deacetylase 6 (HDAC6) inhibitor, which can inhibit the overexpression of HDAC6 after spinal cord injury. However, TUBA is limited by high efflux ratios, low brain penetration and uptake in the treatment of spinal cord injury. Therefore, an effective carrier with efficient load rate, sustained drug release profile, and prominent repair effect is urgent to be developed. In this study, we have prepared a bionic multichannel Tubasatin A loaded nanofiber conduit (SC-TUBA(+)) through random electrospinning and post-triple network bond crosslinking for inhibiting HDAC6 as well as promoting axonal regeneration during spinal cord injury treatment. The Tubasatin A-loaded nanofibers were shown to be successfully contained in poly(glycolide-co-ε-caprolactone) (PGCL)/silk fibroin (SF) matrix, and the formed PGCL/SF-TUBA nanofibers exhibited an uniform and smooth morphology and appropriate surface wettability. Importantly, the TUBA loaded nanofibers showed a sustained-release profile, and still maintains activity and promoted the extension of axonal. In addition, the total transection large span model of rat back and immunofluorescent labeling, histological, and neurobehavioral analysis were performed for inducing spinal cord injury at T9-10, evaluating therapeutic efficiency of SC-TUBA(+), and elucidating the mechanism of TUBA release system in vivo. All the results demonstrated the significantly reduced glial scar formation, increased nerve fiber number, inhibited inflammation, reduced demyelination and protected bladder tissue of TUBA-loaded nanofibers for spinal cord injury compared to SC-TUBA, SC and Control groups, indicating their great potential for injured spinal cord healing clinically.
Collapse
Affiliation(s)
- Shiyang Liao
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yonghang Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China
| | - Yanlong Kong
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Haitao Shi
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bitong Xu
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bo Tang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Congbin Li
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yitian Chen
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Jing Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China,Corresponding author. School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China.
| | - Yadong Zhang
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China,Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China,Corresponding author. Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China.
| |
Collapse
|
12
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D, Li C. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol 2022; 59:6771-6789. [PMID: 36038697 DOI: 10.1007/s12035-022-03006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) is previously reported to present a certain effect on treating spinal cord injury (SCI), while the underlying mechanism is largely uncovered. Therefore, the current study aimed to investigate the involvement of exosome-delivered circRNA profile in the BMSC's effect on pyroptosis for SCI treatment. H2O2 treated rat primary neurons were cultured with normal medium, BMSC, BMSC plus GW4869, and BMSC-derived exosome, respectively, then inflammasome-related pyroptosis markers, and circRNA profiles were detected. Subsequently, circ_003564-knockdown BMSC exosome was transfected into H2O2 treated rat primary neurons and NGF-stimulated PC-12 cells. Furthermore, in vivo validation was conducted. BMSC and BMSC-derived exosome both decreased inflammasome-related pyroptosis markers including cleaved caspase-1, GSDMD, NLRP3, IL-1β, and IL-18 in H2O2-treated neurons, while exosome-free BMSC (BMSC plus GW4869) did not obviously reduce these factors. Microarray assay revealed that BMSC (vs. exosome-free BMSC) and BMSC-derived exosome (vs. normal medium) greatly regulated circRNA profiles, which were enriched in neuroinflammation pathways (such as neurotrophin, apoptosis, and TNF). Among three functional candidate circRNAs (circ_015525, circ_008876, and circ_003564), circ_003564 was most effective to regulate inflammasome-related pyroptosis. Interestingly, circ_003564-knockdown BMSC exosome showed higher expression of inflammasome-related pyroptosis markers compared to negative-control-knockdown BMSC exosome in H2O2 treated primary neurons/NGF-stimulated PC-12 cells. In vivo, BMSC exosome improved the function recovery and decreased tissue injury and inflammasome-related pyroptosis in SCI rats, whose effect was attenuated by circ_003564 knockdown transfection. BMSC exosome attenuates inflammasome-related pyroptosis via delivering circ_003564, contributing to its treatment efficacy for SCI.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Changli Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Suchi Qiao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianze Liu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ke Qi
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dake Tong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
13
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|