1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Suicide and Neurotrophin Factors: A Systematic Review of the Correlation between BDNF and GDNF and Self-Killing. Healthcare (Basel) 2022; 11:healthcare11010078. [PMID: 36611538 PMCID: PMC9818650 DOI: 10.3390/healthcare11010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
According to WHO data, suicide is a public health priority. In particular, suicide is the fourth-leading cause of death in young people. Many risk factors of suicide are described, including individual-, relationship-, community-, and societal-linked ones. The leading factor is the diagnosis of mental illness. Nevertheless, not all people who attempt suicide are psychiatric patients; these characteristics help define high-risk populations. There are currently no useful biomarkers to indicate the risk of suicide. In recent years, neurotrophic factors have increasingly become of scientific interest. This review aims to summarize the current scientific knowledge on the correlation between BDNF and GDNF and suicide, to theorize whether neurotrophins could be a reliable marker for an early diagnosis of suicidal risk. The authors conducted a systematic review following PRISMA criteria. They found eight research papers in agreement with the inclusion criteria. According to the results of these studies, there may be a connection between BDNF brain levels and complete suicide, although there are discrepancies. A lack of interest in GDNF may suggest less involvement in the suicidal dynamic. Further studies may provide helpful information to researchers.
Collapse
|
3
|
Zhang X, Zhang Z, Diao W, Zhou C, Song Y, Wang R, Luo X, Liu G. Early-diagnosis of major depressive disorder: From biomarkers to point-of-care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Veenakumari M, Goyal N, Kumar M, Kshitiz KK, Kumar P. Serum glial cell derived neurotrophic factor (GDNF) as a predictor of response to HD-tDCS in bipolar affective disorder. Asian J Psychiatr 2022; 68:102965. [PMID: 34952447 DOI: 10.1016/j.ajp.2021.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Serum glial cell line derived neurotrophic factor (GDNF) homeostasis within brain circuits represent target for focal neuromodulation techniques such as high-definition transcranial direct current stimulation (HD-tDCS). In current trial 37 inpatients with bipolar disorder (BD) received active (n = 18) or sham (n = 19) anodal HD-tDCS over right dorsolateral prefrontal cortex (DLPFC). Outcome measures evaluated by YMRS (p = 0.001, effect size=0.946), BPRS (p = 0.015, effect size=0.220) scales and serum GDNF (p = 0.003, effect size = 0.287) at baseline, before and after receiving HD-tDCS revealed significant improvement (active>sham) with modest effect size. However, the study findings are limited due to small sample size and shorter duration of follow-up.
Collapse
Affiliation(s)
- M Veenakumari
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India.
| | - Nishant Goyal
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Mahesh Kumar
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - K K Kshitiz
- Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Pramod Kumar
- Rajendra Institute of Medical Sciences, Ranchi 834009, Jharkhand, India
| |
Collapse
|
5
|
Le Coz GM, Genty J, Anton F, Hanesch U. Chronic Social Stress Time-Dependently Affects Neuropathic Pain-Related Cold Allodynia and Leads to Altered Expression of Spinal Biochemical Mediators. Front Behav Neurosci 2017; 11:70. [PMID: 28536509 PMCID: PMC5422477 DOI: 10.3389/fnbeh.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Clinical data have shown that chronic exposure to stress may be accompanied by an enhancement of inflammation-related pain sensitivity. In this context, little is however known on the impact of stress on neuropathic pain. In the present study we addressed this issue by combining the chronic constriction injury (CCI) model with an ongoing social stress (OSS) paradigm. Cold plate and von Frey tests were performed in 48 rats divided into four groups: OSS exposed to OSS, CCI subjected to chronic nerve constriction, OSS+CCI with a combination of neuropathy and stress and CON, a control group lacking any manipulation. While we did not observe any stress-related differences in mechanical sensitivity throughout the observation period, CCI rats were more sensitive to cold stimulation than OSS+CCI in the initial phase of neuropathy. A switch was observed at a later stage, leading to a hypersensitivity of the OSS+CCI compared to the CCI rats. At this time point we investigated the spinal mRNA expression of neuron and glia related molecules potentially involved in neuropathic pain and stress. The combination of psychosocial stress and neuropathic pain seemed to enhance glial cell activation, pro-inflammatory cytokine and neurotrophic factor mRNA levels, rather than glutamatergic transmission. Our data show that long lasting social stress may lead to time-dependent alteration of neuropathy-related cold pain sensitivity while mechanically-induced pain remains unchanged.
Collapse
Affiliation(s)
- Glenn-Marie Le Coz
- Laboratory of Neurophysiology and Psychobiology, Institute for Health and Behavior, University of LuxembourgLuxembourg, Luxembourg
| | - Julien Genty
- Laboratory of Neurophysiology and Psychobiology, Institute for Health and Behavior, University of LuxembourgLuxembourg, Luxembourg
| | - Fernand Anton
- Laboratory of Neurophysiology and Psychobiology, Institute for Health and Behavior, University of LuxembourgLuxembourg, Luxembourg
| | - Ulrike Hanesch
- Laboratory of Neurophysiology and Psychobiology, Institute for Health and Behavior, University of LuxembourgLuxembourg, Luxembourg
| |
Collapse
|
6
|
Buhusi M, Olsen K, Yang BZ, Buhusi CV. Stress-Induced Executive Dysfunction in GDNF-Deficient Mice, A Mouse Model of Parkinsonism. Front Behav Neurosci 2016; 10:114. [PMID: 27445722 PMCID: PMC4914592 DOI: 10.3389/fnbeh.2016.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Maladaptive reactivity to stress is linked to improper decision making, impulsivity, and discounting of delayed rewards. Chronic unpredictable stress (CUS) alters dopaminergic function, re-shapes dopaminergic circuits in key areas involved in decision making, and impairs prefrontal-cortex dependent response inhibition and working memory. Glial-derived neurotrophic factor (GDNF) is essential for regulating dopamine (DA) release in the basal ganglia and for the survival of dopaminergic neurons; GDNF-deficient mice are considered an animal model for aging-related Parkinsonism. Recently, GDNF expression in the striatum has been linked to resilience to stress. Here we investigated the effects of CUS on decision making in GDNF-heterozygous (HET) mice and their wild-type littermate controls (WT). Before CUS no differences in temporal discounting (TD) were found between genotypes. However, following CUS GDNF HET mice, having a partial reduction of GDNF levels, showed increased impulsive choice indexed by a reduction in percent Larger-Later (LL) choices in the TD paradigm, and a reduction in area under the TD curve. Moreover, stressed GDNF HET mice, but not their WT controls, showed decreased neuronal activation (number of cFos positive neurons) in the orbitofrontal cortex (OFC), nucleus accumbens (NA) core, and NA shell, suggestive of a maladaptive response to stress. Interestingly, area under the TD curve positively correlated with cFos activation in the NA core, and NA shell, but not with orbitofrontal activity. These results provide further evidence of the differential involvement of the OFC, NA core, and NA shell in impulsive choice, and identify GDNF-deficient mice as a double-hit (gene × environment) model of stress-related executive dysfunction, particularly relevant to substance abuse and Parkinson’s disease (PD).
Collapse
Affiliation(s)
- Mona Buhusi
- Department of Psychology, Interdisciplinary Program in Neuroscience, Utah State University Logan, UT, USA
| | - Kaitlin Olsen
- Department of Psychology, Interdisciplinary Program in Neuroscience, Utah State University Logan, UT, USA
| | - Benjamin Z Yang
- Department of Psychology, Interdisciplinary Program in Neuroscience, Utah State University Logan, UT, USA
| | - Catalin V Buhusi
- Department of Psychology, Interdisciplinary Program in Neuroscience, Utah State University Logan, UT, USA
| |
Collapse
|
7
|
Lifestyle Behaviours Add to the Armoury of Treatment Options for Panic Disorder: An Evidence-Based Reasoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7017-43. [PMID: 26095868 PMCID: PMC4483746 DOI: 10.3390/ijerph120607017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
This article presents an evidence-based reasoning, focusing on evidence of an Occupational Therapy input to lifestyle behaviour influences on panic disorder that also provides potentially broader application across other mental health problems (MHP). The article begins from the premise that we are all different. It then follows through a sequence of questions, examining incrementally how MHPs are experienced and classified. It analyses the impact of individual sensitivity at different levels of analysis, from genetic and epigenetic individuality, through neurotransmitter and body system sensitivity. Examples are given demonstrating the evidence base behind the logical sequence of investigation. The paper considers the evidence of how everyday routine lifestyle behaviour impacts on occupational function at all levels, and how these behaviours link to individual sensitivity to influence the level of exposure required to elicit symptomatic responses. Occupational Therapists can help patients by adequately assessing individual sensitivity, and through promoting understanding and a sense of control over their own symptoms. It concludes that present clinical guidelines should be expanded to incorporate knowledge of individual sensitivities to environmental exposures and lifestyle behaviours at an early stage.
Collapse
|
8
|
Brunoni AR, Machado-Vieira R, Zarate CA, Vieira ELM, Valiengo L, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL. Assessment of non-BDNF neurotrophins and GDNF levels after depression treatment with sertraline and transcranial direct current stimulation in a factorial, randomized, sham-controlled trial (SELECT-TDCS): an exploratory analysis. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:91-6. [PMID: 25172025 PMCID: PMC4258544 DOI: 10.1016/j.pnpbp.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
The neurotrophic hypothesis of depression states that the major depressive episode is associated with lower neurotrophic factors levels, which increase with amelioration of depressive symptoms. However, this hypothesis has not been extended to investigate neurotrophic factors other than the brain-derived neurotrophic factor (BDNF). We therefore explored whether plasma levels of neurotrophins 3 (NT-3) and 4 (NT-4), nerve growth factor (NGF) and glial cell line derived neurotrophic factor (GDNF) changed after antidepressant treatment and correlated with treatment response. Seventy-three patients with moderate-to-severe, antidepressant-free unipolar depression were assigned to a pharmacological (sertraline) and a non-pharmacological (transcranial direct current stimulation, tDCS) intervention in a randomized, 2 × 2, placebo-controlled design. The plasma levels of NT-3, NT-4, NGF and GDNF were determined by enzyme-linked immunosorbent assay before and after a 6-week treatment course and analyzed according to clinical response and allocation group. We found that tDCS and sertraline (separately and combined) produced significant improvement in depressive symptoms. Plasma levels of all neurotrophic factors were similar across groups at baseline and remained significantly unchanged regardless of the intervention and of clinical response. Also, baseline plasma levels were not associated with clinical response. To conclude, in this 6-week placebo-controlled trial, NT-3, NT-4, NGF and GDNF plasma levels did not significantly change with sertraline or tDCS. These data suggest that these neurotrophic factors are not surrogate biomarkers of treatment response or involved in the antidepressant mechanisms of tDCS.
Collapse
Affiliation(s)
- André R Brunoni
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Erica L M Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Valiengo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Yang L, Zhao Y, Wang Y, Liu L, Zhang X, Li B, Cui R. The Effects of Psychological Stress on Depression. Curr Neuropharmacol 2015; 13:494-504. [PMID: 26412069 PMCID: PMC4790405 DOI: 10.2174/1570159x1304150831150507] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/13/2015] [Accepted: 01/25/2015] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder is a serious mental disorder that profoundly affects an individual's quality of life. Although the aetiologies underlying this disorder remain unclear, an increasing attention has been focused on the influence imposed by psychological stress over depression. Despite limited animal models of psychological stress, significant progress has been made as to be explicated in this review to elucidate the physiopathology underlying depression and to treat depressive symptoms. Therefore, we will review classical models along with new methods that will enrich our knowledge of this disorder.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic
| | - Yinghao Zhao
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun 130024, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic
| | - Lei Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic
| | - Xingyi Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun 130024, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic
| |
Collapse
|
10
|
Teixeira AL, Barbosa IG, Machado-Vieira R, Rizzo LB, Wieck A, Bauer ME. Novel biomarkers for bipolar disorder. ACTA ACUST UNITED AC 2012; 7:147-59. [DOI: 10.1517/17530059.2013.734807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Circulating levels of GDNF in bipolar disorder. Neurosci Lett 2011; 502:103-6. [DOI: 10.1016/j.neulet.2011.07.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022]
|