1
|
Mukhtar IS, Ezinne NE, Mohamad Shahimin M, Mohd-Ali B, Oghre E, Zeried FM, Osuagwu UL. Age-Matched Comparative Analysis of Binocular Vision Anomalies among Children with Dyslexia in Northern Nigeria. Pediatr Rep 2024; 16:566-578. [PMID: 39051235 PMCID: PMC11270174 DOI: 10.3390/pediatric16030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Dyslexia, a neurodevelopmental disorder affecting reading skills, poses significant challenges to children's academic performance and quality of life. Despite its rising prevalence and adverse effects, understanding of its relationship with vision anomalies remains limited, particularly in low-resource settings like Nigeria. This study aims to assess the prevalence of binocular vision anomalies (BVAs) among children with and without dyslexia in Kano, Nigeria. Methods: This is a hospital-based, cross-sectional, matched-paired, controlled study conducted at the Aminu Kano Teaching Hospital (AKTH) Eye Clinic in Northern Nigeria. The study included school children who visited the AKTH Eye Clinic from January 2018 to December 2022. Visual acuity tests, external eye examinations and accommodative, binocular vision and oculomotor skills tests were conducted. Descriptive statistics, independent t-tests, Mann-Whitney U tests and Fisher's exact tests were conducted, with a significance level set at p < 0.05. Results: Forty-four children aged 12 ± 2 years participated. Children with dyslexia reported higher rates of visual symptoms than those without dyslexia, Blurring vision, visual distortion and eye strain were the most prevalent (p < 0.05) BV symptoms. Accommodative insufficiency), was the most common visual abnormality, and was significantly higher in children with dyslexia than those without dyslexia (45.5% vs. 18.2%). However, other visual anomalies showed no significant difference between groups. There was a high prevalence of binocular vision anomalies in both groups. Binocular test findings showed dyslexic children had significantly lower distance positive fusional vergence recovery values (p = 0.005). All cases of convergence insufficiency alone were found in the non-dyslexic group. Conclusions: The study found that children with dyslexia residing in Northern Nigeria demonstrated higher rates of visual symptoms, more accommodative insufficiency and lower distance positive fusional vergence recovery values compared to their non-dyslexic counterparts.
Collapse
Affiliation(s)
- Ismail Salma Mukhtar
- Optometry and Vision Science Program, Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.M.); (M.M.S.); (B.M.-A.)
- Department of Optometry, Bayero University, Kano 700241, Nigeria
| | - Ngozika Esther Ezinne
- Bathurst Rural Clinical School (BRCS), School of Medicine, Western Sydney University, P.O. Box 9008, Bathurst, NSW 2795, Australia;
- Optometry Unit, Department of Clinical Surgical Sciences, University of the West Indies, Saint Augustine Campus, St. Augustine 685509, Trinidad and Tobago
| | - Mizhanim Mohamad Shahimin
- Optometry and Vision Science Program, Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.M.); (M.M.S.); (B.M.-A.)
| | - Bariah Mohd-Ali
- Optometry and Vision Science Program, Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.M.); (M.M.S.); (B.M.-A.)
| | - Eki Oghre
- Department of Optometry, University of Benin, Uselu, Benin City 300103, Nigeria;
| | - Ferial M. Zeried
- Department of Optometry & Vision Sciences, College of Applied Medical Sciences, King Saud University, Ilesha 2915, Saudi Arabia;
| | - Uchechukwu Levi Osuagwu
- Bathurst Rural Clinical School (BRCS), School of Medicine, Western Sydney University, P.O. Box 9008, Bathurst, NSW 2795, Australia;
| |
Collapse
|
2
|
Horowitz-Kraus T, Dudley J, Rosch K, Fotang J, Farah R. Localized alterations in cortical thickness and sulcal depth of the cingulo-opercular network in relation to lower reading fluency skills in children with dyslexia. Brain Res 2024; 1834:148891. [PMID: 38554796 DOI: 10.1016/j.brainres.2024.148891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The traditional models of reading development describe how language processing and word decoding contribute to reading comprehension and how impairments in word decoding, a defining feature of dyslexia, affect reading comprehension outcomes. However, these models do not include word and sentence reading (contextual reading) fluency, both of which engage executive functions, with notably decreased performance in children with dyslexia. In the current study, we compared cortical thickness and sulcal depth (CT/SD) in the cingulo-opercular (CO) executive functions brain network in children with dyslexia and typical readers and examined associations with word vs. contextual reading fluency. Overall, CT was lower in insular regions and higher in parietal and caudal anterior cingulate cortex regions in children with dyslexia. Children with dyslexia showed positive correlations between word reading fluency and CT/SD in insular regions, whereas no significant correlations were observed in typical readers. For sentence reading fluency, negative correlations with CT/SD were found in insular regions in children with dyslexia, while positive correlations with SD were found in insular regions in typical readers. These results demonstrate the differential relations between word and sentence reading fluency and anatomical circuitry supporting executive functions in children with dyslexia vs. typical readers. It also suggests that word and sentence reading fluency, relate to morphology of executive function-related regions in children with dyslexia, whereas in typical readers, only sentence reading fluency relates to morphology of executive function regions. The results also highlight the role of the insula within the CO network in reading fluency. Here we suggest that word and sentence reading fluency are distinct components of reading that should each be included in the Simple View of Reading traditional model.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion; Faculty of Biomedical Engineering, Technion; Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jonathan Dudley
- Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Keri Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA
| | | | - Rola Farah
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion; Faculty of Biomedical Engineering, Technion
| |
Collapse
|
3
|
Kristjánsson Á, Sigurdardottir HM. The Role of Visual Factors in Dyslexia. J Cogn 2023; 6:31. [PMID: 37397349 PMCID: PMC10312247 DOI: 10.5334/joc.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
What are the causes of dyslexia? Decades of research reflect a determined search for a single cause where a common assumption is that dyslexia is a consequence of problems with converting phonological information into lexical codes. But reading is a highly complex activity requiring many well-functioning mechanisms, and several different visual problems have been documented in dyslexic readers. We critically review evidence from various sources for the role of visual factors in dyslexia, from magnocellular dysfunction through accounts based on abnormal eye movements and attentional processing, to recent proposals that problems with high-level vision contribute to dyslexia. We believe that the role of visual problems in dyslexia has been underestimated in the literature, to the detriment of the understanding and treatment of the disorder. We propose that rather than focusing on a single core cause, the role of visual factors in dyslexia fits well with risk and resilience models that assume that several variables interact throughout prenatal and postnatal development to either promote or hinder efficient reading.
Collapse
Affiliation(s)
- Árni Kristjánsson
- Icelandic Vision Lab, Department of Psychology, University of Iceland, IS
| | | |
Collapse
|
4
|
Turesky TK, Luetje MM, Eden GF. An fMRI study of finger movements in children with and without dyslexia. Front Neurosci 2023; 17:1135437. [PMID: 37274202 PMCID: PMC10233035 DOI: 10.3389/fnins.2023.1135437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Developmental dyslexia is a language-based reading disability, yet some have reported motor impairments, usually attributed to cerebellar dysfunction. Methods Using fMRI, we compared children with and without dyslexia during irregularly paced, left or right-hand finger tapping. Next, we examined seed-to-voxel intrinsic functional connectivity (iFC) using six seed regions of the motor system (left and right anterior lobe of the cerebellum, SM1 and SMA). Results A whole-brain task-evoked analysis revealed relatively less activation in the group with dyslexia in right anterior cerebellum during right hand tapping. For iFC, we found the group with dyslexia to have greater iFC between the right SM1 seed and a medial aspect of right postcentral gyrus for left hand tapping; and greater iFC between the left SM1 seed and left thalamus, as well as weaker local iFC around the left SM1 seed region for right hand tapping. Lastly, extracted activity and connectivity values that had been identified in these between-group comparisons were not correlated with measures of reading. Discussion We conclude that there are some aberrations in motor system function in children with dyslexia, but these are not tied to reading ability.
Collapse
Affiliation(s)
| | | | - Guinevere F. Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
5
|
Elsherif M, Mourad M, Hamouda N, Abdou R, Salem T. Diagnostic performance of a modified visual perception test. HEARING, BALANCE AND COMMUNICATION 2022. [DOI: 10.1080/21695717.2022.2155777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mayada Elsherif
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Mona Mourad
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Nesrine Hamouda
- Otolaryngology Head and Neck Department, Phoniatrics Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Rania Abdou
- Otolaryngology Head and Neck Department, Phoniatrics Unit, Alexandria University Hospitals, Alexandria, Egypt
| | - Taima Salem
- Otolaryngology Head and Neck Department, Audiovestibular Unit, Alexandria University Hospitals, Alexandria, Egypt
| |
Collapse
|
6
|
Liu YF, Qian Y, Bi HY. Visual motion processing in Chinese children with developmental dyslexia: An fMRI study. DYSLEXIA (CHICHESTER, ENGLAND) 2022; 28:431-447. [PMID: 36329601 DOI: 10.1002/dys.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Dorsal stream is an important pathway for visual information transmission. As a part of the dorsal pathway, the middle temporal visual motion areas (V5/MT+) are mainly responsible for visual motion processing and the ability of visual motion processing is closely related to reading. Compared with alphabetic scripts, the visual structure of Chinese characters is more complex and there are no clear grapheme-phoneme correspondence rules. So the ability of visual analysis plays an important role in Chinese character processing. This study first investigated the brain activation of Chinese dyslexic children and children of the same chronological age when they observed coherent motion stimuli. ROI analysis indicated that only the activation of left V5/MT+ was significantly weaker in dyslexics than that in the control group. The activity of the magnocellular-dorsal stream was closely related to orthographic awareness in the combined data (two groups) and the typical children. In dyslexia group, the stronger the activation of V5/MT+ was, the worse the phonological awareness, rapid naming performance and orthographic awareness were. In short, Chinese dyslexic children were deficient in the activation of the left V5/MT+ and the activity of the magnocellular-dorsal pathway was closely related to orthographic awareness in Chinese pupils.
Collapse
Affiliation(s)
- Yu-Fei Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- China Textile and Apparel Press, Beijing, China
| | - Yi Qian
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Wuxi Institute of Technology, Wuxi, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Liu Z, Li J, Bi HY, Xu M, Yang Y. Disruption of Functional Brain Networks Underlies the Handwriting Deficit in Children With Developmental Dyslexia. Front Neurosci 2022; 16:919440. [PMID: 35924227 PMCID: PMC9339653 DOI: 10.3389/fnins.2022.919440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Developmental dyslexia (DD) is a neurological-based learning disorder that affects 5-17.5% of children. Handwriting difficulty is a prevailing symptom of dyslexia, but its neural mechanisms remain elusive. Using functional magnetic resonance imaging (fMRI), this study examined functional brain networks associated with handwriting in a copying task in Chinese children with DD (n = 17) and age-matched children (n = 36). We found that dyslexics showed reduced network connectivity between the sensory-motor network (SMN) and the visual network (VN), and between the default mode network (DMN) and the ventral attention network (VAN) during handwriting, but not during drawing geometric figures. Moreover, the connectivity strength of the networks showing group differences was correlated with handwriting speed, reading and working memory, suggesting that the handwriting deficit in DD is linked with disruption of a large-scale brain network supporting motoric, linguistic and executive control processes. Taken together, this study demonstrates the alternations of functional brain networks that underly the handwriting deficit in Chinese dyslexia, providing a new clue for the neural basis of DD.
Collapse
Affiliation(s)
- Zhengyan Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
- *Correspondence: Min Xu,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Yang Yang,
| |
Collapse
|
8
|
Leung TW, Cheong AMY, Chan HHL. Deficits in the Magnocellular Pathway of People with Reading Difficulties. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2022. [DOI: 10.1007/s40474-022-00248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Laws ML, Matejko AA, Lozano M, Napoliello E, Eden GF. Dorsal visual stream activity during coherent motion processing is not related to math ability or dyscalculia. Neuroimage Clin 2022; 35:103042. [PMID: 35580422 PMCID: PMC9117688 DOI: 10.1016/j.nicl.2022.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
Math disability (MD) or developmental dyscalculia is a highly prevalent learning disability involving deficits in computation and arithmetic fact retrieval and is associated with dysfunction of parietal and prefrontal cortices. It has been suggested that dyscalculia (and other learning disabilities and developmental disorders) can be viewed in terms of a broader 'dorsal stream vulnerability,' which could explain a range of dorsal visual stream function deficits, including poor coherent visual motion perception. Behavioral evidence from two studies in typical children has linked performance on visual motion perception to math ability, and a third behavioral study reported poorer visual motion perception in a small group of children with MD compared to controls. Visual motion perception relies on the magnocellular-dominated dorsal stream, particularly its constituent area V5/MT. Here we used functional MRI to measure brain activity in area V5/MT during coherent visual motion processing to test its relationship with math ability. While we found bilateral activation in V5/MT in 66 children/adolescents with varied math abilities, we found no relationships between V5/MT activity and standardized math measures. Next, we selected a group of children/adolescents with MD (n = 23) and compared them to typically developing controls (n = 18), but found no differences in activity in V5/MT or elsewhere in the brain. We followed these frequentist statistics with Bayesian analyses, which favored null models in both studies. We conclude that dorsal stream function subserving visual motion processing in area V5/MT is not related to math ability, nor is it altered in those with the math disability dyscalculia.
Collapse
Affiliation(s)
- Marissa L Laws
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, United States
| | - Anna A Matejko
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - Melanie Lozano
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - Eileen Napoliello
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States
| | - Guinevere F Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, United States.
| |
Collapse
|
10
|
Catts HW, Petscher Y. A Cumulative Risk and Resilience Model of Dyslexia. JOURNAL OF LEARNING DISABILITIES 2022; 55:171-184. [PMID: 34365842 DOI: 10.1177/00222194211037062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considerable attention and legislation are currently focused on developmental dyslexia. A major challenge to these efforts is how to define and operationalize dyslexia. In this article, we argue that rather than defining dyslexia on the basis of an underlying condition, dyslexia is best viewed as a label for an unexpected reading disability. This view fits well with a preventive approach in which risk for reading disability is identified and addressed prior to children experiencing reading failure. A risk-resilience model is introduced that proposes that dyslexia is due to the cumulative effects of risk and resilience factors. Evidence for the multifactorial causal basis of dyslexia is reviewed and potential factors that may offset this risk are considered. The implications of a cumulative risk and resilience model for early identification and intervention is discussed.
Collapse
|
11
|
Erbeli F, Peng P, Rice M. No Evidence of Creative Benefit Accompanying Dyslexia: A Meta-Analysis. JOURNAL OF LEARNING DISABILITIES 2022; 55:242-253. [PMID: 33899570 DOI: 10.1177/00222194211010350] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Research on the question of creative benefit accompanying dyslexia has produced conflicting findings. In this meta-analysis, we determined summary effects of mean and variance differences in creativity between groups with and without dyslexia. Twenty studies were included (n = 770 individuals with dyslexia, n = 1,671 controls). A random-effects robust variance estimation (RVE) analysis indicated no mean (g = -0.02, p = .84) or variance (g = -0.0004, p = .99) differences in creativity between groups. The mean summary effect was moderated by age, gender, and creativity domain. Compared with adolescents, adults with dyslexia showed an advantage over nondyslexic adults in creativity. In addition, a higher proportion of males in the dyslexia group was associated with poorer performance compared with the controls. Finally, the dyslexia group showed a significant performance disadvantage in verbal versus figural creativity. Regarding variance differences, they varied across age and creativity domains. Compared with adults, adolescents showed smaller variability in the dyslexia group. If the creativity task measured verbal versus figural or combined creativity, the dyslexia group exhibited smaller variability. Altogether, our results suggest that individuals with dyslexia as a group are no more creative or show greater variability in creativity than peers without dyslexia.
Collapse
Affiliation(s)
| | - Peng Peng
- The University of Texas at Austin, USA
| | | |
Collapse
|
12
|
Interhemispheric transfer time differs between fast and slow healthy adult readers. Neuropsychologia 2022; 169:108205. [DOI: 10.1016/j.neuropsychologia.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
|
13
|
Manning C, Hassall CD, Hunt LT, Norcia AM, Wagenmakers EJ, Snowling MJ, Scerif G, Evans NJ. Visual Motion and Decision-Making in Dyslexia: Reduced Accumulation of Sensory Evidence and Related Neural Dynamics. J Neurosci 2022; 42:121-134. [PMID: 34782439 PMCID: PMC8741156 DOI: 10.1523/jneurosci.1232-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Children with and without dyslexia differ in their behavioral responses to visual information, particularly when required to pool dynamic signals over space and time. Importantly, multiple processes contribute to behavioral responses. Here we investigated which processing stages are affected in children with dyslexia when performing visual motion processing tasks, by combining two methods that are sensitive to the dynamic processes leading to responses. We used a diffusion model which decomposes response time and accuracy into distinct cognitive constructs, and high-density EEG. Fifty children with dyslexia (24 male) and 50 typically developing children (28 male) 6-14 years of age judged the direction of motion as quickly and accurately as possible in two global motion tasks (motion coherence and direction integration), which varied in their requirements for noise exclusion. Following our preregistered analyses, we fitted hierarchical Bayesian diffusion models to the data, blinded to group membership. Unblinding revealed reduced evidence accumulation in children with dyslexia compared with typical children for both tasks. Additionally, we identified a response-locked EEG component which was maximal over centro-parietal electrodes which indicated a neural correlate of reduced drift rate in dyslexia in the motion coherence task, thereby linking brain and behavior. We suggest that children with dyslexia tend to be slower to extract sensory evidence from global motion displays, regardless of whether noise exclusion is required, thus furthering our understanding of atypical perceptual decision-making processes in dyslexia.SIGNIFICANCE STATEMENT Reduced sensitivity to visual information has been reported in dyslexia, with a lively debate about whether these differences causally contribute to reading difficulties. In this large preregistered study with a blind modeling approach, we combine state-of-the art methods in both computational modeling and EEG analysis to pinpoint the stages of processing that are atypical in children with dyslexia in two visual motion tasks that vary in their requirement for noise exclusion. We find reduced evidence accumulation in children with dyslexia across both tasks, and identify a neural marker, allowing us to link brain and behavior. We show that children with dyslexia exhibit general difficulties with extracting sensory evidence from global motion displays, not just in tasks that require noise exclusion.
Collapse
Affiliation(s)
- Catherine Manning
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, United Kingdom, OX2 6GG
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, Berkshire, United Kingdom, RG6 6ES
| | - Cameron D Hassall
- Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, United Kingdom, OX3 7JX
| | - Laurence T Hunt
- Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, United Kingdom, OX3 7JX
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA 94305, US
| | - Eric-Jan Wagenmakers
- Faculty of Social and Behavioural Sciences, University of Amsterdam, 1001 NH Amsterdam, The Netherlands
| | - Margaret J Snowling
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, United Kingdom, OX2 6GG
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, Oxfordshire, United Kingdom, OX2 6GG
| | - Nathan J Evans
- School of Psychology, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
14
|
Perdue MV, Mahaffy K, Vlahcevic K, Wolfman E, Erbeli F, Richlan F, Landi N. Reading intervention and neuroplasticity: A systematic review and meta-analysis of brain changes associated with reading intervention. Neurosci Biobehav Rev 2022; 132:465-494. [PMID: 34856223 PMCID: PMC10327490 DOI: 10.1016/j.neubiorev.2021.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
Behavioral research supports the efficacy of intervention for reading disability, but the brain mechanisms underlying improvement in reading are not well understood. Here, we review 39 neuroimaging studies of reading intervention to characterize links between reading improvement and changes in the brain. We report evidence of changes in activation, connectivity, and structure within the reading network, and right hemisphere, frontal and sub-cortical regions. Our meta-analysis of changes in brain activation from pre- to post- reading intervention in eight studies did not yield any significant effects. Methodological heterogeneity among studies may contribute to the lack of significant meta-analytic findings. Based on our qualitative synthesis, we propose that brain changes in response to intervention should be considered in terms of interactions among distributed cognitive, linguistic and sensory systems, rather than via a "normalized" vs. "compensatory" dichotomy. Further empirical research is needed to identify effects of moderating factors such as features of intervention programs, neuroimaging tasks, and individual differences among participants.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA; Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kelly Mahaffy
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Katherine Vlahcevic
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Emma Wolfman
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Florina Erbeli
- Dept. of Educational Psychology, Texas A&M University, College Station, TX, USA
| | - Fabio Richlan
- Centre for Cognitive Neuroscience & Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Nicole Landi
- Dept. of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
15
|
Yang Y, Zuo Z, Tam F, Graham SJ, Li J, Ji Y, Meng Z, Gu C, Bi HY, Ou J, Xu M. The brain basis of handwriting deficits in Chinese children with developmental dyslexia. Dev Sci 2021; 25:e13161. [PMID: 34288292 PMCID: PMC9286553 DOI: 10.1111/desc.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Abundant behavioral studies have demonstrated high comorbidity of reading and handwriting difficulties in developmental dyslexia (DD), a neurological condition characterized by unexpectedly low reading ability despite adequate nonverbal intelligence and typical schooling. The neural correlates of handwriting deficits remain largely unknown; however, as well as the extent that handwriting deficits share common neural bases with reading deficits in DD. The present work used functional magnetic resonance imaging to examine brain activity during handwriting and reading tasks in Chinese dyslexic children (n = 18) and age-matched controls (n = 23). Compared to controls, dyslexic children exhibited reduced activation during handwriting tasks in brain regions supporting sensory-motor processing (including supplementary motor area and postcentral gyrus) and visual-orthography processing (including bilateral precuneus and right cuneus). Among these regions, the left supplementary motor area and the right precuneus also showed a trend of reduced activation during reading tasks in dyslexics. Moreover, increased activation was found in the left inferior frontal gyrus and anterior cingulate cortex in dyslexics, which may reflect more efforts of executive control to compensate for the impairments of motor and visual-orthographic processing. Finally, dyslexic children exhibited aberrant functional connectivity among brain areas for cognitive control and sensory-motor processes during handwriting tasks. Together, these findings suggest that handwriting deficits in DD are associated with functional abnormalities of multiple brain regions implicated in motor execution, visual-orthographic processing, and cognitive control, providing important implications for the diagnosis and treatment of dyslexia.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Ji
- Department of Psychology, College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zelong Meng
- Department of Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing, China
| | - Chanyuan Gu
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ou
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
16
|
Perani D, Scifo P, Cicchini GM, Rosa PD, Banfi C, Mascheretti S, Falini A, Marino C, Morrone MC. White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Exp Brain Res 2021; 239:2725-2740. [PMID: 34228165 PMCID: PMC8448712 DOI: 10.1007/s00221-021-06137-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Motion perception deficits in dyslexia show a large intersubjective variability, partly reflecting genetic factors influencing brain architecture development. In previous work, we have demonstrated that dyslexic carriers of a mutation of the DCDC2 gene have a very strong impairment in motion perception. In the present study, we investigated structural white matter alterations associated with the poor motion perception in a cohort of twenty dyslexics with a subgroup carrying the DCDC2 gene deletion (DCDC2d+) and a subgroup without the risk variant (DCDC2d–). We observed significant deficits in motion contrast sensitivity and in motion direction discrimination accuracy at high contrast, stronger in the DCDC2d+ group. Both motion perception impairments correlated significantly with the fractional anisotropy in posterior ventral and dorsal tracts, including early visual pathways both along the optic radiation and in proximity of occipital cortex, MT and VWFA. However, the DCDC2d+ group showed stronger correlations between FA and motion perception impairments than the DCDC2d– group in early visual white matter bundles, including the optic radiations, and in ventral pathways located in the left inferior temporal cortex. Our results suggest that the DCDC2d+ group experiences higher vulnerability in visual motion processing even at early stages of visual analysis, which might represent a specific feature associated with the genotype and provide further neurobiological support to the visual-motion deficit account of dyslexia in a specific subpopulation.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido M Cicchini
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy.
| | - Pasquale Della Rosa
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cecilia Marino
- Department of Psychiatry, Unviersity of Toronto, Toronto, Canada.,Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Scientific Institute Stella Maris (IRCSS), Pisa, Italy
| |
Collapse
|
17
|
Mascheretti S, Peruzzo D, Andreola C, Villa M, Ciceri T, Trezzi V, Marino C, Arrigoni F. Selecting the Most Relevant Brain Regions to Classify Children with Developmental Dyslexia and Typical Readers by Using Complex Magnocellular Stimuli and Multiple Kernel Learning. Brain Sci 2021; 11:brainsci11060722. [PMID: 34071649 PMCID: PMC8228080 DOI: 10.3390/brainsci11060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence supports the presence of deficits in the visual magnocellular (M) system in developmental dyslexia (DD). The M system is related to the fronto-parietal attentional network. Previous neuroimaging studies have revealed reduced/absent activation within the visual M pathway in DD, but they have failed to characterize the extensive brain network activated by M stimuli. We performed a multivariate pattern analysis on a Region of Interest (ROI) level to differentiate between children with DD and age-matched typical readers (TRs) by combining full-field sinusoidal gratings, controlled for spatial and temporal frequencies and luminance contrast, and a coherent motion (CM) sensitivity task at 6%-CML6, 15%-CML15 and 40%-CML40. ROIs spanning the entire visual dorsal stream and ventral attention network (VAN) had higher discriminative weights and showed higher act1ivation in TRs than in children with DD. Of the two tasks, CM had the greatest weight when classifying TRs and children with DD in most of the ROIs spanning these streams. For the CML6, activation within the right superior parietal cortex positively correlated with reading skills. Our approach highlighted the dorsal stream and the VAN as highly discriminative areas between children with DD and TRs and allowed for a better characterization of the "dorsal stream vulnerability" underlying DD.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Correspondence: (S.M.); (F.A.)
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
- Laboratoire de Psychologie de Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Université de Paris, 75005 Paris, France
| | - Martina Villa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Tommaso Ciceri
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (C.A.); (M.V.); (V.T.)
| | - Cecilia Marino
- The Division of Child and Youth Psychiatry at the Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS Eugenio Medea, 23842 Bosisio Parini, Italy; (D.P.); (T.C.)
- Correspondence: (S.M.); (F.A.)
| |
Collapse
|
18
|
Snowling MJ, Hulme C. Annual Research Review: Reading disorders revisited - the critical importance of oral language. J Child Psychol Psychiatry 2021; 62:635-653. [PMID: 32956509 DOI: 10.1111/jcpp.13324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
This paper discusses research on reading disorders during the period since their classification within the overarching category of neurodevelopmental disorders (Journal of Child Psychology and Psychiatry, 53, 2012, 593). Following a review of the predictors of learning to read across languages, and the role of language skills as critical foundations for literacy, profiles of reading disorders are discussed and putative causal risk factors at the cognitive, biological, and environmental levels of explanation considered. Reading disorders are highly heritable and highly comorbid with disorders of language, attention, and other learning disorders, notably mathematics disorders. The home literacy environment, reflecting gene-environment correlation, is one of several factors that promote reading development and highlight an important target for intervention. The multiple deficit view of dyslexia (Cognition, 101, 2006, 385) suggests that risks accumulate to a diagnostic threshold although categorical diagnoses tend to be unstable. Implications for assessment and intervention are discussed.
Collapse
Affiliation(s)
- Margaret J Snowling
- Department of Experimental Psychology, University of Oxford, Oxford, UK.,St John's College, University of Oxford, Oxford, UK
| | - Charles Hulme
- Department of Education, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
The impairment of the visual-spatial attention in Chinese children with dyslexia: A cognitive deficit or a developmental delay? CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Grant JG, Siegel LS, D'Angiulli A. From Schools to Scans: A Neuroeducational Approach to Comorbid Math and Reading Disabilities. Front Public Health 2020; 8:469. [PMID: 33194932 PMCID: PMC7642246 DOI: 10.3389/fpubh.2020.00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
We bridge two analogous concepts of comorbidity, dyslexia-dyscalculia and reading-mathematical disabilities, in neuroscience and education, respectively. We assessed the cognitive profiles of 360 individuals (mean age 25.79 ± 13.65) with disability in reading alone (RD group), mathematics alone (MD group) and both (comorbidity: MDRD group), with tests widely used in both psychoeducational and neuropsychological batteries. As expected, the MDRD group exhibited reading deficits like those shown by the RD group. The former group also exhibited deficits in quantitative reasoning like those shown by the MD group. However, other deficits related to verbal working memory and semantic memory were exclusive to the MDRD group. These findings were independent of gender, age, or socioeconomic and demographic factors. Through a systematic exhaustive review of clinical neuroimaging literature, we mapped the resulting cognitive profiles to correspondingly plausible neuroanatomical substrates of dyslexia and dyscalculia. In our resulting "probing" model, the complex set of domain-specific and domain-general impairments shown in the comorbidity of reading and mathematical disabilities are hypothesized as being related to atypical development of the left angular gyrus. The present neuroeducational approach bridges a long-standing transdisciplinary divide and contributes a step further toward improved early prediction, teaching and interventions for children and adults with combined reading and math disabilities.
Collapse
Affiliation(s)
- Jeremy G Grant
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Linda S Siegel
- Department of Educational and Counselling Psychology, and Special Education, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
21
|
Benson PJ, Wallace L, Beedie SA. Sensory auditory interval perception errors in developmental dyslexia. Neuropsychologia 2020; 147:107587. [DOI: 10.1016/j.neuropsychologia.2020.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
|
22
|
Cao F, Yan X, Yan X, Zhou H, Booth JR. Reading Disability in Chinese Children Learning English as an L2. Child Dev 2020; 92:e126-e142. [PMID: 32864778 DOI: 10.1111/cdev.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To examine whether there are common or specific deficits of reading disability (RD) in first (L1) and second languages (L2), Chinese children (9-11 years, N = 76) with or without RD who learn English as an L2 were studied during a visual word rhyming judgment task. Evidence was found for common deficits in L1 and L2 in visuo-orthographic processes in left inferior temporal gyrus and left precuneus, as well as in phonological processes in left dorsal inferior frontal gyrus as children with RD showed less activation than controls in both languages. Furthermore, the visuo-orthographic deficit appears to be a RD effect, whereas the phonological deficit appears to be a reading/performance effect. Some weak evidence for language specific effects was also found.
Collapse
|
23
|
Benischek A, Long X, Rohr CS, Bray S, Dewey D, Lebel C. Pre-reading language abilities and the brain’s functional reading network in young children. Neuroimage 2020; 217:116903. [DOI: 10.1016/j.neuroimage.2020.116903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 01/23/2023] Open
|
24
|
Caldani S, Gerard CL, Peyre H, Bucci MP. Pursuit eye movements in dyslexic children: evidence for an immaturity of brain oculomotor structures? J Eye Mov Res 2020; 13. [PMID: 33828780 PMCID: PMC7881873 DOI: 10.16910/jemr.13.1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Dyslexia is a disorder found in 5-10% of school-aged children. Several studies reported visual deficits and oculomotor abnormalities in dyslexic children. The objective of our study was to examine horizontal pursuit performance in dyslexic children, despite its poor involvement in reading. Methods: Eye movements were recorded by video-oculography in 92 children (46 dyslexic children, mean age: 9.77 ± 0.26 and 46 non dyslexic, IQ- and age-matched children). Both the number of catch-up saccades occurring during pursuit task and the gain of pursuit were measured. Results: Catch-up saccades were significantly more frequent in the dyslexic group than in the non-dyslexic group of children. Pursuit performance (in terms of the number of catch-up saccades and gain) significantly improved with increasing age in the non-dyslexic children group only. Conclusions: The atypical pursuit patterns observed in dyslexic children suggest a deficiency in the visual attentional processing and an immaturity of brain structures responsible for pursuit triggering. This finding needs to be validated by neuroimaging studies on dyslexia population.
Collapse
|
25
|
Fallon KA, Katz LA. Structured Literacy Intervention for Students With Dyslexia: Focus on Growing Morphological Skills. Lang Speech Hear Serv Sch 2020; 51:336-344. [PMID: 32109177 DOI: 10.1044/2019_lshss-19-00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Purpose Structured literacy (SL) is an umbrella term used by the International Dyslexia Association that refers to evidence-based instructional approaches that incorporate all aspects of spoken language into the teaching of reading, spelling, and writing (International Dyslexia Association, 2016). SL has gained prominence in the field of reading but is less familiar to speech-language pathologists. This tutorial seeks to describe SL with specific attention to the morphological component. Using current research literature combined with descriptions of specific therapeutic practices, this tutorial offers research-informed, clinical strategies for facilitating the development of morphological skills in students with spoken and written language impairments including dyslexia. Method In this tutorial, the authors focus on the research literature and clinical applications related to the topics of (a) spoken and written language impairments, including dyslexia; (b) SL intervention; (c) intervention in the areas of morphological awareness and analysis; and (d) the promotion of academic success in students who struggle with language and literacy. Conclusions SL is a term used to unify and describe evidence-based principles and components that should be included in all effective reading and writing instructions. Among other linguistic skills, morphology holds a prominent place in SL. It is critical that speech-language pathologists become familiar with SL and the evidence-based practices for growing these students' morphological awareness skills in order to promote language and literacy success.
Collapse
Affiliation(s)
- Karen A Fallon
- Department of Speech-Language Pathology & Audiology, Towson University, MD
| | - Lauren A Katz
- Literacy, Language, and Learning Institute, Ann Arbor, MI
| |
Collapse
|
26
|
Bilbao C, Piñero DP. Diagnosis of oculomotor anomalies in children with learning disorders. Clin Exp Optom 2019; 103:597-609. [PMID: 31869866 DOI: 10.1111/cxo.13024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022] Open
Abstract
This systematic review presents the existing scientific evidence for oculomotor anomalies in children with three different types of learning disorders - namely, dyslexia, dyspraxia and attention deficit-hyperactivity disorder (ADHD). This review was registered in the PROSPERO database (registration number: 139317). The QUADAS-2 tool was used to systematically evaluate the quality of the diagnostic tests used in the evaluated studies and to confirm whether the oculomotor alterations observed in the different groups of children with various learning disorders had a consistent diagnostic basis. Using this tool, the design of the articles was well elaborated, although concerns exist regarding the selection of patients and the diagnostic criteria for the binocular conditions. All the studies reviewed conclude that a pattern of oculomotor anomalies exist in the groups of children with these three types of learning disorders compared to healthy children. However, there is a concern regarding the diagnostic methodology, as no clear range of normality for the parameters used to characterise ocular motility was identified and no gold standard or reference test has been defined. In future studies, this range of normality must be developed for different oculomotor skills, and a reference test (possibly video-oculography) for the measurement of these skills must be established.
Collapse
Affiliation(s)
- Carmen Bilbao
- Department of Optometry, Policlínica Alto Aragón, Huesca, Spain.,Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - David P Piñero
- Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain.,Department of Ophthalmology, Vithas Medimar International Hospital, Alicante, Spain
| |
Collapse
|
27
|
Chyl K, Dębska A, Łuniewska M, Marchewka A, Kossowski B, Pugh KR, Jednoróg K. Reading Acquisition in Children: Developmental Processes and Dyslexia-Specific Effects. J Am Acad Child Adolesc Psychiatry 2019; 58:948-960. [PMID: 30768401 PMCID: PMC6606402 DOI: 10.1016/j.jaac.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Decreased activation to print in the left ventral, dorsal, and anterior pathways has been implicated in readers with dyslexia (DRs) but also is characteristic for typical beginning readers. Because most studies have compared DRs with their age-matched peers, the observed results could represent a dyslexia phenotype or a developmental delay. This study aimed to disentangle reading and dyslexia effects using 2 control groups matched for age and skill and a longitudinal design. METHOD Brain response for print was compared in DRs and typical readers (TRs) who, at the beginning of schooling (time point 1 [TP]; 6-7 years old), read on average 3 words per minute, as did DRs at TP1, but improved their reading to an average level, and advanced readers (ARs) who at TP1 read as well as DRs 2 years later (TP3; 8-9 years old). The TR and DR groups were tracked longitudinally to observe neurodevelopmental changes. RESULTS At TP1, DRs did not differ from TRs. Over time, only TRs developed a neural circuit for reading in the left inferior frontal and fusiform gyri. At TP3, DRs exhibited hypo-activation in these areas compared with age-matched (TRs at TP3) and reading-matched (ARs at TP1) controls. At TP3, TRs showed hypo-activation in the left frontal and bilateral ventral occipital regions compared with ARs, but these effects were nonoverlapping with DR hypo-activations and are partly explained by IQ. CONCLUSION Decreased activation of the left fusiform and inferior frontal gyri to print in DRs results from an atypical developmental trajectory of reading and cannot be explained solely by lower reading skills.
Collapse
Affiliation(s)
- Katarzyna Chyl
- Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agnieszka Dębska
- Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Magdalena Łuniewska
- Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland., Warsaw University, Poland
| | - Artur Marchewka
- Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Kossowski
- Polish Academy of Sciences, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kenneth R. Pugh
- Haskins Laboratories, New Haven, CT; Yale University School of Medicine, New Haven, CT; and the University of Connecticut, Storrs, CT
| | - Katarzyna Jednoróg
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
28
|
The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia 2019; 130:66-77. [DOI: 10.1016/j.neuropsychologia.2018.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
|
29
|
Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. Nat Hum Behav 2019; 3:611-624. [PMID: 31061489 DOI: 10.1038/s41562-019-0592-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
The functional organization of human high-level visual cortex, such as the face- and place-selective regions, is strikingly consistent across individuals. An unanswered question in neuroscience concerns which dimensions of visual information constrain the development and topography of this shared brain organization. To answer this question, we used functional magnetic resonance imaging to scan a unique group of adults who, as children, had extensive visual experience with Pokémon. These animal-like, pixelated characters are dissimilar from other ecological categories, such as faces and places, along critical dimensions (foveal bias, rectilinearity, size, animacy). We show not only that adults who have Pokémon experience demonstrate distinct distributed cortical responses to Pokémon, but also that the experienced retinal eccentricity during childhood can predict the locus of Pokémon responses in adulthood. These data demonstrate that inherent functional representations in the visual cortex-retinal eccentricity-combined with consistent viewing behaviour of particular stimuli during childhood result in a shared functional topography in adulthood.
Collapse
|
30
|
D'Mello AM, Gabrieli JDE. Cognitive Neuroscience of Dyslexia. Lang Speech Hear Serv Sch 2019; 49:798-809. [PMID: 30458541 DOI: 10.1044/2018_lshss-dyslc-18-0020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/08/2018] [Indexed: 01/16/2023] Open
Abstract
Purpose This review summarizes what is known about the structural and functional brain bases of dyslexia. Method We review the current literature on structural and functional brain differences in dyslexia. This includes evidence about differences in gray matter anatomy, white matter connectivity, and functional activations in response to print and language. We also summarize findings concerning brain plasticity in response to interventions. Results We highlight evidence relating brain function and structure to instructional issues such as diagnosis and prognosis. We also highlight evidence about brain differences in early childhood, before formal reading instruction in school, which supports the importance of early identification and intervention. Conclusion Neuroimaging studies of dyslexia reveal how the disorder is related to differences in structure and function in multiple neural circuits.
Collapse
Affiliation(s)
- Anila M D'Mello
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
31
|
Piotrowska B, Willis A. Beyond the global motion deficit hypothesis of developmental dyslexia: A cross-sectional study of visual, cognitive, and socio-economic factors influencing reading ability in children. Vision Res 2019; 159:48-60. [PMID: 30885877 DOI: 10.1016/j.visres.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Although primarily conceptualized as a disorder of phonological awareness, developmental dyslexia is often associated with broader problems perceiving and attending to transient or rapidly-moving visual stimuli. However, the extent to which such visual deficits represent the cause or the consequence of dyslexia remains contentious, and very little research has examined the relative contributions of phonological, visual, and other variables to reading performance more broadly. We measured visual sensitivity to global motion (GM) and global form (GF), performance on various language and other cognitive tasks believed to be compromised in dyslexia (phonological awareness, processing speed, and working memory), together with a range of social and demographic variables often omitted in previous research, such as age, gender, non-verbal intelligence, and socio-economic status in an unselected sample (n = 132) of children aged 6-11.5 yrs from two different primary schools in Edinburgh, UK. We found that: (i) Mean GM sensitivity (but not GF) was significantly lower in poor readers (medium effect size); (ii) GM sensitivity accounted for only 3% of the variance in reading scores; (iii) GM sensitivity deficits were observed in only 16% of poor readers; (iv) the best predictors of reading performance were phonological awareness, non-verbal intelligence, and socio-economic status, suggesting the importance of controlling for these in future studies of vision and reading. These findings suggest that developmental dyslexia is unlikely to represent a single category of neurodevelopmental disorder underpinned by lower-level deficits in visual motion processing.
Collapse
Affiliation(s)
- Barbara Piotrowska
- School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh EH11 4BN, UK.
| | - Alexandra Willis
- School of Health in Social Science, The University of Edinburgh, Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| |
Collapse
|
32
|
Yang X, Peng P, Meng X. Contributions of Basic Cognitive Processing to Chinese Reading: The Mediation Effect of Basic Language Processing. Front Psychol 2019; 9:2670. [PMID: 30671004 PMCID: PMC6331404 DOI: 10.3389/fpsyg.2018.02670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 11/18/2022] Open
Abstract
Prior research has mostly focused on either basic language or basic cognitive precursors of reading development, but relatively little is known about their relative importance for reading, especially for Chinese beginning readers. The present study examined whether and how basic cognitive processing (executive function, attention, and visual-spatial perception) and basic language processing (phonological awareness, morphological awareness, orthographic awareness, and RAN) measured at kindergarten influence Chinese character reading and reading comprehension in the first grade. Results showed that basic language abilities including morphological awareness and rapid automatized naming predicted later Chinese character reading. Only one basic cognitive skill, sustained attention, predicted later reading comprehension. Mediation analysis showed that the overall effects of basic cognitive skills on later character reading and reading comprehension were mediated by basic language skills. These findings supported an integration reading model for early Chinese reading and basic language processing at kindergarten plays an important role in explaining the relation between basic cognitive processing and grade one reading performance.
Collapse
Affiliation(s)
- Xiujie Yang
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Peng
- Department of Special Education, The University of Texas at Austin, Austin, TX, United States
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing, China
| |
Collapse
|
33
|
Cancer A, Antonietti A. tDCS Modulatory Effect on Reading Processes: A Review of Studies on Typical Readers and Individuals With Dyslexia. Front Behav Neurosci 2018; 12:162. [PMID: 30108491 PMCID: PMC6079298 DOI: 10.3389/fnbeh.2018.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
The possibility to use non-invasive brain stimulation to modulate reading performance in individuals with developmental dyslexia (DD) has been recently explored by few empirical investigations. The present systematic review includes nine studies which have employed transcranial direct current stimulation (tDCS) aiming at improving reading abilities in both typical readers and individuals with DD. Anodal tDCS over the left temporo-parietal cortex—a region which is typically involved in phonological and orthographic processing during reading tasks and underactive in individuals with DD—was the most frequently used montage. The majority of studies employing such stimulation protocol showed significant improvement in differential reading subprocesses. More precisely, word decoding was improved in adult readers, whereas non-word and low-frequency word reading in younger individuals. Furthermore, tDCS was found to be specifically effective in poor readers and individuals with DD rather than typical readers, in spite of the specific brain region targeted by the stimulation; Left frontal, left temporo-parietal, and right cerebellar tDCS failed to modulate reading in already proficient readers. Overall, tDCS appears to be a promising remedial tool for reading difficulties, even when applied to younger populations with reading problems. Further empirical evidence is needed to confirm the potential of neuromodulation as a successful intervention method for DD.
Collapse
Affiliation(s)
- Alice Cancer
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | | |
Collapse
|
34
|
Effect of reading intervention and task difficulty on orthographic and phonological reading systems in the brain. Neuropsychologia 2018; 130:13-25. [PMID: 30030194 DOI: 10.1016/j.neuropsychologia.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022]
Abstract
Children with poor reading skills have differences in brain function when compared to typically-developing readers, and there may also be changes in the brain following reading intervention. However, most functional imaging studies focus on phonological reading tasks with one level of task difficulty. The purpose of this study was to compare good and poor readers on functional magnetic resonance imaging (fMRI) tasks of orthography (spelling) and phonology (rhyming) before and after 3 months of school-based intervention. These tasks were also modulated by task difficulty based on printed word frequency. The results showed that primarily left hemisphere regions were activated for the spelling and rhyming tasks, and poor readers showed a pattern of increased activation in bilateral inferior frontal, bilateral insula, right parietal, and left cerebellum following intervention. Activity in left pars triangularis and right parietal regions were associated with gains in decoding skills. Intervention effects appeared across blocks of easy and difficult words, except for the right parietal cortex. In this region, poor readers had greater activity on the easy word blocks after intervention, which indicates that there was increased recruitment of the right parietal cortex for relatively easy words. These results indicate that effects of intervention may be more evident on phonological tasks in comparison to orthographic tasks, and some of these effects may be modulated by relative task difficulty.
Collapse
|
35
|
Chamberlain R, Brunswick N, Siev J, McManus IC. Meta-analytic findings reveal lower means but higher variances in visuospatial ability in dyslexia. Br J Psychol 2018; 109:897-916. [PMID: 29938776 DOI: 10.1111/bjop.12321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Conflicting empirical and theoretical accounts suggest that dyslexia is associated with either average, enhanced, or impoverished high-level visuospatial processing relative to controls. Such heterogeneous results could be due to the presence of wider variability in dyslexic samples, which is unlikely to be identified at the single study level, due to lack of power. To address this, this study reports a meta-analysis of means and variances in high-level visuospatial ability in 909 non-dyslexic and 956 dyslexic individuals. The findings suggest that dyslexia is associated not only with a lower mean performance on visuospatial tasks but also with greater variability in performance. Through novel meta-analytic techniques, we demonstrate a negative effect size for mean differences (-.457), but a positive effect size for SD differences (+.118; SD ratio = 1.107). In doing so, this is the first study to demonstrate impoverished visuospatial processing of the majority of individuals with dyslexia in addition to greater variance in performance in this group. The findings advocate for further consideration of both the presence of, and reasons for, increased variance in perception, attention, and memory across neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Joseph Siev
- Department of Psychology, Brooklyn College, City University of New York, USA
| | - I C McManus
- Department of Psychology, University College London, UK
| |
Collapse
|
36
|
Joo SJ, White AL, Strodtman DJ, Yeatman JD. Optimizing text for an individual's visual system: The contribution of visual crowding to reading difficulties. Cortex 2018; 103:291-301. [PMID: 29679920 DOI: 10.1016/j.cortex.2018.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/23/2018] [Accepted: 03/01/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sung Jun Joo
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA.
| | - Alex L White
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Douglas J Strodtman
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Chang YCC, Khan S, Taulu S, Kuperberg G, Brown EN, Hämäläinen MS, Temereanca S. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task. Front Neural Circuits 2018; 12:38. [PMID: 29867372 PMCID: PMC5964218 DOI: 10.3389/fncir.2018.00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/20/2018] [Indexed: 01/08/2023] Open
Abstract
Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.
Collapse
Affiliation(s)
- Yu-Cherng C Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Samu Taulu
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States.,Department of Physics, University of Washington, Seattle, WA, United States
| | - Gina Kuperberg
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Psychology, Tufts University, Medford, MA, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Simona Temereanca
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
38
|
Franceschini S, Mascheretti S, Bertoni S, Trezzi V, Andreola C, Gori S, Facoetti A. Sluggish dorsally-driven inhibition of return during orthographic processing in adults with dyslexia. BRAIN AND LANGUAGE 2018; 179:1-10. [PMID: 29453081 DOI: 10.1016/j.bandl.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Dyslexia (D) is a neurodevelopmental reading disorder characterized by phonological and orthographic deficits. Before phonological decoding, reading requires a specialized orthographic system for parallel letter processing that assigns letter identities to different spatial locations. The magnocellular-dorsal (MD) stream rapidly process the spatial location of visual stimuli controlling visuo-spatial attention. To investigate the visuo-spatial attention efficiency during orthographic processing, inhibition of return (IOR) was measured in adults with and without D in a lexical decision task. IOR is the delay in responding to stimuli displayed in a cued location after a long cue-target interval. Only adults with D did not showed IOR effect during letter-string recognition, despite the typical left-hemisphere specialization for word identification. A specific deficit in coherent-dot-motion perception confirmed an MD-stream disorder in adults with D. Our results suggest that adults with D might develop an efficient visual word form area, but a dorsal-attentional dysfunction impairs their reading fluency.
Collapse
Affiliation(s)
- S Franceschini
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy.
| | - S Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - S Bertoni
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy
| | - V Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - C Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| | - S Gori
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy; Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - A Facoetti
- Developmental and Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, Padova 35131, Italy; Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco 23842, Italy
| |
Collapse
|
39
|
Taylor CM, Olulade OA, Luetje MM, Eden GF. An fMRI study of coherent visual motion processing in children and adults. Neuroimage 2018; 173:223-239. [PMID: 29477442 DOI: 10.1016/j.neuroimage.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/30/2022] Open
Abstract
There is a large corpus of brain imaging studies examining the dorsal visual pathway, especially area V5/MT during visual motion perception. However, despite evidence suggesting a protracted development of the dorsal visual stream, and a role of this pathway in neurodevelopmental disorders, V5/MT has not been characterized developmentally. Further, experiential factors such as reading acquisition may play a modulating role in any age-dependent changes. Here we used a coherent visual motion detection task to examine V5/MT activity and connectivity in typical participants in two studies: a Cross- Sectional Study comparing adults and children; and a Longitudinal Study of 2nd graders followed into 3rd grade. In the Cross-Sectional Study, a whole-brain analysis revealed no differences between the two groups, whereas a region of interest (ROI) approach identified greater activation in left (right trending) V5/MT in adults compared to children. However, when we measured V5/MT activation individually for each participant, children and adults showed no difference in the location or intensity of activation, although children did exhibit relatively larger extent of V5/MT activation bilaterally. There was also relatively greater functional connectivity in the children between left and right occipitotemporal cortex, including V5/MT. The Longitudinal Study revealed no changes in V5/MT activation for any measures of activation or functional connectivity from 2nd to 3rd grade. Finally, there was no evidence of an association between reading and V5/MT over time, nor predictive power of V5/MT activity for later reading. Together, our results indicate similar V5/MT activity across age groups, with relatively greater extent of V5/MT activation and functional connectivity in children relative to adults, bilaterally. These differences were not apparent over the time course of one year, suggesting that these developmental changes occur over a more protracted period.
Collapse
Affiliation(s)
- C M Taylor
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - O A Olulade
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - M M Luetje
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - G F Eden
- Center for the Study of Learning, Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
40
|
Whitford V, O'Driscoll GA, Titone D. Reading deficits in schizophrenia and their relationship to developmental dyslexia: A review. Schizophr Res 2018; 193:11-22. [PMID: 28688740 DOI: 10.1016/j.schres.2017.06.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
Abstract
Although schizophrenia and developmental dyslexia are considered distinct disorders in terms of clinical presentation and functional outcome, they both involve disruption in the processes that support skilled reading, including language, auditory perception, visual perception, oculomotor control, and executive function. Further, recent work has proposed a common neurodevelopmental basis for the two disorders, as suggested by genetic and pathophysiological overlap. Thus, these lines of research suggest that reading may be similarly impacted in schizophrenia and dyslexia. In this review, we survey research on reading abilities in individuals with schizophrenia, and review the potential mechanisms underlying reading deficits in schizophrenia that may be shared with those implicated in dyslexia. Elucidating the relationship between reading impairment in schizophrenia and dyslexia could allow for a better understanding of the pathophysiological underpinnings of schizophrenia, and could facilitate remediation of cognitive deficits that impact day-to-day functioning.
Collapse
Affiliation(s)
- Veronica Whitford
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, United States; Graduate School of Education, Harvard University, 13 Appian Way, Cambridge, MA 02138, United States.
| | - Gillian A O'Driscoll
- Department of Psychology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC H3A 1B1, Canada; Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada; Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Verdun, QC H4H 1R3, Canada; Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada.
| | - Debra Titone
- Department of Psychology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC H3A 1B1, Canada; Centre for Research on Brain, Language and Music, McGill University, 3640 de la Montagne Street, Montreal, QC H3G 2A8, Canada.
| |
Collapse
|
41
|
Stein J. What is Developmental Dyslexia? Brain Sci 2018; 8:brainsci8020026. [PMID: 29401712 PMCID: PMC5836045 DOI: 10.3390/brainsci8020026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/30/2022] Open
Abstract
Until the 1950s, developmental dyslexia was defined as a hereditary visual disability, selectively affecting reading without compromising oral or non-verbal reasoning skills. This changed radically after the development of the phonological theory of dyslexia; this not only ruled out any role for visual processing in its aetiology, but it also cast doubt on the use of discrepancy between reading and reasoning skills as a criterion for diagnosing it. Here I argue that this theory is set at too high a cognitive level to be explanatory; we need to understand the pathophysiological visual and auditory mechanisms that cause children's phonological problems. I discuss how the 'magnocellular theory' attempts to do this in terms of slowed and error prone temporal processing which leads to dyslexics' defective visual and auditory sequencing when attempting to read. I attempt to deal with the criticisms of this theory and show how it leads to a number of successful ways of helping dyslexic children to overcome their reading difficulties.
Collapse
Affiliation(s)
- John Stein
- Department Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
42
|
Jafarlou F, Jarollahi F, Ahadi M, Sadeghi-Firoozabadi V, Haghani H. Oculomotor rehabilitation in children with dyslexia. Med J Islam Repub Iran 2017; 31:125. [PMID: 29951425 PMCID: PMC6014809 DOI: 10.14196/mjiri.31.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
Background: Dyslexia is the most common learning disorder. Visual and oculomotor deficits in dyslexic children have been reported. The purpose of this study was to measure oculomotor parameters and analyze the effect of oculomotor rehabilitation strategies on dyslexia. Methods: Binocular eye movements were recorded by oculomotor subtype of videonystagmography (VNG) testing on 30 children with dyslexia and 20 typical reader children (aged 8-12) in both genders. Dyslexic children were diagnosed with DSM-V scale by experts in reading disorder centers. We studied those children with developmental dyslexia, who had deficits in eye movements recording. Dyslexic children were divided into 2 groups of case and control. Oculomotor rehabilitation (including fixation, saccade, and tracking training) was performed in case group for 1 hour, twice weekly for 8 weeks. Before the intervention, results of oculomotor tests were compared between 3 groups (healthy, case, and control). Then, to analyze the effect of the intervention, results of oculomotor tests were compared between case and control groups in pre- and post- intervention stage. Data were analyzed by independent and paired samples t tests, ANOVA, and repeated measures tests in SPSS v. 21. Results: There were significant differences in oculomotor characteristics of dyslexic children in comparison with those reported in typical children. Oculomotor rehabilitation intervention had a positive effect on improvement of oculomotor responses and eye movements in dyslexic children. Moreover, there was no statistically significant difference between dyslexic children and non-dyslexic children in oculomotor skills after the training. Conclusion: Our results showed the positive effects of oculomotor rehabilitation on eye movements. Primary oculomotor assessment in dyslexic children and early use of oculomotor rehabilitation combined with other treatments are highly recommended.
Collapse
Affiliation(s)
- Fatemeh Jafarlou
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farnoush Jarollahi
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Ahadi
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Sadeghi-Firoozabadi
- Deputy Head of Psychological Labs, Department of Psychology, Faculty of Education & Psychology, Shahid Beheshti University, Tehran, Iran
| | - Hamid Haghani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Danelli L, Berlingeri M, Bottini G, Borghese NA, Lucchese M, Sberna M, Price CJ, Paulesu E. How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics. Cortex 2017; 97:125-142. [PMID: 29107746 PMCID: PMC5722195 DOI: 10.1016/j.cortex.2017.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading.
Collapse
Affiliation(s)
- Laura Danelli
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Manuela Berlingeri
- DISTUM, Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Gabriella Bottini
- Centre of Cognitive Neuropsychology, Niguarda Ca' Granda Hospital, Milan, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Nunzio A Borghese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Mirko Lucchese
- AIS-Lab and Department of Computer Science, University of Milan, Milan, Italy
| | - Maurizio Sberna
- Neuroradiology Department, Niguarda Ca' Granda Hospital, Milan, Italy
| | - Cathy J Price
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London UK
| | - Eraldo Paulesu
- Psychology Department and Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; fMRI Unit-IRCCS Galeazzi, Milan, Italy.
| |
Collapse
|
44
|
Wandell BA, Le RK. Diagnosing the Neural Circuitry of Reading. Neuron 2017; 96:298-311. [PMID: 29024656 DOI: 10.1016/j.neuron.2017.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
We summarize the current state of knowledge of the brain's reading circuits, and then we describe opportunities to use quantitative and reproducible methods for diagnosing these circuits. Neural circuit diagnostics-by which we mean identifying the locations and responses in an individual that differ significantly from measurements in good readers-can help parents and educators select the best remediation strategy. A sustained effort to develop and share diagnostic methods can support the societal goal of improving literacy.
Collapse
Affiliation(s)
- Brian A Wandell
- Psychology Department, Stanford University, Stanford, CA 94305, USA.
| | - Rosemary K Le
- Psychology Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
New insights into the role of motion and form vision in neurodevelopmental disorders. Neurosci Biobehav Rev 2017; 83:32-45. [PMID: 28965963 DOI: 10.1016/j.neubiorev.2017.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research.
Collapse
|
46
|
Abstract
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Collapse
|
47
|
Rendall AR, Tarkar A, Contreras-Mora HM, LoTurco JJ, Fitch RH. Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1. BRAIN AND LANGUAGE 2017; 172:30-38. [PMID: 25989970 PMCID: PMC4646737 DOI: 10.1016/j.bandl.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia.
Collapse
Affiliation(s)
- Amanda R Rendall
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States.
| | - Aarti Tarkar
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Unit 3156, Storrs, CT 06269, United States
| | - Hector M Contreras-Mora
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Unit 3156, Storrs, CT 06269, United States
| | - R Holly Fitch
- Department of Psychology/Behavioral Neuroscience, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| |
Collapse
|
48
|
Different relationship of magnocellular-dorsal function and reading-related skills between Chinese developing and skilled readers. PLoS One 2017; 12:e0179712. [PMID: 28704422 PMCID: PMC5509136 DOI: 10.1371/journal.pone.0179712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/03/2017] [Indexed: 11/19/2022] Open
Abstract
Previous studies have indicated that the relationship between magnocellular-dorsal (M-D) function and reading-related skills may vary with reading development in readers of alphabetic languages. Since this relationship could be affected by the orthographic depth of writing systems, the present study explored the relationship between M-D function and reading-related skills in Chinese, a writing system with a deeper orthography than alphabetic languages. Thirty-seven primary school students and fifty-one undergraduate students participated. Orthographic and phonological awareness tests were adopted as reading-related skill measurements. A steady-pedestal paradigm was used to assess the low-spatial-frequency contrast thresholds of M-D function. Results showed that M-D function was only correlated with orthographic awareness for adults, revealing an enhancement with reading development; while being related to phonological awareness only for children revealing a developmental decrement. It suggested that the mechanism responsible for the relationship between M-D activity and reading-related skills was affected by the characteristics of literacy development in Chinese.
Collapse
|
49
|
Colling LJ, Noble HL, Goswami U. Neural Entrainment and Sensorimotor Synchronization to the Beat in Children with Developmental Dyslexia: An EEG Study. Front Neurosci 2017; 11:360. [PMID: 28747870 PMCID: PMC5506338 DOI: 10.3389/fnins.2017.00360] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Tapping in time to a metronome beat (hereafter beat synchronization) shows considerable variability in child populations, and individual differences in beat synchronization are reliably related to reading development. Children with developmental dyslexia show impairments in beat synchronization. These impairments may reflect deficiencies in auditory perception of the beat which in turn affect auditory-motor mapping, or may reflect an independent motor deficit. Here, we used a new methodology in EEG based on measuring beat-related steady-state evoked potentials (SS-EPs, Nozaradan et al., 2015) in an attempt to disentangle neural sensory and motor contributions to behavioral beat synchronization in children with dyslexia. Children tapped with both their left and right hands to every second beat of a metronome pulse delivered at 2.4 Hz, or listened passively to the beat. Analyses of preferred phase in EEG showed that the children with dyslexia had a significantly different preferred phase compared to control children in all conditions. Regarding SS-EPs, the groups differed significantly for the passive Auditory listening condition at 2.4 Hz, and showed a trend toward a difference in the Right hand tapping condition at 3.6 Hz (sensorimotor integration measure). The data suggest that neural rhythmic entrainment is atypical in children with dyslexia for both an auditory beat and during sensorimotor coupling (tapping). The data are relevant to a growing literature suggesting that rhythm-based interventions may help language processing in children with developmental disorders of language learning.
Collapse
Affiliation(s)
- Lincoln J Colling
- Department of Psychology, Centre for Neuroscience in Education, University of CambridgeCambridge, United Kingdom
| | - Hannah L Noble
- Department of Psychology, Centre for Neuroscience in Education, University of CambridgeCambridge, United Kingdom
| | - Usha Goswami
- Department of Psychology, Centre for Neuroscience in Education, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
50
|
Abstract
It is well established that visual sensitivity to motion is correlated with reading skills. Yet, the causal relationship between motion sensitivity and reading skills has been debated for more than thirty years. One hypothesis posits that dyslexia is caused by deficits in the motion processing pathway. An alternative hypothesis explains the motion processing deficit observed in dyslexia as the consequence of a lack, or poor quality, of reading experience. Here we used an intensive reading intervention program to test the causal relationship between learning to read and motion processing in children. Our data show that, while the reading intervention enhanced reading abilities, learning to read did not affect motion sensitivity. Motion sensitivity remained stable over the course of the intervention. Furthermore, the motion sensitivity deficit did not negatively impact the learning process. Children with poor motion sensitivity showed the same improvement in reading skills as children with typical motion sensitivity. Our findings call into question the view that motion processing deficits are due to poor reading experience. We propose that the correlation between the two measures arises from other common mechanisms, or that motion processing deficits are among a collection of correlated risk factors for reading difficulties.
Collapse
|