1
|
Wang R, Wang B, Chen A. Application of machine learning in the study of development, behavior, nerve, and genotoxicity of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124473. [PMID: 38945191 DOI: 10.1016/j.envpol.2024.124473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Machine learning (ML) as a novel model-based approach has been used in studying aquatic toxicology in the environmental field. Zebrafish, as an ideal model organism in aquatic toxicology research, has been widely used to study the toxic effects of various pollutants. However, toxicity testing on organisms may cause significant harm, consume considerable time and resources, and raise ethical concerns. Therefore, ML is used in related research to reduce animal experiments and assist researchers in conducting toxicological research. Although ML techniques have matured in various fields, research on ML-based aquatic toxicology is still in its infancy due to the lack of comprehensive large-scale toxicity databases for environmental pollutants and model organisms. Therefore, to better understand the recent research progress of ML in studying the development, behavior, nerve, and genotoxicity of zebrafish, this review mainly focuses on using ML modeling to assess and predict the toxic effects of zebrafish exposure to different toxic chemicals. Meanwhile, the opportunities and challenges faced by ML in the field of toxicology were analyzed. Finally, suggestions and perspectives were proposed for the toxicity studies of ML on zebrafish in future applications.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, (Guizhou University), Guiyang, Guizhou, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Schmidt AR, Placer HJ, Muhammad IM, Shephard R, Patrick RL, Saurborn T, Horstick EJ, Bergeron SA. Transcriptional control of visual neural circuit development by GS homeobox 1. PLoS Genet 2024; 20:e1011139. [PMID: 38669217 PMCID: PMC11051655 DOI: 10.1371/journal.pgen.1011139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/16/2024] [Indexed: 04/28/2024] Open
Abstract
As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.
Collapse
Affiliation(s)
- Alexandra R. Schmidt
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Haiden J. Placer
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Ishmael M. Muhammad
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Rebekah Shephard
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Regina L. Patrick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Taylor Saurborn
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| |
Collapse
|
3
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
4
|
Wullimann MF, Mokayes N, Shainer I, Kuehn E, Baier H. Genoarchitectonics of the larval zebrafish diencephalon. J Comp Neurol 2024; 532:e25549. [PMID: 37983970 DOI: 10.1002/cne.25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 11/22/2023]
Abstract
The brain is spatially organized into subdivisions, nuclei and areas, which often correspond to functional and developmental units. A segmentation of brain regions in the form of a consensus atlas facilitates mechanistic studies and is a prerequisite for sharing information among neuroanatomists. Gene expression patterns objectively delineate boundaries between brain regions and provide information about their developmental and evolutionary histories. To generate a detailed molecular map of the larval zebrafish diencephalon, we took advantage of the Max Planck Zebrafish Brain (mapzebrain) atlas, which aligns hundreds of transcript and transgene expression patterns in a shared coordinate system. Inspection and co-visualization of close to 50 marker genes have allowed us to resolve the tripartite prosomeric scaffold of the diencephalon at unprecedented resolution. This approach clarified the genoarchitectonic partitioning of the alar diencephalon into pretectum (alar part of prosomere P1), thalamus (alar part of prosomere P2, with habenula and pineal complex), and prethalamus (alar part of prosomere P3). We further identified the region of the nucleus of the medial longitudinal fasciculus, as well as the posterior and anterior parts of the posterior tuberculum, as molecularly distinct basal parts of prosomeres 1, 2, and 3, respectively. Some of the markers examined allowed us to locate glutamatergic, GABAergic, dopaminergic, serotoninergic, and various neuropeptidergic domains in the larval zebrafish diencephalon. Our molecular neuroanatomical approach has thus (1) yielded an objective and internally consistent interpretation of the prosomere boundaries within the zebrafish forebrain; has (2) produced a list of markers, which in sparse combinations label the subdivisions of the diencephalon; and is (3) setting the stage for further functional and developmental studies in this vertebrate brain.
Collapse
Affiliation(s)
- Mario F Wullimann
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| | - Nouwar Mokayes
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Inbal Shainer
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Enrico Kuehn
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Genes - Circuits - Behavior Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| |
Collapse
|
5
|
Fu R, Liu H, Zhang Y, Mao L, Zhu L, Jiang H, Zhang L, Liu X. Imidacloprid affects the visual behavior of adult zebrafish (Danio rerio) by mediating the expression of opsin and phototransduction genes and altering the metabolism of neurotransmitters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168572. [PMID: 37992846 DOI: 10.1016/j.scitotenv.2023.168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Imidacloprid poses a significant threat to aquatic ecosystems. In this study, we investigated the visual toxicity of imidacloprid and the underlying molecular mechanisms in adult zebrafish. After exposure to imidacloprid at environmental relevant concentrations (10 and 100μg/L) for 21 days, the detectable contents of imidacloprid were 23.0 ± 0.80 and 121 ± 1.56 ng/mg in eyes of adult zebrafish, respectively. The visual behavior of adult zebrafish was impaired including a reduced ability to track smoothly visual stimuli and visually guided self-motion. The immunofluorescence experiment showed that the content of Rhodopsin (Rho) in the retina of zebrafish was changed significantly. The expression rhythm of genes played key roles in capturing photons in dim (rho) and bright (opn1mw3, opn1lw2 and opn1sw2) light, and in phototransduction (gnb3b, arr3a and rpe65a), was disrupted significantly throughout a 24-h period in adult zebrafish. Targeted metabolomics analysis showed that the content of 16 metabolites associated with neurotransmitter function changed significantly, and were enriched in top three metabolism pathways including Arginine biosynthesis, Alanine, aspartate and glutamate metabolism, and Tryptophan metabolism. These results indicated that imidacloprid exposure at environmentally relevant concentrations could cause optical toxicity through disturbing the expression of opsins and affecting the phototransduction in the retina of zebrafish adults.
Collapse
Affiliation(s)
- Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Estienne P, Simion M, Hagio H, Yamamoto N, Jenett A, Yamamoto K. Different ways of evolving tool-using brains in teleosts and amniotes. Commun Biol 2024; 7:88. [PMID: 38216631 PMCID: PMC10786859 DOI: 10.1038/s42003-023-05663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024] Open
Abstract
In mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species. We show that in the tool-using wrasses, the telencephalon and the ventral part of the forebrain and midbrain are significantly enlarged compared to other teleost species but do not contain a larger proportion of cells. Instead, this size difference is due to large fiber tracts connecting the dorsal part of the telencephalon (pallium) to the inferior lobe, a ventral mesencephalic structure absent in amniotes. The high degree of connectivity between these structures in tool-using wrasses suggests that the inferior lobe could contribute to higher-order cognitive functions. We conclude that the evolution of non-telencephalic structures might have been key in the emergence of these cognitive functions in teleosts.
Collapse
Affiliation(s)
- Pierre Estienne
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France
| | - Matthieu Simion
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
- Université Paris-Saclay, UVSQ, EnvA, INRAE, BREED, Jouy-en-Josas, 78350, France
| | - Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France.
| |
Collapse
|
7
|
Forsthofer M, Gordy C, Kolluri M, Straka H. Bilateral Retinofugal Pathfinding Impairments Limit Behavioral Compensation in Near-Congenital One-Eyed Xenopus laevis. eNeuro 2024; 11:ENEURO.0371-23.2023. [PMID: 38164595 PMCID: PMC10849038 DOI: 10.1523/eneuro.0371-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
To generate a coherent visual percept, information from both eyes must be appropriately transmitted into the brain, where binocular integration forms the substrate for visuomotor behaviors. To establish the anatomical substrate for binocular integration, the presence of bilateral eyes and interaction of both optic nerves during retinotectal development play a key role. However, the extent to which embryonic monocularly derived visual circuits can convey visuomotor behaviors is unknown. In this study, we assessed the retinotectal anatomy and visuomotor performance of embryonically generated one-eyed tadpoles. In one-eyed animals, the axons of retinal ganglion cells from the singular remaining eye exhibited striking irregularities in their central projections in the brain, generating a noncanonical ipsilateral retinotectal projection. This data is indicative of impaired pathfinding abilities. We further show that these novel projections are correlated with an impairment of behavioral compensation for the loss of one eye.
Collapse
Affiliation(s)
- Michael Forsthofer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
| | - Clayton Gordy
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
| | - Meghna Kolluri
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
| | - Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg 82152, Germany
| |
Collapse
|
8
|
Rodwell V, Patil M, Kuht HJ, Neuhauss SCF, Norton WHJ, Thomas MG. Zebrafish Optokinetic Reflex: Minimal Reporting Guidelines and Recommendations. BIOLOGY 2023; 13:4. [PMID: 38275725 PMCID: PMC10813647 DOI: 10.3390/biology13010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Optokinetic reflex (OKR) assays in zebrafish models are a valuable tool for studying a diverse range of ophthalmological and neurological conditions. Despite its increasing popularity in recent years, there are no clear reporting guidelines for the assay. Following reporting guidelines in research enhances reproducibility, reduces bias, and mitigates underreporting and poor methodologies in published works. To better understand optimal reporting standards for an OKR assay in zebrafish, we performed a systematic literature review exploring the animal, environmental, and technical factors that should be considered. Using search criteria from three online databases, a total of 109 research papers were selected for review. Multiple crucial factors were identified, including larval characteristics, sample size, fixing method, OKR set-up, distance of stimulus, detailed stimulus parameters, eye recording, and eye movement analysis. The outcome of the literature analysis highlighted the insufficient information provided in past research papers and the lack of a systematic way to present the parameters related to each of the experimental factors. To circumvent any future errors and champion robust transparent research, we have created the zebrafish optokinetic (ZOK) reflex minimal reporting guideline.
Collapse
Affiliation(s)
- Vanessa Rodwell
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Manjiri Patil
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Helen J. Kuht
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
| | | | - William H. J. Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mervyn G. Thomas
- Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, Leicester LE1 7RH, UK
- Department of Ophthalmology, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| |
Collapse
|
9
|
Ali MA, Lischka K, Preuss SJ, Trivedi CA, Bollmann JH. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion. Nat Commun 2023; 14:7592. [PMID: 37996414 PMCID: PMC10667368 DOI: 10.1038/s41467-023-43255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
In motor control, the brain not only sends motor commands to the periphery, but also generates concurrent internal signals known as corollary discharge (CD) that influence sensory information processing around the time of movement. CD signals are important for identifying sensory input arising from self-motion and to compensate for it, but the underlying mechanisms remain unclear. Using whole-cell patch clamp recordings from neurons in the zebrafish optic tectum, we discovered an inhibitory synaptic signal, temporally locked to spontaneous and visually driven locomotion. This motor-related inhibition was appropriately timed to counteract visually driven excitatory input arising from the fish's own motion, and transiently suppressed tectal spiking activity. High-resolution calcium imaging revealed localized motor-related signals in the tectal neuropil and the upstream torus longitudinalis, suggesting that CD enters the tectum via this pathway. Together, our results show how visual processing is suppressed during self-motion by motor-related phasic inhibition. This may help explain perceptual saccadic suppression observed in many species.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina Lischka
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Stephanie J Preuss
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Springer Nature Group, Heidelberg, Germany
| | - Chintan A Trivedi
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Dept Cell and Developmental Biology, University College London, London, UK
| | - Johann H Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Bernstein Center Freiburg, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
Cruz TL, Chiappe ME. Multilevel visuomotor control of locomotion in Drosophila. Curr Opin Neurobiol 2023; 82:102774. [PMID: 37651855 DOI: 10.1016/j.conb.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Vision is critical for the control of locomotion, but the underlying neural mechanisms by which visuomotor circuits contribute to the movement of the body through space are yet not well understood. Locomotion engages multiple control systems, forming distinct interacting "control levels" driven by the activity of distributed and overlapping circuits. Therefore, a comprehensive understanding of the mechanisms underlying locomotion control requires the consideration of all control levels and their necessary coordination. Due to their small size and the wide availability of experimental tools, Drosophila has become an important model system to study this coordination. Traditionally, insect locomotion has been divided into studying either the biomechanics and local control of limbs, or navigation and course control. However, recent developments in tracking techniques, and physiological and genetic tools in Drosophila have prompted researchers to examine multilevel control coordination in flight and walking.
Collapse
Affiliation(s)
- Tomás L Cruz
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
11
|
Sherman S, Arnold-Ammer I, Schneider MW, Kawakami K, Baier H. Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly. Nat Commun 2023; 14:6020. [PMID: 37758715 PMCID: PMC10533834 DOI: 10.1038/s41467-023-40749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Brain development is orchestrated by both innate and experience-dependent mechanisms, but their relative contributions are difficult to disentangle. Here we asked if and how central visual areas are altered in a vertebrate brain depleted of any and all signals from retinal ganglion cells throughout development. We transcriptionally profiled neurons in pretectum, thalamus and other retinorecipient areas of larval zebrafish and searched for changes in lakritz mutants that lack all retinal connections. Although individual genes are dysregulated, the complete set of 77 neuronal types develops in apparently normal proportions, at normal locations, and along normal differentiation trajectories. Strikingly, the cell-cycle exits of proliferating progenitors in these areas are delayed, and a greater fraction of early postmitotic precursors remain uncommitted or are diverted to a pre-glial fate. Optogenetic stimulation targeting groups of neurons normally involved in processing visual information evokes behaviors indistinguishable from wildtype. In conclusion, we show that signals emitted by retinal axons influence the pace of neurogenesis in visual brain areas, but do not detectably affect the specification or wiring of downstream neurons.
Collapse
Affiliation(s)
- Shachar Sherman
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Irene Arnold-Ammer
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Martin W Schneider
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes - Circuits - Behavior, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
12
|
Gutiérrez-Ibáñez C, Wylie DR, Altshuler DL. From the eye to the wing: neural circuits for transforming optic flow into motor output in avian flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:839-854. [PMID: 37542566 DOI: 10.1007/s00359-023-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Avian flight is guided by optic flow-the movement across the retina of images of surfaces and edges in the environment due to self-motion. In all vertebrates, there is a short pathway for optic flow information to reach pre-motor areas: retinal-recipient regions in the midbrain encode optic flow, which is then sent to the cerebellum. One well-known role for optic flow pathways to the cerebellum is the control of stabilizing eye movements (the optokinetic response). However, the role of this pathway in controlling locomotion is less well understood. Electrophysiological and tract tracing studies are revealing the functional connectivity of a more elaborate circuit through the avian cerebellum, which integrates optic flow with other sensory signals. Here we review the research supporting this framework and identify the cerebellar output centres, the lateral (CbL) and medial (CbM) cerebellar nuclei, as two key nodes with potentially distinct roles in flight control. The CbM receives bilateral optic flow information and projects to sites in the brainstem that suggest a primary role for flight control over time, such as during forward flight. The CbL receives monocular optic flow and other types of visual information. This site provides feedback to sensory areas throughout the brain and has a strong projection the nucleus ruber, which is known to have a dominant role in forelimb muscle control. This arrangement suggests primary roles for the CbL in the control of wing morphing and for rapid maneuvers.
Collapse
Affiliation(s)
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
13
|
Zhaoping L. Peripheral and central sensation: multisensory orienting and recognition across species. Trends Cogn Sci 2023; 27:539-552. [PMID: 37095006 DOI: 10.1016/j.tics.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023]
Abstract
Attentional bottlenecks force animals to deeply process only a selected fraction of sensory inputs. This motivates a unifying central-peripheral dichotomy (CPD), which separates multisensory processing into functionally defined central and peripheral senses. Peripheral senses (e.g., human audition and peripheral vision) select a fraction of the sensory inputs by orienting animals' attention; central senses (e.g., human foveal vision) allow animals to recognize the selected inputs. Originally used to understand human vision, CPD can be applied to multisensory processes across species. I first describe key characteristics of central and peripheral senses, such as the degree of top-down feedback and density of sensory receptors, and then show CPD as a framework to link ecological, behavioral, neurophysiological, and anatomical data and produce falsifiable predictions.
Collapse
Affiliation(s)
- Li Zhaoping
- University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
14
|
Holman JG, Lai WWK, Pichler P, Saska D, Lagnado L, Buckley CL. A behavioral and modeling study of control algorithms underlying the translational optomotor response in larval zebrafish with implications for neural circuit function. PLoS Comput Biol 2023; 19:e1010924. [PMID: 36821587 PMCID: PMC9998047 DOI: 10.1371/journal.pcbi.1010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/09/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
The optomotor response (OMR) is central to the locomotory behavior in diverse animal species including insects, fish and mammals. Furthermore, the study of the OMR in larval zebrafish has become a key model system for investigating the neural basis of sensorimotor control. However, a comprehensive understanding of the underlying control algorithms is still outstanding. In fish it is often assumed that the OMR, by reducing average optic flow across the retina, serves to stabilize position with respect to the ground. Yet the degree to which this is achieved, and how it could emerge from the intermittent burst dynamics of larval zebrafish swimming, are unclear. Here, we combine detailed computational modeling with a new approach to free-swimming experiments in which we control the amount of visual feedback produced by a given motor effort by varying the height of the larva above a moving grid stimulus. We develop an account of underlying feedback control mechanisms that describes both the bout initiation process and the control of swim speed during bouts. We observe that the degree to which fish stabilize their position is only partial and height-dependent, raising questions about its function. We find the relative speed profile during bouts follows a fixed temporal pattern independent of absolute bout speed, suggesting that bout speed and bout termination are not separately controlled. We also find that the reverse optic flow, experienced when the fish is swimming faster than the stimulus, plays a minimal role in control of the OMR despite carrying most of the sensory information about self-movement. These results shed new light on the underlying dynamics of the OMR in larval zebrafish and will be crucial for future work aimed at identifying the neural basis of this behavior.
Collapse
Affiliation(s)
- John G. Holman
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
- * E-mail: (JGH); (CLB)
| | - Winnie W. K. Lai
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Paul Pichler
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Daniel Saska
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Christopher L. Buckley
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
- * E-mail: (JGH); (CLB)
| |
Collapse
|
15
|
Yang E, Zwart MF, James B, Rubinov M, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB. A brainstem integrator for self-location memory and positional homeostasis in zebrafish. Cell 2022; 185:5011-5027.e20. [PMID: 36563666 DOI: 10.1016/j.cell.2022.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.
Collapse
Affiliation(s)
- En Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; School of Psychology and Neuroscience, Centre for Biophotonics, University of St Andrews, St. Andrews, UK
| | - Ben James
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mikail Rubinov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ziqiang Wei
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nikita Vladimirov
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
16
|
Svara F, Förster D, Kubo F, Januszewski M, Dal Maschio M, Schubert PJ, Kornfeld J, Wanner AA, Laurell E, Denk W, Baier H. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. Nat Methods 2022; 19:1357-1366. [PMID: 36280717 PMCID: PMC9636024 DOI: 10.1038/s41592-022-01621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/22/2022] [Indexed: 12/29/2022]
Abstract
Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.
Collapse
Affiliation(s)
- Fabian Svara
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- ariadne.ai ag, Buchrain, Switzerland
| | - Dominique Förster
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fumi Kubo
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | - Marco Dal Maschio
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Jörgen Kornfeld
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Eva Laurell
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Winfried Denk
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
17
|
Karlsson C, Willis J, Patel M, de Perera TB. Visual odometry of Rhinecanthus aculeatus depends on the visual density of the environment. Commun Biol 2022; 5:1045. [PMID: 36182985 PMCID: PMC9526725 DOI: 10.1038/s42003-022-03925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Distance travelled is a crucial metric that underpins an animal's ability to navigate in the short-range. While there is extensive research on how terrestrial animals measure travel distance, it is unknown how animals navigating in aquatic environments estimate this metric. A common method used by land animals is to measure optic flow, where the speed of self-induced visual motion is integrated over the course of a journey. Whether freely-swimming aquatic animals also measure distance relative to a visual frame of reference is unclear. Using the marine fish Rhinecanthus aculeatus, we show that teleost fish can use visual motion information to estimate distance travelled. However, the underlying mechanism differs fundamentally from previously studied terrestrial animals. Humans and terrestrial invertebrates measure the total angular motion of visual features for odometry, a mechanism which does not vary with visual density. In contrast, the visual odometer used by Rhinecanthus acuelatus is strongly dependent on the visual density of the environment. Odometry in fish may therefore be mediated by a movement detection mechanism akin to the system underlying the optomotor response, a separate motion-detection mechanism used by both vertebrates and invertebrates for course and gaze stabilisation.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Department of Zoology, Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| | - Jay Willis
- Department of Zoology, Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Matishalin Patel
- Department of Zoology, Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Theresa Burt de Perera
- Department of Zoology, Research and Administration Building, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
18
|
Wibble T, Pansell T, Grillner S, Pérez-Fernández J. Conserved subcortical processing in visuo-vestibular gaze control. Nat Commun 2022; 13:4699. [PMID: 35948549 PMCID: PMC9365791 DOI: 10.1038/s41467-022-32379-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Gaze stabilization compensates for movements of the head or external environment to minimize image blurring. Multisensory information stabilizes the scene on the retina via the vestibulo-ocular (VOR) and optokinetic (OKR) reflexes. While the organization of neuronal circuits underlying VOR is well-described across vertebrates, less is known about the contribution and evolution of the OKR and the basic structures allowing visuo-vestibular integration. To analyze these neuronal pathways underlying visuo-vestibular integration, we developed a setup using a lamprey eye-brain-labyrinth preparation, which allowed coordinating electrophysiological recordings, vestibular stimulation with a moving platform, and visual stimulation via screens. Lampreys exhibit robust visuo-vestibular integration, with optokinetic information processed in the pretectum that can be downregulated from tectum. Visual and vestibular inputs are integrated at several subcortical levels. Additionally, saccades are present in the form of nystagmus. Thus, all basic components of the visuo-vestibular control of gaze were present already at the dawn of vertebrate evolution.
Collapse
Affiliation(s)
- Tobias Wibble
- The Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Department of Clinical Neuroscience, Marianne Bernadotte Centrum, St: Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tony Pansell
- The Department of Clinical Neuroscience, Marianne Bernadotte Centrum, St: Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sten Grillner
- The Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pérez-Fernández
- The Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
19
|
Ali MA, Bollmann JH. Motion vision: Course control in the developing visual system. Curr Biol 2022; 32:R520-R523. [PMID: 35671725 DOI: 10.1016/j.cub.2022.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As we move around, the image pattern on our retina is constantly changing. Nervous systems have evolved to detect such global 'optic flow' patterns. A new study reveals how optic flow is encoded in the larval zebrafish brain and could be used for the estimation of self-motion.
Collapse
Affiliation(s)
- Mir Ahsan Ali
- Institute of Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Johann H Bollmann
- Institute of Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Biswas T, Fitzgerald JE. Geometric framework to predict structure from function in neural networks. PHYSICAL REVIEW RESEARCH 2022; 4:023255. [PMID: 37635906 PMCID: PMC10456994 DOI: 10.1103/physrevresearch.4.023255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of threshold-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate the solution space of all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. A generalization accounting for noise further reveals that the solution space geometry can undergo topological transitions as the allowed error increases, which could provide insight into both neuroscience and machine learning. We ultimately use this geometric characterization to derive certainty conditions guaranteeing a nonzero synapse between neurons. Our theoretical framework could thus be applied to neural activity data to make rigorous anatomical predictions that follow generally from the model architecture.
Collapse
Affiliation(s)
- Tirthabir Biswas
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
- Department of Physics, Loyola University, New Orleans, Louisiana 70118, USA
| | - James E. Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| |
Collapse
|
21
|
Zhang Y, Huang R, Nörenberg W, Arrenberg AB. A robust receptive field code for optic flow detection and decomposition during self-motion. Curr Biol 2022; 32:2505-2516.e8. [PMID: 35550724 DOI: 10.1016/j.cub.2022.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
The perception of optic flow is essential for any visually guided behavior of a moving animal. To mechanistically predict behavior and understand the emergence of self-motion perception in vertebrate brains, it is essential to systematically characterize the motion receptive fields (RFs) of optic-flow-processing neurons. Here, we present the fine-scale RFs of thousands of motion-sensitive neurons studied in the diencephalon and the midbrain of zebrafish. We found neurons that serve as linear filters and robustly encode directional and speed information of translation-induced optic flow. These neurons are topographically arranged in pretectum according to translation direction. The unambiguous encoding of translation enables the decomposition of translational and rotational self-motion information from mixed optic flow. In behavioral experiments, we successfully demonstrated the predicted decomposition in the optokinetic and optomotor responses. Together, our study reveals the algorithm and the neural implementation for self-motion estimation in a vertebrate visual system.
Collapse
Affiliation(s)
- Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Ruoyu Huang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Wiebke Nörenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Brożko N, Baggio S, Lipiec MA, Jankowska M, Szewczyk ŁM, Gabriel MO, Chakraborty C, Ferran JL, Wiśniewska MB. Genoarchitecture of the Early Postmitotic Pretectum and the Role of Wnt Signaling in Shaping Pretectal Neurochemical Anatomy in Zebrafish. Front Neuroanat 2022; 16:838567. [PMID: 35356436 PMCID: PMC8959918 DOI: 10.3389/fnana.2022.838567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
The pretectum has a distinct nuclear arrangement and complex neurochemical anatomy. While previous genoarchitectural studies have described rostrocaudal and dorsoventral progenitor domains and subdomains in different species, the relationship between these early partitions and its later derivatives in the mature anatomy is less understood. The signals and transcription factors that control the establishment of pretectal anatomy are practically unknown. We investigated the possibility that some aspects of the development of pretectal divisions are controlled by Wnt signaling, focusing on the transitional stage between neurogenesis and histogenesis in zebrafish. Using several molecular markers and following the prosomeric model, we identified derivatives from each rostrocaudal pretectal progenitor domain and described the localization of gad1b-positive GABAergic and vglut2.2-positive glutamatergic cell clusters. We also attempted to relate these clusters to pretectal nuclei in the mature brain. Then, we examined the influence of Wnt signaling on the size of neurochemically distinctive pretectal areas, using a chemical inhibitor of the Wnt pathway and the CRISPR/Cas9 approach to knock out genes that encode the Wnt pathway mediators, Lef1 and Tcf7l2. The downregulation of the Wnt pathway led to a decrease in two GABAergic clusters and an expansion of a glutamatergic subregion in the maturing pretectum. This revealed an instructive role of the Wnt signal in the development of the pretectum during neurogenesis. The molecular anatomy presented here improves our understanding of pretectal development during early postmitotic stages and support the hypothesis that Wnt signaling is involved in shaping the neurochemical organization of the pretectum.
Collapse
Affiliation(s)
- Nikola Brożko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Suelen Baggio
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marcin A. Lipiec
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Jankowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | | | - José L. Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Institute of Biomedical Research of Murcia -Ű IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Marta B. Wiśniewska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- *Correspondence: Marta B. Wiśniewska,
| |
Collapse
|
23
|
Genetic and Neurological Deficiencies in the Visual System of mct8 Mutant Zebrafish. Int J Mol Sci 2022; 23:ijms23052464. [PMID: 35269606 PMCID: PMC8910067 DOI: 10.3390/ijms23052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.
Collapse
|
24
|
Tesmer AL, Fields NP, Robles E. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum. BMC Biol 2022; 20:24. [PMID: 35073895 PMCID: PMC8788132 DOI: 10.1186/s12915-021-01222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background A continued effort in neuroscience aims to understand the way brain circuits consisting of diverse neuronal types generate complex behavior following sensory input. A common feature of vertebrate visual systems is that lower-order and higher-order visual areas are reciprocally connected. Feedforward projections confer visual responsiveness to higher-order visual neurons while feedback projections likely serve to modulate responses of lower-order visual neurons in a context-dependent manner. Optic tectum is the largest first-order visual brain area in zebrafish and is reciprocally connected with the torus longitudinalis (TL), a second-order visual brain area that does not receive retinal input. A functional role for feedback projections from TL to tectum has not been identified. Here we aim to understand how this feedback contributes to visual processing. Results In this study, we demonstrate that TL feedback projections to tectum drive binocular integration and spatial summation in a defined tectal circuit. We performed genetically targeted, cell type-specific functional imaging in tectal pyramidal neurons (PyrNs) and their two input neuron populations: retinal ganglion cells (RGCs) and neurons in TL. We find that PyrNs encode gradual changes in scene luminance using a complement of three distinct response classes that encode different light intensity ranges. Functional imaging of RGC inputs to tectum suggest that these response classes originate in the retina and RGC input specifies PyrN functional classes. In contrast, TL input serves to endow PyrNs with large, compound receptive fields that span both retinal hemifields. Conclusions These findings reveal a novel role for the zebrafish TL in driving binocular integration and spatial summation in tectal PyrNs. The neural circuit we describe generates a population of tectal neurons with large receptive fields tailored for detecting changes in the visual scene. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01222-x.
Collapse
|
25
|
Duchemin A, Privat M, Sumbre G. Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. Front Neural Circuits 2022; 15:814128. [PMID: 35069128 PMCID: PMC8777272 DOI: 10.3389/fncir.2021.814128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the presence of moving visual stimuli, the majority of animals follow the Fourier motion energy (luminance), independently of other stimulus features (edges, contrast, etc.). While the behavioral response to Fourier motion has been studied in the past, how Fourier motion is represented and processed by sensory brain areas remains elusive. Here, we investigated how visual moving stimuli with or without the first Fourier component (square-wave signal or missing fundamental signal) are represented in the main visual regions of the zebrafish brain. First, we monitored the larva's optokinetic response (OKR) induced by square-wave and missing fundamental signals. Then, we used two-photon microscopy and GCaMP6f zebrafish larvae to monitor neuronal circuit dynamics in the optic tectum and the pretectum. We observed that both the optic tectum and the pretectum circuits responded to the square-wave gratings. However, only the pretectum responded specifically to the direction of the missing-fundamental signal. In addition, a group of neurons in the pretectum responded to the direction of the behavioral output (OKR), independently of the type of stimulus presented. Our results suggest that the optic tectum responds to the different features of the stimulus (e.g., contrast, spatial frequency, direction, etc.), but does not respond to the direction of motion if the motion information is not coherent (e.g., the luminance and the edges and contrast in the missing-fundamental signal). On the other hand, the pretectum mainly responds to the motion of the stimulus based on the Fourier energy.
Collapse
|
26
|
Markov DA, Petrucco L, Kist AM, Portugues R. A cerebellar internal model calibrates a feedback controller involved in sensorimotor control. Nat Commun 2021; 12:6694. [PMID: 34795244 PMCID: PMC8602262 DOI: 10.1038/s41467-021-26988-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Animals must adapt their behavior to survive in a changing environment. Behavioral adaptations can be evoked by two mechanisms: feedback control and internal-model-based control. Feedback controllers can maintain the sensory state of the animal at a desired level under different environmental conditions. In contrast, internal models learn the relationship between the motor output and its sensory consequences and can be used to recalibrate behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval zebrafish performing the optomotor response and show that they react to these perturbations through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish adapt their behavior by updating a cerebellum-dependent internal model. We use modelling and functional imaging to show that the neuronal requirements for these mechanisms are met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding internal models and how these can calibrate neuronal circuits involved in reactive behaviors depending on the interactions between animal and environment.
Collapse
Affiliation(s)
- Daniil A Markov
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152, Martinsried, Germany
| | - Luigi Petrucco
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152, Martinsried, Germany
- Institute of Neuroscience, Technical University of Munich, 80802, Munich, Germany
| | - Andreas M Kist
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152, Martinsried, Germany
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Ruben Portugues
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152, Martinsried, Germany.
- Institute of Neuroscience, Technical University of Munich, 80802, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
27
|
Matsuda K, Kubo F. Circuit Organization Underlying Optic Flow Processing in Zebrafish. Front Neural Circuits 2021; 15:709048. [PMID: 34366797 PMCID: PMC8334359 DOI: 10.3389/fncir.2021.709048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Animals’ self-motion generates a drifting movement of the visual scene in the entire field of view called optic flow. Animals use the sensation of optic flow to estimate their own movements and accordingly adjust their body posture and position and stabilize the direction of gaze. In zebrafish and other vertebrates, optic flow typically drives the optokinetic response (OKR) and optomotor response (OMR). Recent functional imaging studies in larval zebrafish have identified the pretectum as a primary center for optic flow processing. In contrast to the view that the pretectum acts as a relay station of direction-selective retinal inputs, pretectal neurons respond to much more complex visual features relevant to behavior, such as spatially and temporally integrated optic flow information. Furthermore, optic flow signals, as well as motor signals, are represented in the cerebellum in a region-specific manner. Here we review recent findings on the circuit organization that underlies the optic flow processing driving OKR and OMR.
Collapse
Affiliation(s)
- Koji Matsuda
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | - Fumi Kubo
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
28
|
Baier H, Wullimann MF. Anatomy and function of retinorecipient arborization fields in zebrafish. J Comp Neurol 2021; 529:3454-3476. [PMID: 34180059 DOI: 10.1002/cne.25204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In 1994, Burrill and Easter described the retinal projections in embryonic and larval zebrafish, introducing the term "arborization fields" (AFs) for the retinorecipient areas. AFs were numbered from 1 to 10 according to their positions along the optic tract. With the exception of AF10 (neuropil of the optic tectum), annotations of AFs remained tentative. Here we offer an update on the likely identities and functions of zebrafish AFs after successfully matching classical neuroanatomy to the digital Max Planck Zebrafish Brain Atlas. In our system, individual AFs are neuropil areas associated with the following nuclei: AF1 with the suprachiasmatic nucleus; AF2 with the posterior parvocellular preoptic nucleus; AF3 and AF4 with the ventrolateral thalamic nucleus; AF4 with the anterior and intermediate thalamic nuclei; AF5 with the dorsal accessory optic nucleus; AF7 with the parvocellular superficial pretectal nucleus; AF8 with the central pretectal nucleus; and AF9d and AF9v with the dorsal and ventral periventricular pretectal nuclei. AF6 is probably part of the accessory optic system. Imaging, ablation, and activation experiments showed contributions of AF5 and potentially AF6 to optokinetic and optomotor reflexes, AF4 to phototaxis, and AF7 to prey detection. AF6, AF8 and AF9v respond to dimming, and AF4 and AF9d to brightening. While few annotations remain tentative, it is apparent that the larval zebrafish visual system is anatomically and functionally continuous with its adult successor and fits the general cyprinid pattern. This study illustrates the synergy created by merging classical neuroanatomy with a cellular-resolution digital brain atlas resource and functional imaging in larval zebrafish.
Collapse
Affiliation(s)
- Herwig Baier
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany
| | - Mario F Wullimann
- Max Planck Institute of Neurobiology, Genes-Circuits-Behavior, Martinsried, Germany.,Department Biology II, Division of Neurobiology, Ludwig-Maximilians-University (LMU Munich), Martinsried, Germany
| |
Collapse
|
29
|
Leyden C, Brysch C, Arrenberg AB. A distributed saccade-associated network encodes high velocity conjugate and monocular eye movements in the zebrafish hindbrain. Sci Rep 2021; 11:12644. [PMID: 34135354 PMCID: PMC8209155 DOI: 10.1038/s41598-021-90315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Saccades are rapid eye movements that redirect gaze. Their magnitudes and directions are tightly controlled by the oculomotor system, which is capable of generating conjugate, monocular, convergent and divergent saccades. Recent studies suggest a mainly monocular control of saccades in mammals, although the development of binocular control and the interaction of different functional populations is less well understood. For zebrafish, a well-established model in sensorimotor research, the nature of binocular control in this key oculomotor behavior is unknown. Here, we use the optokinetic response and calcium imaging to characterize how the developing zebrafish oculomotor system encodes the diverse repertoire of saccades. We find that neurons with phasic saccade-associated activity (putative burst neurons) are most frequent in dorsal regions of the hindbrain and show elements of both monocular and binocular encoding, revealing a mix of the response types originally hypothesized by Helmholtz and Hering. Additionally, we observed a certain degree of behavior-specific recruitment in individual neurons. Surprisingly, calcium activity is only weakly tuned to saccade size. Instead, saccade size is apparently controlled by a push-pull mechanism of opposing burst neuron populations. Our study reveals the basic layout of a developing vertebrate saccade system and provides a perspective into the evolution of the oculomotor system.
Collapse
Affiliation(s)
- Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72074, Tuebingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
30
|
Dehmelt FA, Meier R, Hinz J, Yoshimatsu T, Simacek CA, Huang R, Wang K, Baden T, Arrenberg AB. Spherical arena reveals optokinetic response tuning to stimulus location, size, and frequency across entire visual field of larval zebrafish. eLife 2021; 10:63355. [PMID: 34100720 PMCID: PMC8233042 DOI: 10.7554/elife.63355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Many animals have large visual fields, and sensory circuits may sample those regions of visual space most relevant to behaviours such as gaze stabilisation and hunting. Despite this, relatively small displays are often used in vision neuroscience. To sample stimulus locations across most of the visual field, we built a spherical stimulus arena with 14,848 independently controllable LEDs. We measured the optokinetic response gain of immobilised zebrafish larvae to stimuli of different steradian size and visual field locations. We find that the two eyes are less yoked than previously thought and that spatial frequency tuning is similar across visual field positions. However, zebrafish react most strongly to lateral, nearly equatorial stimuli, consistent with previously reported spatial densities of red, green, and blue photoreceptors. Upside-down experiments suggest further extra-retinal processing. Our results demonstrate that motion vision circuits in zebrafish are anisotropic, and preferentially monitor areas with putative behavioural relevance.
Collapse
Affiliation(s)
- Florian A Dehmelt
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Rebecca Meier
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Julian Hinz
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Takeshi Yoshimatsu
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, United Kingdom
| | - Clara A Simacek
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Ruoyu Huang
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Kun Wang
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| | - Tom Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, United Kingdom
| | - Aristides B Arrenberg
- University of Tübingen, Werner Reichardt Centre for Integrative Neuroscience and Institute of Neurobiology, Tübingen, Germany
| |
Collapse
|
31
|
Rasmussen RN, Matsumoto A, Arvin S, Yonehara K. Binocular integration of retinal motion information underlies optic flow processing by the cortex. Curr Biol 2021; 31:1165-1174.e6. [PMID: 33484637 PMCID: PMC7987724 DOI: 10.1016/j.cub.2020.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
Locomotion creates various patterns of optic flow on the retina, which provide the observer with information about their movement relative to the environment. However, it is unclear how these optic flow patterns are encoded by the cortex. Here, we use two-photon calcium imaging in awake mice to systematically map monocular and binocular responses to horizontal motion in four areas of the visual cortex. We find that neurons selective to translational or rotational optic flow are abundant in higher visual areas, whereas neurons suppressed by binocular motion are more common in the primary visual cortex. Disruption of retinal direction selectivity in Frmd7 mutant mice reduces the number of translation-selective neurons in the primary visual cortex and translation- and rotation-selective neurons as well as binocular direction-selective neurons in the rostrolateral and anterior visual cortex, blurring the functional distinction between primary and higher visual areas. Thus, optic flow representations in specific areas of the visual cortex rely on binocular integration of motion information from the retina. Translation- and rotation-selective neurons are abundant in higher visual areas Optic-flow-selective neurons in V1 and RL/A rely on retinal direction selectivity Retinal direction selectivity controls functional segregation between V1 and RL/A Binocular integration of retinal motion information underlies optic flow selectivity
Collapse
Affiliation(s)
- Rune Nguyen Rasmussen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Simon Arvin
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
32
|
Friedrich RW, Wanner AA. Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annu Rev Neurosci 2021; 44:275-293. [PMID: 33730512 DOI: 10.1146/annurev-neuro-110220-013050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; .,Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
33
|
LeFauve MK, Rowe CJ, Crowley-Perry M, Wiegand JL, Shapiro AG, Connaughton VP. Using a variant of the optomotor response as a visual defect detection assay in zebrafish. J Biol Methods 2021; 8:e144. [PMID: 33604396 PMCID: PMC7884848 DOI: 10.14440/jbm.2021.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
We describe a visual stimulus that can be used with both larval and adult zebrafish (Danio rerio). This protocol is a modification of a standard visual behavior analysis, the optomotor response (OMR). The OMR is often used to determine the spatial response or to detect directional visuomotor deficiencies. An OMR can be generated using a high contrast grated pattern, typically vertical bars. The spatial sensitivity is measured by detection and response to a change in grating bar width and is reported in cycles per degree (CPD). This test has been used extensively with zebrafish larvae and adults to identify visual- and/or motor-based mutations. Historically, when tested in adults, the grated pattern was presented from a vertical perspective, using a rotating cylinder around a holding tank, allowing the grating to be seen solely from the sides and front of the organism. In contrast, OMRs in zebrafish larvae are elicited using a stimulus projected below the fish. This difference in methodology means that two different experimental set-ups are required: one for adults and one for larvae. Our visual stimulus modifies the stimulation format so that a single OMR stimulus, suitable for use with both adults and larvae, is being presented underneath the fish. Analysis of visuomotor responses using this method does not require costly behavioral tracking software and, using a single behavioral paradigm, allows the observer to rapidly determine visual spatial response in both zebrafish larvae and adults.
Collapse
Affiliation(s)
- Matthew K LeFauve
- Department of Biological Sciences, George Washington University, 800 22 St NW, Washington, DC 20052, USA.,Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Cassie J Rowe
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.,Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Mikayla Crowley-Perry
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.,Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Jenna L Wiegand
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Arthur G Shapiro
- Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.,Department of Psychology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.,Department of Computer Science, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Victoria P Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA.,Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| |
Collapse
|
34
|
Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish. Cell Rep 2021; 30:442-453.e6. [PMID: 31940488 DOI: 10.1016/j.celrep.2019.12.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022] Open
Abstract
Non-cortical visual areas in vertebrate brains extract relevant stimulus features, such as motion, object size, and location, to support diverse behavioral tasks. The optic tectum and pretectum, two primary visual areas in zebrafish, are involved in motion processing, and yet their differential neural representation of behaviorally relevant visual features is unclear. Here, we characterize receptive fields (RFs) of motion-sensitive neurons in the diencephalon and midbrain. We show that RFs of many pretectal neurons are large and sample the lower visual field, whereas RFs of tectal neurons are mostly small-size selective and sample the upper nasal visual field more densely. Furthermore, optomotor swimming can reliably be evoked by presenting forward motion in the lower temporal visual field alone, matching the lower visual field bias of the pretectum. Thus, tectum and pretectum extract different visual features from distinct regions of visual space, which is likely a result of their adaptations to hunting and optomotor behavior, respectively.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
35
|
Wang K, Arrenberg B, Hinz J, Arrenberg AB. Reduction of visual stimulus artifacts using a spherical tank for small, aquatic animals. Sci Rep 2021; 11:3204. [PMID: 33547357 PMCID: PMC7864920 DOI: 10.1038/s41598-021-81904-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Delivering appropriate stimuli remains a challenge in vision research, particularly for aquatic animals such as zebrafish. Due to the shape of the water tank and the associated optical paths of light rays, the stimulus can be subject to unwanted refraction or reflection artifacts, which may spoil the experiment and result in wrong conclusions. Here, we employ computer graphics simulations and calcium imaging in the zebrafish optic tectum to show, how a spherical glass container optically outperforms many previously used water containers, including Petri dish lids. We demonstrate that aquatic vision experiments suffering from total internal reflection artifacts at the water surface or at the flat container bottom may result in the erroneous detection of visual neurons with bipartite receptive fields and in the apparent absence of neurons selective for vertical motion. Our results and demonstrations will help aquatic vision neuroscientists on optimizing their stimulation setups.
Collapse
Affiliation(s)
- Kun Wang
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre for Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | | | - Julian Hinz
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre for Neuroscience, University of Tübingen, 72076, Tübingen, Germany
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
Vanwalleghem G, Constantin L, Scott EK. Calcium Imaging and the Curse of Negativity. Front Neural Circuits 2021; 14:607391. [PMID: 33488363 PMCID: PMC7815594 DOI: 10.3389/fncir.2020.607391] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
The imaging of neuronal activity using calcium indicators has become a staple of modern neuroscience. However, without ground truths, there is a real risk of missing a significant portion of the real responses. Here, we show that a common assumption, the non-negativity of the neuronal responses as detected by calcium indicators, biases all levels of the frequently used analytical methods for these data. From the extraction of meaningful fluorescence changes to spike inference and the analysis of inferred spikes, each step risks missing real responses because of the assumption of non-negativity. We first show that negative deviations from baseline can exist in calcium imaging of neuronal activity. Then, we use simulated data to test three popular algorithms for image analysis, CaImAn, suite2p, and CellSort, finding that suite2p may be the best suited to large datasets. We also tested the spike inference algorithms included in CaImAn, suite2p, and Cellsort, as well as the dedicated inference algorithms MLspike and CASCADE, and found each to have limitations in dealing with inhibited neurons. Among these spike inference algorithms, FOOPSI, from CaImAn, performed the best on inhibited neurons, but even this algorithm inferred spurious spikes upon the return of the fluorescence signal to baseline. As such, new approaches will be needed before spikes can be sensitively and accurately inferred from calcium data in inhibited neurons. We further suggest avoiding data analysis approaches that, by assuming non-negativity, ignore inhibited responses. Instead, we suggest a first exploratory step, using k-means or PCA for example, to detect whether meaningful negative deviations are present. Taking these steps will ensure that inhibition, as well as excitation, is detected in calcium imaging datasets.
Collapse
Affiliation(s)
- Gilles Vanwalleghem
- Neural Circuits and Behavior Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | | | | |
Collapse
|
37
|
Barker AJ, Helmbrecht TO, Grob AA, Baier H. Functional, molecular and morphological heterogeneity of superficial interneurons in the larval zebrafish tectum. J Comp Neurol 2020; 529:2159-2175. [PMID: 33278028 DOI: 10.1002/cne.25082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
The superficial interneurons, SINs, of the zebrafish tectum, have been implicated in a range of visual functions, including size discrimination, directional selectivity, and looming-evoked escape. This raises the question if SIN subpopulations, despite their morphological similarities and shared anatomical position in the retinotectal processing stream, carry out diverse, task-specific functions in visual processing, or if they have simple tuning properties in common. Here we have further characterized the SINs through functional imaging, electrophysiological recordings, and neurotransmitter typing in two transgenic lines, the widely used Gal4s1156t and the recently reported LCRRH2-RH2-2:GFP. We found that about a third of the SINs strongly responded to changes in whole-field light levels, with a strong preference for OFF over ON stimuli. Interestingly, individual SINs were selectively tuned to a diverse range of narrow luminance decrements. Overall responses to whole-field luminance steps did not vary with the position of the SIN cell body along the depth of the tectal neuropil or with the orientation of its neurites. We ruled out the possibility that intrinsic photosensitivity of Gal4s1156t+ SINs contribute to the measured visual responses. We found that, while most SINs express GABAergic markers, a substantial minority express an excitatory neuronal marker, the vesicular glutamate transporter, expanding the possible roles of SIN function in the tectal circuitry. In conclusion, SINs represent a molecularly, morphologically, and functionally heterogeneous class of interneurons, with subpopulations that detect a range of specific visual features, to which we have now added narrow luminance decrements.
Collapse
Affiliation(s)
- Alison J Barker
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Thomas O Helmbrecht
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Aurélien A Grob
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| | - Herwig Baier
- Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Munich, Germany
| |
Collapse
|
38
|
Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae. BMC Biol 2020; 18:172. [PMID: 33243249 PMCID: PMC7694941 DOI: 10.1186/s12915-020-00903-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Visually guided behaviors such as optomotor and optokinetic responses, phototaxis, and prey capture are crucial for survival in zebrafish and become apparent after just a few days of development. Color vision, which in zebrafish is based on a spatially anisotropic tetrachromatic retina, provides an additional important component of world representation driving fundamental larval behaviors. However, little is known about the central nervous system (CNS) circuitry underlying color vision processing downstream of the retina, and its activity correlates with behavior. Here, we used the transparent larva of zebrafish to image CNS neurons and their activity in response to colored visual stimuli. RESULTS To investigate the processing of chromatic information in the zebrafish larva brain, we mapped with cellular resolution, spectrally responsive neurons in the larva encephalon and spinal cord. We employed the genetically encoded calcium indicator GCaMP6s and two-photon microscopy to image the neuronal activity while performing visual stimulation with spectrally distinct stimuli at wavelengths matching the absorption peaks of the four zebrafish cone types. We observed the presence of a high number of wavelength-selective neurons not only in the optic tectum, but also in all other regions of the CNS, demonstrating that the circuitry involved in processing spectral information and producing color-selective responses extends to the whole CNS. CONCLUSIONS Our measurements provide a map of neurons involved in color-driven responses, revealing that spectral information spreads in all regions of the CNS. This suggests the underlying complexity of the circuits involved and opens the way to their detailed future investigation.
Collapse
|
39
|
Wu Y, Dal Maschio M, Kubo F, Baier H. An Optical Illusion Pinpoints an Essential Circuit Node for Global Motion Processing. Neuron 2020; 108:722-734.e5. [PMID: 32966764 DOI: 10.1016/j.neuron.2020.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Direction-selective (DS) neurons compute the direction of motion in a visual scene. Brain-wide imaging in larval zebrafish has revealed hundreds of DS neurons scattered throughout the brain. However, the exact population that causally drives motion-dependent behaviors-e.g., compensatory eye and body movements-remains largely unknown. To identify the behaviorally relevant population of DS neurons, here we employ the motion aftereffect (MAE), which causes the well-known "waterfall illusion." Together with region-specific optogenetic manipulations and cellular-resolution functional imaging, we found that MAE-responsive neurons represent merely a fraction of the entire population of DS cells in larval zebrafish. They are spatially clustered in a nucleus in the ventral lateral pretectal area and are necessary and sufficient to steer the entire cycle of optokinetic eye movements. Thus, our illusion-based behavioral paradigm, combined with optical imaging and optogenetics, identified key circuit elements of global motion processing in the vertebrate brain.
Collapse
Affiliation(s)
- Yunmin Wu
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marco Dal Maschio
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Biomedical Sciences, University of Padua, Via 8 Febbraio, 2, 35122 Padova, Italy
| | - Fumi Kubo
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
40
|
Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R. A Neural Representation of Naturalistic Motion-Guided Behavior in the Zebrafish Brain. Curr Biol 2020; 30:2321-2333.e6. [PMID: 32386533 DOI: 10.1016/j.cub.2020.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
All animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum organizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Peripheral computations thus reflect natural input statistics, whereas central brain activity precisely codes information needed for behavior. This general principle could organize sensorimotor transformations across animal species.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Research Group of Sensorimotor Control, Martinsried 82152, Germany; Institute of Neuroscience, Technical University of Munich, Munich 80802, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich 80802, Germany.
| |
Collapse
|
41
|
Brysch C, Leyden C, Arrenberg AB. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 2019; 17:110. [PMID: 31884959 PMCID: PMC6936144 DOI: 10.1186/s12915-019-0720-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.
Collapse
Affiliation(s)
- Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
42
|
Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. Nat Neurosci 2019; 23:85-93. [PMID: 31792463 DOI: 10.1038/s41593-019-0535-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022]
Abstract
Although animals can accumulate sensory evidence over considerable time scales to appropriately select behavior, little is known about how the vertebrate brain as a whole accomplishes this. In this study, we developed a new sensorimotor decision-making assay in larval zebrafish based on whole-field visual motion. Fish responded by swimming in the direction of perceived motion, such that the latency to initiate swimming and the fraction of correct turns were modulated by motion strength. Using whole-brain functional imaging, we identified neural activity relevant to different stages of the decision-making process, including the momentary evaluation and accumulation of sensory evidence. This activity is distributed in functional clusters across different brain regions and is characterized by a wide range of time constants. In addition, we found that the caudal interpeduncular nucleus (IPN), a circular structure located ventrally on the midline of the brain, reliably encodes the left and right turning rates.
Collapse
|
43
|
Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat Neurosci 2019; 23:94-102. [PMID: 31792464 DOI: 10.1038/s41593-019-0534-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
To make appropriate decisions, animals need to accumulate sensory evidence. Simple integrator models can explain many aspects of such behavior, but how the underlying computations are mechanistically implemented in the brain remains poorly understood. Here we approach this problem by adapting the random-dot motion discrimination paradigm, classically used in primate studies, to larval zebrafish. Using their innate optomotor response as a measure of decision making, we find that larval zebrafish accumulate and remember motion evidence over many seconds and that the behavior is in close agreement with a bounded leaky integrator model. Through the use of brain-wide functional imaging, we identify three neuronal clusters in the anterior hindbrain that are well suited to execute the underlying computations. By relating the dynamics within these structures to individual behavioral choices, we propose a biophysically plausible circuit arrangement in which an evidence integrator competes against a dynamic decision threshold to activate a downstream motor command.
Collapse
|
44
|
An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat Commun 2019; 10:5471. [PMID: 31784529 PMCID: PMC6884480 DOI: 10.1038/s41467-019-13484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Binocular stereopsis requires the convergence of visual information from corresponding points in visual space seen by two different lines of sight. This may be achieved by superposition of retinal input from each eye onto the same downstream neurons via ipsi- and contralaterally projecting optic nerve fibers. Zebrafish larvae can perceive binocular cues during prey hunting but have exclusively contralateral retinotectal projections. Here we report brain activity in the tectal neuropil ipsilateral to the visually stimulated eye, despite the absence of ipsilateral retinotectal projections. This activity colocalizes with arbors of commissural neurons, termed intertectal neurons (ITNs), that connect the tectal hemispheres. ITNs are GABAergic, establish tectal synapses bilaterally and respond to small moving stimuli. ITN-ablation impairs capture swim initiation when prey is positioned in the binocular strike zone. We propose an intertectal circuit that controls execution of the prey-capture motor program following binocular localization of prey, without requiring ipsilateral retinotectal projections. Zebrafish larvae can binocularly detect prey objects in order to strike but lack ipsilateral retinotectal fibers for binocular superposition of visual information. Here the authors describe commissural intertectal neurons and show that they are required for the initiation of capture strikes.
Collapse
|
45
|
Zebrafish dscaml1 Deficiency Impairs Retinal Patterning and Oculomotor Function. J Neurosci 2019; 40:143-158. [PMID: 31685652 DOI: 10.1523/jneurosci.1783-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENT Dscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.
Collapse
|
46
|
Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light-Dark Transitions. Cell Rep 2019; 29:659-670.e3. [DOI: 10.1016/j.celrep.2019.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 01/28/2023] Open
|
47
|
Monocular nasotemporal optokinetic asymmetry-unraveling the mystery. J AAPOS 2019; 23:249-251. [PMID: 31521846 DOI: 10.1016/j.jaapos.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 11/22/2022]
|
48
|
Ecke GA, Bruijns SA, Hölscher J, Mikulasch FA, Witschel T, Arrenberg AB, Mallot HA. Sparse coding predicts optic flow specificities of zebrafish pretectal neurons. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
50
|
Zhang Y, Arrenberg AB. High throughput, rapid receptive field estimation for global motion sensitive neurons using a contiguous motion noise stimulus. J Neurosci Methods 2019; 326:108366. [PMID: 31356837 DOI: 10.1016/j.jneumeth.2019.108366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The systematic characterization of receptive fields (RF) is essential for understanding visual motion processing. The performance of RF estimation depends on the employed stimuli, the complexity of the encoded features, and the quality of the activity readout. Calcium imaging is an attractive readout method for high-throughput neuronal activity recordings. However, calcium recordings are oftentimes noisy and of low temporal resolution. The RF estimation of neurons sensitive to global motion is particularly challenging due to their potentially complex combination of preferred directions across visual field positions. NEW METHOD Here, we present a novel noise stimulus, which is enriched with spatiotemporally contiguous motion and thus triggers robust calcium responses. We combined this contiguous motion noise (CMN) stimulus with reverse correlation followed by a two-step nonparametric cluster-based bootstrapping test for efficient and reliable RF estimation. RESULTS The in silico evaluation of our approach showed that RF centre positions and preferred directions are reliably detected in most of the simulated neurons. Suppressive RF components were detected in 40% of the simulated neurons. We successfully applied our approach to estimate the RFs of 163 motion-sensitive neurons in vivo within 40 min in the pretectum of zebrafish. Many in vivo neurons were sensitive to elaborate directional flow fields in their RFs. COMPARISON WITH EXISTING METHODS Our approach outperforms white noise methods and others due to the optimized motion stimulus statistics and ascertainable fine RF structures. CONCLUSIONS The CMN method enables efficient, non-biased RF estimation and will benefit systematic high-throughput investigations of RFs using calcium imaging.
Collapse
Affiliation(s)
- Yue Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, D-72076, Tübingen, Germany; Graduate Training Centre for Neuroscience, University of Tübingen, D-72076, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience, Institute of Neurobiology, University of Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|