1
|
Ding Q, Yang W, Xue G, Liu H, Cai Y, Que J, Jin X, Luo M, Pang F, Yang Y, Lin Y, Liu Y, Sun H, Tan R, Wang P, Xu Z, Jiang Q. Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm. Genome Biol 2024; 25:241. [PMID: 39252099 PMCID: PMC11382422 DOI: 10.1186/s13059-024-03385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell-cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell-cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Qian Ding
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Wenyi Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guangfu Xue
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Hongxin Liu
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yideng Cai
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Jinhao Que
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Fenglan Pang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yuexin Yang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yi Lin
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Yusong Liu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Haoxiu Sun
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Renjie Tan
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China
| | - Pingping Wang
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
| | - Zhaochun Xu
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, 150076, China.
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, 150076, China.
| |
Collapse
|
2
|
Kim YS, Lee HJ, Handoko GA, Kim J, Kim SB, Won M, Park JH, Ahn J. Production of a 135-residue long N-truncated human keratinocyte growth factor 1 in Escherichia coli. Microb Cell Fact 2023; 22:98. [PMID: 37170276 PMCID: PMC10173505 DOI: 10.1186/s12934-023-02097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Palifermin (trade name Kepivance®) is an amino-terminally truncated recombinant human keratinocyte growth factor 1 (KGF-1) with 140 residues that has been produced using Escherichia coli to prevent and treat oral mucositis following radiation or chemotherapy. In this study, an amino-terminally shortened KGF-1 variant with 135 residues was produced and purified in E. coli, and its cell proliferation activity was evaluated. RESULTS We expressed soluble KGF-1 fused to thioredoxin (TRX) in the cytoplasmic fraction of E. coli to improve its production yield. However, three N-truncated forms (KGF-1 with 140, 138, and 135 residues) were observed after the removal of the TRX protein from the fusion form by cleavage of the human enterokinase light chain C112S (hEKL C112S). The shortest KGF-1 variant, with 135 residues, was expressed by fusion with TRX via the hEKL cleavage site in E. coli and purified at high purity (> 99%). Circular dichroism spectroscopy shows that purified KGF-1135 had a structure similar to that of the KGF-1140 as a random coiled form, and MCF-7 cell proliferation assays demonstrate its biological activity. CONCLUSIONS We identified variations in N-terminus-truncated KGF-1 and selected the most stable form. Furthermore, by a simple two-step purification, highly purified KGF-1135 was obtained that showed biological activity. These results demonstrate that KGF-1135 may be considered an alternative protein to KGF-1.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul, 03722, Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
3
|
The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool. Cell Rep 2023; 42:112242. [PMID: 36924490 DOI: 10.1016/j.celrep.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Collapse
|
4
|
Dittmann NL, Torabi P, Watson AES, Yuzwa SA, Voronova A. Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs. Stem Cell Rev Rep 2023; 19:983-1000. [PMID: 36617597 DOI: 10.1007/s12015-022-10492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.
Collapse
Affiliation(s)
- Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Pouria Torabi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women and Children's Health Research Institute5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, Alberta, T6G 1C9, Canada. .,Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Multiple Sclerosis Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
5
|
Mahmud N, Eisner C, Purushothaman S, Storer MA, Kaplan DR, Miller FD. Nail-associated mesenchymal cells contribute to and are essential for dorsal digit tip regeneration. Cell Rep 2022; 41:111853. [PMID: 36543145 DOI: 10.1016/j.celrep.2022.111853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme. A second group contributes specifically to the dorsal blastema, loses their nail mesenchyme phenotype, acquires a blastema transcriptional state that is highly similar to blastema cells of other origins, and ultimately contributes to regeneration of the dorsal but not ventral dermis and bone. Thus, the regenerative necessity for an intact nail base is explained, at least in part, by a requirement for the inductive nail mesenchyme.
Collapse
Affiliation(s)
- Neemat Mahmud
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Christine Eisner
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sruthi Purushothaman
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada.
| |
Collapse
|
6
|
Wang S, Zheng H, Choi JS, Lee JK, Li X, Hu H. A systematic evaluation of the computational tools for ligand-receptor-based cell-cell interaction inference. Brief Funct Genomics 2022; 21:339-356. [PMID: 35822343 PMCID: PMC9479691 DOI: 10.1093/bfgp/elac019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-cell interactions (CCIs) are essential for multicellular organisms to coordinate biological processes and functions. One classical type of CCI interaction is between secreted ligands and cell surface receptors, i.e. ligand-receptor (LR) interactions. With the recent development of single-cell technologies, a large amount of single-cell ribonucleic acid (RNA) sequencing (scRNA-Seq) data has become widely available. This data availability motivated the single-cell-resolution study of CCIs, particularly LR-based CCIs. Dozens of computational methods and tools have been developed to predict CCIs by identifying LR-based CCIs. Many of these tools have been theoretically reviewed. However, there is little study on current LR-based CCI prediction tools regarding their performance and running results on public scRNA-Seq datasets. In this work, to fill this gap, we tested and compared nine of the most recent computational tools for LR-based CCI prediction. We used 15 well-studied scRNA-Seq samples that correspond to approximately 100K single cells under different experimental conditions for testing and comparison. Besides briefing the methodology used in these nine tools, we summarized the similarities and differences of these tools in terms of both LR prediction and CCI inference between cell types. We provided insight into using these tools to make meaningful discoveries in understanding cell communications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoman Li
- Corresponding authors: Haiyan Hu, Department of Computer Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078820134; Fax: +1-4078235835; E-mail: ; Xiaoman Li, Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078234811; Fax: +1-4078235835; E-mail:
| | - Haiyan Hu
- Corresponding authors: Haiyan Hu, Department of Computer Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078820134; Fax: +1-4078235835; E-mail: ; Xiaoman Li, Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA. Tel.: +1-4078234811; Fax: +1-4078235835; E-mail:
| |
Collapse
|
7
|
Kedia S, Aghanoori MR, Burns KML, Subha M, Williams L, Wen P, Kopp D, Erickson SL, Harvey EM, Chen X, Hua M, Perez JU, Ishraque F, Yang G. Ubiquitination and deubiquitination of 4E-T regulate neural progenitor cell maintenance and neurogenesis by controlling P-body formation. Cell Rep 2022; 40:111070. [PMID: 35830814 DOI: 10.1016/j.celrep.2022.111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.
Collapse
Affiliation(s)
- Shreeya Kedia
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Mohamad-Reza Aghanoori
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kaylan M L Burns
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Maneesha Subha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Laura Williams
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pengqiang Wen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Drayden Kopp
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Sarah L Erickson
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Emily M Harvey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Xin Chen
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michelle Hua
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jose Uriel Perez
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Fatin Ishraque
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Guang Yang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Owerko Centre, ACHRI, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
8
|
Xie Y, Kuan AT, Wang W, Herbert ZT, Mosto O, Olukoya O, Adam M, Vu S, Kim M, Tran D, Gómez N, Charpentier C, Sorour I, Lacey TE, Tolstorukov MY, Sabatini BL, Lee WCA, Harwell CC. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep 2022; 38:110416. [PMID: 35196485 PMCID: PMC8962654 DOI: 10.1016/j.celrep.2022.110416] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.
Collapse
Affiliation(s)
- Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron T Kuan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Olivia Mosto
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Olubusola Olukoya
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Manal Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steve Vu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Minsu Kim
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicolás Gómez
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Claire Charpentier
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ingie Sorour
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Liu J, Fan Z, Zhao W, Zhou X. Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges. Front Genet 2021; 12:655536. [PMID: 34135939 PMCID: PMC8203333 DOI: 10.3389/fgene.2021.655536] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
The rapid development of single-cell technologies allows for dissecting cellular heterogeneity at different omics layers with an unprecedented resolution. In-dep analysis of cellular heterogeneity will boost our understanding of complex biological systems or processes, including cancer, immune system and chronic diseases, thereby providing valuable insights for clinical and translational research. In this review, we will focus on the application of machine learning methods in single-cell multi-omics data analysis. We will start with the pre-processing of single-cell RNA sequencing (scRNA-seq) data, including data imputation, cross-platform batch effect removal, and cell cycle and cell-type identification. Next, we will introduce advanced data analysis tools and methods used for copy number variance estimate, single-cell pseudo-time trajectory analysis, phylogenetic tree inference, cell-cell interaction, regulatory network inference, and integrated analysis of scRNA-seq and spatial transcriptome data. Finally, we will present the latest analyzing challenges, such as multi-omics integration and integrated analysis of scRNA-seq data.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Electronic and Information Engineering, Tongji University, Shanghai, China
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, Houston, TX, United States
| | - Zhiwei Fan
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, Houston, TX, United States
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weiling Zhao
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, Houston, TX, United States
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Centre at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet 2021; 22:71-88. [PMID: 33168968 PMCID: PMC7649713 DOI: 10.1038/s41576-020-00292-x] [Citation(s) in RCA: 553] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Cell-cell interactions orchestrate organismal development, homeostasis and single-cell functions. When cells do not properly interact or improperly decode molecular messages, disease ensues. Thus, the identification and quantification of intercellular signalling pathways has become a common analysis performed across diverse disciplines. The expansion of protein-protein interaction databases and recent advances in RNA sequencing technologies have enabled routine analyses of intercellular signalling from gene expression measurements of bulk and single-cell data sets. In particular, ligand-receptor pairs can be used to infer intercellular communication from the coordinated expression of their cognate genes. In this Review, we highlight discoveries enabled by analyses of cell-cell interactions from transcriptomic data and review the methods and tools used in this context.
Collapse
Affiliation(s)
- Erick Armingol
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs. Cells 2021; 10:cells10020253. [PMID: 33525513 PMCID: PMC7911671 DOI: 10.3390/cells10020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neocortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also disrupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. In particular, the Wnt3-Fzd7 signaling axis determines the deep layer Foxp2-expressing neurons of developing neocortices. Our findings also suggest that Fzd7 controls the balance of the expression for Foxp transcription factors in developing neocortical neurons. These discoveries are presented in our manuscript within a larger framework of this review on the role of extrinsic factors in regulating mRNA translation.
Collapse
|
12
|
Xing L, Kalebic N, Namba T, Vaid S, Wimberger P, Huttner WB. Serotonin Receptor 2A Activation Promotes Evolutionarily Relevant Basal Progenitor Proliferation in the Developing Neocortex. Neuron 2020; 108:1113-1129.e6. [PMID: 33080227 DOI: 10.1016/j.neuron.2020.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary expansion of the mammalian neocortex (Ncx) has been linked to increased abundance and proliferative capacity of basal progenitors (BPs) in the subventricular zone during development. BP proliferation is governed by both intrinsic and extrinsic signals, several of which have been identified. However, a role of neurotransmitters, a canonical class of extrinsic signaling molecules, in BP proliferation remains to be established. Here, we show that serotonin (5-HT), via its receptor HTR2A, promotes BP proliferation in an evolutionarily relevant manner. HTR2A is not expressed in embryonic mouse Ncx; accordingly, 5-HT does not increase mouse BP proliferation. However, ectopic HTR2A expression can increase mouse BP proliferation. Conversely, CRISPR/Cas9-mediated knockout of endogenous HTR2A in embryonic ferret Ncx reduces BP proliferation. Pharmacological activation of endogenous HTR2A in fetal human Ncx ex vivo increases BP proliferation via HER2/ERK signaling. Hence, 5-HT emerges as an important extrinsic pro-proliferative signal for BPs, which may have contributed to evolutionary Ncx expansion.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Human Technopole, Via Cristina Belgioioso 171, Milan, Italy
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
13
|
LRIG1-Mediated Inhibition of EGF Receptor Signaling Regulates Neural Precursor Cell Proliferation in the Neocortex. Cell Rep 2020; 33:108257. [PMID: 33053360 DOI: 10.1016/j.celrep.2020.108257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs. Constitutive or acute loss of Lrig1 in NSCs over this developmental time frame causes stem cell expansion due to increased proliferation. LRIG1 controls NSC proliferation by associating with and negatively regulating the epidermal growth factor receptor (EGFR). These data support a model in which LRIG1 dampens the stem cell response to EGFR ligands within the cortical environment to slow their proliferation as they transition to postnatal adult NSCs.
Collapse
|
14
|
Peripheral Nerve Single-Cell Analysis Identifies Mesenchymal Ligands that Promote Axonal Growth. eNeuro 2020; 7:ENEURO.0066-20.2020. [PMID: 32349983 PMCID: PMC7294463 DOI: 10.1523/eneuro.0066-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons. These analyses show that peripheral nerves make many ligands predicted to act on peripheral and CNS neurons, including known and previously uncharacterized ligands. While Schwann cells are an important ligand source within injured nerves, more than half of the predicted ligands are made by nerve-resident mesenchymal cells, including the endoneurial cells most closely associated with peripheral axons. At least three of these mesenchymal ligands, ANGPT1, CCL11, and VEGFC, promote growth when locally applied on sympathetic axons. These data therefore identify an unexpected paracrine role for nerve mesenchymal cells and suggest that multiple cell types contribute to creating a highly pro-growth environment for peripheral axons.
Collapse
|
15
|
Xing L, Huttner WB. Neurotransmitters as Modulators of Neural Progenitor Cell Proliferation During Mammalian Neocortex Development. Front Cell Dev Biol 2020; 8:391. [PMID: 32528958 PMCID: PMC7264395 DOI: 10.3389/fcell.2020.00391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Neural progenitor cells (NPCs) play a central role during the development and evolution of the mammalian neocortex. Precise temporal and spatial control of NPC proliferation by a concert of cell-intrinsic and cell-extrinsic factors is essential for the correct formation and proper function of the neocortex. In this review, we focus on the regulation of NPC proliferation by neurotransmitters, which act as a group of cell-extrinsic factors during mammalian neocortex development. We first summarize, from both in vivo and in vitro studies, our current knowledge on how γ-aminobutyric acid (GABA), glutamate and serotonin modulate NPC proliferation in the developing neocortex and the potential involvements of different receptors in the underlying mechanisms. Another focus of this review is to discuss future perspectives using conditionally gene-modified mice and human brain organoids as model systems to further our understanding on the contribution of neurotransmitters to the development of a normal neocortex, as well as how dysregulated neurotransmitter signaling leads to developmental and psychiatric disorders.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
16
|
Jain A, Hakim S, Woolf CJ. Unraveling the Plastic Peripheral Neuroimmune Interactome. THE JOURNAL OF IMMUNOLOGY 2020; 204:257-263. [DOI: 10.4049/jimmunol.1900818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 01/16/2023]
|
17
|
Storer MA, Mahmud N, Karamboulas K, Borrett MJ, Yuzwa SA, Gont A, Androschuk A, Sefton MV, Kaplan DR, Miller FD. Acquisition of a Unique Mesenchymal Precursor-like Blastema State Underlies Successful Adult Mammalian Digit Tip Regeneration. Dev Cell 2020; 52:509-524.e9. [PMID: 31902657 DOI: 10.1016/j.devcel.2019.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
Here, we investigate the origin and nature of blastema cells that regenerate the adult murine digit tip. We show that Pdgfra-expressing mesenchymal cells in uninjured digits establish the regenerative blastema and are essential for regeneration. Single-cell profiling shows that the mesenchymal blastema cells are distinct from both uninjured digit and embryonic limb or digit Pdgfra-positive cells. This unique blastema state is environmentally determined; dermal fibroblasts transplanted into the regenerative, but not non-regenerative, digit express blastema-state genes and contribute to bone regeneration. Moreover, lineage tracing with single-cell profiling indicates that endogenous osteoblasts or osteocytes acquire a blastema mesenchymal transcriptional state and contribute to both dermis and bone regeneration. Thus, mammalian digit tip regeneration occurs via a distinct adult mechanism where the regenerative environment promotes acquisition of a blastema state that enables cells from tissues such as bone to contribute to the regeneration of other mesenchymal tissues such as the dermis.
Collapse
Affiliation(s)
- Mekayla A Storer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Neemat Mahmud
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto M5G 1A8, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Michael J Borrett
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Institute of Medical Sciences, University of Toronto, Toronto M5G 1A8, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Alexander Gont
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Alaura Androschuk
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5G 1A8, Canada
| | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5G 1A8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5G 1A8, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1A8, Canada; Institute of Medical Sciences, University of Toronto, Toronto M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto M5G 1A8, Canada; Institute of Medical Sciences, University of Toronto, Toronto M5G 1A8, Canada.
| |
Collapse
|
18
|
Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett 2020; 715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
19
|
Systematic Identification of Cell-Cell Communication Networks in the Developing Brain. iScience 2019; 21:273-287. [PMID: 31677479 PMCID: PMC6838536 DOI: 10.1016/j.isci.2019.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/24/2019] [Accepted: 10/13/2019] [Indexed: 01/07/2023] Open
Abstract
Since the generation of cell-type specific knockout models, the importance of inter-cellular communication between neural, vascular, and microglial cells during neural development has been increasingly appreciated. However, the extent of communication between these major cell populations remains to be systematically mapped. Here, we describe EMBRACE (embryonic brain cell extraction using FACS), a method to simultaneously isolate neural, mural, endothelial, and microglial cells to more than 94% purity in ∼4 h. Utilizing EMBRACE we isolate, transcriptionally analyze, and build a cell-cell communication map of the developing mouse brain. We identify 1,710 unique ligand-receptor interactions between neural, endothelial, mural, and microglial cells in silico and experimentally confirm the APOE-LDLR, APOE-LRP1, VTN-KDR, and LAMA4-ITGB1 interactions in the E14.5 brain. We provide our data via the searchable “Brain interactome explorer”, available at https://mpi-ie.shinyapps.io/braininteractomeexplorer/. Together, this study provides a comprehensive map that reveals the richness of communication within the developing brain. Isolation of embryonic neural, mural, endothelial, and microglial cells to >94% purity Transcriptome analyses of neural, vascular, and microglial cells from E14.5 brain Generation of inter-cellular communication network with 1,710 unique interactions Established “Brain interactome explorer,” a searchable cell communication database
Collapse
|
20
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
21
|
Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron 2019; 102:143-158.e7. [PMID: 30770253 DOI: 10.1016/j.neuron.2019.01.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.
Collapse
|
22
|
Mancinelli S, Lodato S. Decoding neuronal diversity in the developing cerebral cortex: from single cells to functional networks. Curr Opin Neurobiol 2018; 53:146-155. [DOI: 10.1016/j.conb.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
|
23
|
Cortical and spinal conditioned media modify the inward ion currents and excitability and promote differentiation of human striatal primordium. J Chem Neuroanat 2018; 90:87-97. [DOI: 10.1016/j.jchemneu.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
|
24
|
Storer MA, Gallagher D, Fatt MP, Simonetta JV, Kaplan DR, Miller FD. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development. Stem Cell Reports 2018; 10:1464-1480. [PMID: 29628394 PMCID: PMC5995693 DOI: 10.1016/j.stemcr.2018.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023] Open
Abstract
Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. The cytokine IL-6 promotes self-renewal of post-natal forebrain NSCs Inducible knockout of the IL-6 receptor causes long-term decreases in post-natal NSCs A transient surge of circulating IL-6 ultimately depletes adult NSC pools IL-6 signaling is both necessary and sufficient for adult NSC self-renewal
Collapse
Affiliation(s)
- Mekayla A Storer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Denis Gallagher
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada
| | - Michael P Fatt
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto M5G 1A8, Canada
| | - Jaclin V Simonetta
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1A8, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1A8, Canada.
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto M5G 1A8, Canada.
| |
Collapse
|
25
|
Bonafina A, Fontanet PA, Paratcha G, Ledda F. GDNF/GFRα1 Complex Abrogates Self-Renewing Activity of Cortical Neural Precursors Inducing Their Differentiation. Stem Cell Reports 2018; 10:1000-1015. [PMID: 29478900 PMCID: PMC5918270 DOI: 10.1016/j.stemcr.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/30/2022] Open
Abstract
The balance between factors leading to proliferation and differentiation of cortical neural precursors (CNPs) determines the correct cortical development. In this work, we show that GDNF and its receptor GFRα1 are expressed in the neocortex during the period of cortical neurogenesis. We show that the GDNF/GFRα1 complex inhibits the self-renewal capacity of mouse CNP cells induced by fibroblast growth factor 2 (FGF2), promoting neuronal differentiation. While GDNF leads to decreased proliferation of cultured cortical precursor cells, ablation of GFRα1 in glutamatergic cortical precursors enhances its proliferation. We show that GDNF treatment of CNPs promoted morphological differentiation even in the presence of the self-renewal-promoting factor, FGF2. Analysis of GFRα1-deficient mice shows an increase in the number of cycling cells during cortical development and a reduction in dendrite development of cortical GFRα1-expressing neurons. Together, these results indicate that GDNF/GFRα1 signaling plays an essential role in regulating the proliferative condition and the differentiation of cortical progenitors. GFRα1 receptor is expressed in the neocortex during the period of neurogenesis GDNF/GFRα1 complex inhibits self-renewing of cortical neuronal precursors GDNF and GFRα1 promote neurogenic differentiation of cortical neural progenitors Requirement of GFRα1 for proper dendrite development of cortical neurons
Collapse
Affiliation(s)
- Antonela Bonafina
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET-UBA, School of Medicine, University of Buenos Aires (UBA), Buenos Aires CP 1121, Argentina
| | - Paula Aldana Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET-UBA, School of Medicine, University of Buenos Aires (UBA), Buenos Aires CP 1121, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET-UBA, School of Medicine, University of Buenos Aires (UBA), Buenos Aires CP 1121, Argentina
| | - Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET-UBA, School of Medicine, University of Buenos Aires (UBA), Buenos Aires CP 1121, Argentina.
| |
Collapse
|
26
|
Zahr SK, Yang G, Kazan H, Borrett MJ, Yuzwa SA, Voronova A, Kaplan DR, Miller FD. A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates Neuronal Specification. Neuron 2018; 97:520-537.e6. [PMID: 29395907 DOI: 10.1016/j.neuron.2017.12.045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/28/2017] [Indexed: 01/28/2023]
Abstract
The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.
Collapse
Affiliation(s)
- Siraj K Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Guang Yang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Hilal Kazan
- Department of Computer Engineering, Antalya Bilim University, Antalya, Turkey
| | - Michael J Borrett
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Anastassia Voronova
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
27
|
Chao MV. Intercellular Networks Underlying Developmental Decisions. Neuron 2017; 91:947-949. [PMID: 27608755 DOI: 10.1016/j.neuron.2016.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Neuron, Yuzwa et al. (2016) identify secreted factors that influence the cell fates of embryonic neural progenitor cells. Surprisingly, the major contributors are trophic factors from the GDNF family and a cytokine, interferon-γ. Advanced analysis of proteomic and transcriptome data discovered ligand receptors that influence cell-cell communication.
Collapse
Affiliation(s)
- Moses V Chao
- Departments of Cell Biology, Physiology & Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University Langone Medical School, New York, NY 10016, USA.
| |
Collapse
|
28
|
Shin HK, Lee SW, Choi BT. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem Pharmacol 2017; 141:132-142. [DOI: 10.1016/j.bcp.2017.04.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
29
|
Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron 2017; 94:500-516.e9. [PMID: 28472653 DOI: 10.1016/j.neuron.2017.04.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.
Collapse
Affiliation(s)
- Anastassia Voronova
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Beatrix S Wang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Siraj Zahr
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada.
| |
Collapse
|
30
|
Yuzwa SA, Miller FD. Deciphering cell-cell communication in the developing mammalian brain. NEUROGENESIS 2017; 4:e1286425. [PMID: 28265587 DOI: 10.1080/23262133.2017.1286425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
The diverse subtypes of neurons that comprise the mammalian cerebral cortex are produced from a single population of cortical neural precursor cells during the period of embryonic neurogenesis. While this process of neurogenesis is tightly controlled at the transcriptional and translational levels, substantial opportunity exists for extrinsic or niche control of the process of neurogenesis. In our recently published work we made use of a combination of computational and biologic approaches to characterize cell-cell communication between cortical neurons and cortical precursor cells and thereby reveal an unexpectedly complex growth factor communication network that accurately predicted new regulators of cortical neurogenesis.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Program in Neurosciences and Mental Health, Hospital for Sick Children , Toronto, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada; Molecular Genetics, University of Toronto, Toronto, Canada; Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Ayre DC, Christian SL. CD24: A Rheostat That Modulates Cell Surface Receptor Signaling of Diverse Receptors. Front Cell Dev Biol 2016; 4:146. [PMID: 28083532 PMCID: PMC5186806 DOI: 10.3389/fcell.2016.00146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- D Craig Ayre
- Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland St. John's, NL, Canada
| |
Collapse
|
32
|
Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The Contribution of Spatial and Temporal Molecular Networks in the Induction of Long-term Memory and Its Underlying Synaptic Plasticity. AIMS Neurosci 2016; 3:356-384. [PMID: 27819030 PMCID: PMC5096789 DOI: 10.3934/neuroscience.2016.3.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to form long-lasting memories is critical to survival and thus is highly conserved across the animal kingdom. By virtue of its complexity, this same ability is vulnerable to disruption by a wide variety of neuronal traumas and pathologies. To identify effective therapies with which to treat memory disorders, it is critical to have a clear understanding of the cellular and molecular mechanisms which subserve normal learning and memory. A significant challenge to achieving this level of understanding is posed by the wide range of distinct temporal and spatial profiles of molecular signaling induced by learning-related stimuli. In this review we propose that a useful framework within which to address this challenge is to view the molecular foundation of long-lasting plasticity as composed of unique spatial and temporal molecular networks that mediate signaling both within neurons (such as via kinase signaling) as well as between neurons (such as via growth factor signaling). We propose that evaluating how cells integrate and interpret these concurrent and interacting molecular networks has the potential to significantly advance our understanding of the mechanisms underlying learning and memory formation.
Collapse
Affiliation(s)
- Anastasios A. Mirisis
- Center for Neural Science, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Anamaria Alexandrescu
- Center for Neural Science, New York University, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Thomas J. Carew
- Center for Neural Science, New York University, New York, NY, USA
| | - Ashley M. Kopec
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|