1
|
Guo Y, Lin Z, Fan Z, Tian X. Epileptic brain network mechanisms and neuroimaging techniques for the brain network. Neural Regen Res 2024; 19:2637-2648. [PMID: 38595282 PMCID: PMC11168515 DOI: 10.4103/1673-5374.391307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024] Open
Abstract
Epilepsy can be defined as a dysfunction of the brain network, and each type of epilepsy involves different brain-network changes that are implicated differently in the control and propagation of interictal or ictal discharges. Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice. An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tractography, diffusion kurtosis imaging-based fiber tractography, fiber ball imaging-based tractography, electroencephalography, functional magnetic resonance imaging, magnetoencephalography, positron emission tomography, molecular imaging, and functional ultrasound imaging have been extensively used to delineate epileptic networks. In this review, we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy, and extensively analyze the imaging mechanisms, advantages, limitations, and clinical application ranges of each technique. A greater focus on emerging advanced technologies, new data analysis software, a combination of multiple techniques, and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
Collapse
Affiliation(s)
- Yi Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhonghua Lin
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhen Fan
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xin Tian
- Department of Neurology, Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Liu Y, Chen Y, Duffy CR, VanLeuven AJ, Byers JB, Schriever HC, Ball RE, Carpenter JM, Gunderson CE, Filipov NM, Ma P, Kner PA, Lauderdale JD. Decreased GABA levels during development result in increased connectivity in the larval zebrafish tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612511. [PMID: 39314470 PMCID: PMC11419034 DOI: 10.1101/2024.09.11.612511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
γ-aminobutyric acid (GABA) is an abundant neurotransmitter that plays multiple roles in the vertebrate central nervous system (CNS). In the early developing CNS, GABAergic signaling acts to depolarize cells. It mediates several aspects of neural development, including cell proliferation, neuronal migration, neurite growth, and synapse formation, as well as the development of critical periods. Later in CNS development, GABAergic signaling acts in an inhibitory manner when it becomes the predominant inhibitory neurotransmitter in the brain. This behavior switch occurs due to changes in chloride/cation transporter expression. Abnormalities of GABAergic signaling appear to underlie several human neurological conditions, including seizure disorders. However, the impact of reduced GABAergic signaling on brain development has been challenging to study in mammals. Here we take advantage of zebrafish and light sheet imaging to assess the impact of reduced GABAergic signaling on the functional circuitry in the larval zebrafish optic tectum. Zebrafish have three gad genes: two gad1 paralogs known as gad1a and gad1b, and gad2. The gad1b and gad2 genes are expressed in the developing optic tectum. Null mutations in gad1b significantly reduce GABA levels in the brain and increase electrophysiological activity in the optic tectum. Fast light sheet imaging of genetically encoded calcium indicator (GCaMP)-expressing gab1b null larval zebrafish revealed patterns of neural activity that were different than either gad1b-normal larvae or gad1b-normal larvae acutely exposed to pentylenetetrazole (PTZ). These results demonstrate that reduced GABAergic signaling during development increases functional connectivity and concomitantly hyper-synchronization of neuronal networks.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yongkai Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Carly R Duffy
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Ariel J VanLeuven
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - John Branson Byers
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Hannah C Schriever
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| | - Chelsea E Gunderson
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, The University of Georgia, College of Veterinary Medicine, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Peter A Kner
- School of Electrical and Computer Engineering, The University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Borjas NC, Anstötz M, Maccaferri G. Multiple layers of diversity govern the cell type specificity of GABAergic input received by mouse subicular pyramidal neurons. J Physiol 2024; 602:4195-4213. [PMID: 39141819 DOI: 10.1113/jp286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
Collapse
Affiliation(s)
- Nancy Castro Borjas
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
4
|
Du Y, Lin SD, Wu XQ, Xue BY, Ding YL, Zhang JH, Tan B, Lou GD, Hu WW, Chen Z, Zhang SH. Ventral posteromedial nucleus of the thalamus gates the spread of trigeminal neuropathic pain. J Headache Pain 2024; 25:140. [PMID: 39192198 DOI: 10.1186/s10194-024-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking. METHODS Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain. RESULTS We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain. CONCLUSION These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shi-Da Lin
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bao-Yu Xue
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Hang Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Wei Hu
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Baset A, Huang F. Shedding light on subiculum's role in human brain disorders. Brain Res Bull 2024; 214:110993. [PMID: 38825254 DOI: 10.1016/j.brainresbull.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Subiculum is a pivotal output component of the hippocampal formation, a structure often overlooked in neuroscientific research. Here, this review aims to explore the role of the subiculum in various brain disorders, shedding light on its significance within the functional-neuroanatomical perspective on neurological diseases. The subiculum's involvement in multiple brain disorders was thoroughly examined. In Alzheimer's disease, subiculum alterations precede cognitive decline, while in epilepsy, the subiculum plays a critical role in seizure initiation. Stress involves the subiculum's impact on the hypothalamic-pituitary-adrenocortical axis. Moreover, the subiculum exhibits structural and functional changes in anxiety, schizophrenia, and Parkinson's disease, contributing to cognitive deficits. Bipolar disorder is linked to subiculum structural abnormalities, while autism spectrum disorder reveals an alteration of inward deformation in the subiculum. Lastly, frontotemporal dementia shows volumetric differences in the subiculum, emphasizing its contribution to the disorder's complexity. Taken together, this review consolidates existing knowledge on the subiculum's role in brain disorders, and may facilitate future research, diagnostic strategies, and therapeutic interventions for various neurological conditions.
Collapse
Affiliation(s)
- Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China
| | - Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Hong Kong Special Administrative Region of China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
7
|
Takahashi K, Rensing NR, Eultgen EM, Wang SH, Nelvagal HR, Le SQ, Roberts MS, Doray B, Han EB, Dickson PI, Wong M, Sands MS, Cooper JD. GABAergic interneurons contribute to the fatal seizure phenotype of CLN2 disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587276. [PMID: 38585903 PMCID: PMC10996664 DOI: 10.1101/2024.03.29.587276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
GABAergic interneuron deficits have been implicated in the epileptogenesis of multiple neurological diseases. While epileptic seizures are a key clinical hallmark of CLN2 disease, a childhood-onset neurodegenerative lysosomal storage disorder caused by a deficiency of tripeptidyl peptidase 1 (TPP1), the etiology of these seizures remains elusive. Given that Cln2 R207X/R207X mice display fatal spontaneous seizures and an early loss of several cortical interneuron populations, we hypothesized that those two events might be causally related. To address this hypothesis, we first generated an inducible transgenic mouse expressing lysosomal membrane-tethered TPP1 (TPP1LAMP1) on the Cln2 R207X/R207X genetic background to study the cell-autonomous effects of cell-type-specific TPP1 deficiency. We crossed the TPP1LAMP1 mice with Vgat-Cre mice to introduce interneuron-specific TPP1 deficiency. Vgat-Cre ; TPP1LAMP1 mice displayed storage material accumulation in several interneuron populations both in cortex and striatum, and increased susceptibility to die after PTZ-induced seizures. Secondly, to test the role of GABAergic interneuron activity in seizure progression, we selectively activated these cells in Cln2 R207X/R207X mice using Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) in in Vgat-Cre : Cln2 R207X/R207X mice. EEG monitoring revealed that DREADD-mediated activation of interneurons via chronic deschloroclozapine administration accelerated the onset of spontaneous seizures and seizure-associated death in Vgat-Cre : Cln2 R207X/R207X mice, suggesting that modulating interneuron activity can exert influence over epileptiform abnormalities in CLN2 disease. Taken together, these results provide new mechanistic insights into the underlying etiology of seizures and premature death that characterize CLN2 disease.
Collapse
|
8
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Guo F, Li A, Liu Q, Guo D, Chen K, Yao D, Cui Y, Xia Y. Disruption of TLE epileptiform activity retarded the seizure and reduced pathological HFOs. Brain Res Bull 2024; 207:110869. [PMID: 38184151 DOI: 10.1016/j.brainresbull.2024.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
In temporal lobe epilepsy (TLE), the epileptogenic zones, such as the temporal lobe structure, could generate pathological high-frequency oscillations (pHFOs, 250-500 Hz) before the ictal period. These pHFOs have also been observed during the process of seizures in both TLE patients and animals, exhibiting a critical role as promising biomarkers for TLE seizures. TLE seizures could be modulated via regulating the neural excitability in epileptogenic zones, for that TLE is primarily associated with the excitation-inhibition imbalance. However, whether these kinds of modulations could also impact the pHFOs characteristics during TLE seizures is still unclear. For this purpose, we pharmaco-genetically inhibited the principal cells (PCs) in the mouse CA3 region and tracked the difference in the behavioral and electrophysiological features during LiCl-pilocarpine-induced TLE seizure between the hM4Di+CNO (experimental) mice and mCherry+CNO (control) mice. Delayed latency, decreased averaged duration, and reduced counts of the generalized seizure were observed in the experimental mice. Besides, the electrophysiological characteristics, such as the firing rate of PCs and the count of pHFO, exhibited significant decline in the CA3 and CA1 regions. During TLE seizure, there existed strong phase-coupling between pHFO and PCs spike timing in the control mice, while it was abolished in the experimental mice. In addition, we also found that the counts of pHFO were significantly associated with the behavioral features, indicating the close relationships within them. Collectively, our findings suggested that alterations in pHFO and the retardation of seizures may be attributed to disruptions in neuronal excitability, and the variations of electrophysiological features were related to seizure severity during TLE seizures. These results provide valuable insights into the role of pHFOs in TLE and shed light on the underlying mechanisms involved.
Collapse
Affiliation(s)
- Fengru Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Airui Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qinjun Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Cui
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yang Xia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
10
|
Yang L, Zhang Q, Wu XQ, Qiu XY, Fei F, Lai NX, Zheng YY, Zhang MD, Zhang QY, Wang Y, Wang F, Xu CL, Ruan YP, Wang Y, Chen Z. Chemogenetic inhibition of subicular seizure-activated neurons alleviates cognitive deficit in male mouse epilepsy model. Acta Pharmacol Sin 2023; 44:2376-2387. [PMID: 37488426 PMCID: PMC10692337 DOI: 10.1038/s41401-023-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Cognitive deficit is a common comorbidity in temporal lobe epilepsy (TLE) and is not well controlled by current therapeutics. How epileptic seizure affects cognitive performance remains largely unclear. In this study we investigated the role of subicular seizure-activated neurons in cognitive impairment in TLE. A bipolar electrode was implanted into hippocampal CA3 in male mice for kindling stimulation and EEG recording; a special promoter with enhanced synaptic activity-responsive element (E-SARE) was used to label seizure-activated neurons in the subiculum; the activity of subicular seizure-activated neurons was manipulated using chemogenetic approach; cognitive function was assessed in object location memory (OLM) and novel object recognition (NOR) tasks. We showed that chemogenetic inhibition of subicular seizure-activated neurons (mainly CaMKIIα+ glutamatergic neurons) alleviated seizure generalization and improved cognitive performance, but inhibition of seizure-activated GABAergic interneurons had no effect on seizure and cognition. For comparison, inhibition of the whole subicular CaMKIIα+ neuron impaired cognitive function in naïve mice in basal condition. Notably, chemogenetic inhibition of subicular seizure-activated neurons enhanced the recruitment of cognition-responsive c-fos+ neurons via increasing neural excitability during cognition tasks. Our results demonstrate that subicular seizure-activated neurons contribute to cognitive impairment in TLE, suggesting seizure-activated neurons as the potential therapeutic target to alleviate cognitive impairment in TLE.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Nan-Xi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meng-di Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ye-Ping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310013, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Dugger SA, Dhindsa RS, Sampaio GDA, Ressler AK, Rafikian EE, Petri S, Letts VA, Teoh J, Ye J, Colombo S, Peng Y, Yang M, Boland MJ, Frankel WN, Goldstein DB. Neurodevelopmental deficits and cell-type-specific transcriptomic perturbations in a mouse model of HNRNPU haploinsufficiency. PLoS Genet 2023; 19:e1010952. [PMID: 37782669 PMCID: PMC10569524 DOI: 10.1371/journal.pgen.1010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/12/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.
Collapse
Affiliation(s)
- Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, Texas, United States of America
| | - Gabriela De Almeida Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Elizabeth E. Rafikian
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Verity A. Letts
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mu Yang
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
12
|
Dai SJ, Shao YY, Zheng Y, Sun JY, Li ZS, Shi JY, Yan MQ, Qiu XY, Xu CL, Cho WS, Nishibori M, Yi S, Park SB, Wang Y, Chen Z. Inflachromene attenuates seizure severity in mouse epilepsy models via inhibiting HMGB1 translocation. Acta Pharmacol Sin 2023; 44:1737-1747. [PMID: 37076634 PMCID: PMC10462729 DOI: 10.1038/s41401-023-01087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/02/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is not well controlled by current anti-seizure drugs (ASDs). High mobility group box 1 (HMGB1) is a DNA-binding protein in the nucleus regulating transcriptional activity and maintaining chromatin structure and DNA repair. In epileptic brains, HMGB1 is released by activated glia and neurons, interacting with various receptors like Toll-like receptor 4 (TLR4) and downstream glutamatergic NMDA receptor, thus enhancing neural excitability. But there is a lack of small-molecule drugs targeting the HMGB1-related pathways. In this study we evaluated the therapeutic potential of inflachromene (ICM), an HMGB-targeting small-molecule inhibitor, in mouse epilepsy models. Pentylenetetrazol-, kainic acid- and kindling-induced epilepsy models were established in mice. The mice were pre-treated with ICM (3, 10 mg/kg, i.p.). We showed that ICM pretreatment significantly reduced the severity of epileptic seizures in all the three epilepsy models. ICM (10 mg/kg) exerted the most apparent anti-seizure effect in kainic acid-induced epileptic status (SE) model. By immunohistochemical analysis of brain sections from kainic acid-induced SE mice, we found that kainic acid greatly enhanced HMGB1 translocation in the hippocampus, which was attenuated by ICM pretreatment in subregion- and cell type-dependent manners. Notably, in CA1 region, the seizure focus, ICM pretreatment mainly inhibited HMGB1 translocation in microglia. Furthermore, the anti-seizure effect of ICM was related to HMGB1 targeting, as pre-injection of anti-HMGB1 monoclonal antibody (5 mg/kg, i.p.) blocked the seizure-suppressing effect of ICM in kainic acid-induced SE model. In addition, ICM pretreatment significantly alleviated pyramidal neuronal loss and granule cell dispersion in kainic acid-induced SE model. These results demonstrate that ICM is an HMGB-targeting small molecule with anti-seizure potential, which may help develop a potential drug for treating epilepsy.
Collapse
Affiliation(s)
- Si-Jie Dai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Ying Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jin-Yi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Sheng Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Ying Shi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Qi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wan-Sang Cho
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Wang Y, Qiu XY, Liu JY, Tan B, Wang F, Sun MJ, Jiang XH, Ji XM, Xu CL, Wang Y, Chen Z. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin 2023; 44:1600-1611. [PMID: 36973542 PMCID: PMC10374614 DOI: 10.1038/s41401-023-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 μM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Ying Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min-Juan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Hong Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Ming Ji
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
14
|
Wu J, Liu P, Geng C, Liu C, Li J, Zhu Q, Li A. Principal neurons in the olfactory cortex mediate bidirectional modulation of seizures. J Physiol 2023; 601:3557-3584. [PMID: 37384845 DOI: 10.1113/jp284731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Although the piriform cortex (PC) has been previously implicated as a critical node for seizure generation and propagation, the underlying neural mechanism has remained unclear. Here, we found increased excitability in PC neurons during amygdala kindling acquisition. Optogenetic or chemogenetic activation of PC pyramidal neurons promoted kindling progression, whereas inhibition of these neurons retarded seizure activities induced by electrical kindling in the amygdala. Furthermore, chemogenetic inhibition of PC pyramidal neurons alleviated the severity of kainic acid-induced acute seizures. These results demonstrate that PC pyramidal neurons bidirectionally modulate seizures in temporal lobe epilepsy, providing evidence for the efficacy of PC pyramidal neurons as a potential therapeutic target for epileptogenesis. KEY POINTS: While the piriform cortex (PC) is an important olfactory centre critically involved in olfactory processing and plays a crucial role in epilepsy due to its close connection with the limbic system, how the PC regulates epileptogenesis is largely unknown. In this study, we evaluated the neuronal activity and the role of pyramidal neurons in the PC in the mouse amygdala kindling model of epilepsy. PC pyramidal neurons are hyperexcited during epileptogenesis. Optogenetic and chemogenetic activation of PC pyramidal neurons significantly promoted seizures in the amygdala kindling model, whereas selective inhibition of these neurons produced an anti-epileptic effect for both electrical kindling and kainic acid-induced acute seizures. The results of the present study indicate that PC pyramidal neurons bidirectionally modulate seizure activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Changyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jiaxin Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Ledri M, Andersson M, Wickham J, Kokaia M. Optogenetics for controlling seizure circuits for translational approaches. Neurobiol Dis 2023:106234. [PMID: 37479090 DOI: 10.1016/j.nbd.2023.106234] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The advent of optogenetic tools has had a profound impact on modern neuroscience research, revolutionizing our understanding of the brain. These tools offer a remarkable ability to precisely manipulate specific groups of neurons with an unprecedented level of temporal precision, on the order of milliseconds. This breakthrough has significantly advanced our knowledge of various physiological and pathophysiological processes in the brain. Within the realm of epilepsy research, optogenetic tools have played a crucial role in investigating the contributions of different neuronal populations to the generation of seizures and hyperexcitability. By selectively activating or inhibiting specific neurons using optogenetics, researchers have been able to elucidate the underlying mechanisms and identify key players involved in epileptic activity. Moreover, optogenetic techniques have also been explored as innovative therapeutic strategies for treating epilepsy. These strategies aim to halt seizure progression and alleviate symptoms by utilizing the precise control offered by optogenetics. The application of optogenetic tools has provided valuable insights into the intricate workings of the brain during epileptic episodes. For instance, researchers have discovered how distinct interneuron populations contribute to the initiation of seizures (ictogenesis). They have also revealed how remote circuits in regions such as the cerebellum, septum, or raphe nuclei can interact with hyperexcitable networks in the hippocampus. Additionally, studies have demonstrated the potential of closed-loop systems, where optogenetics is combined with real-time monitoring, to enable precise, on-demand control of seizure activity. Despite the immense promise demonstrated by optogenetic approaches, it is important to acknowledge that many of these techniques are still in the early stages of development and have yet to reach potential clinical applications. The transition from experimental research to practical clinical use poses numerous challenges. In this review, we aim to introduce optogenetic tools, provide a comprehensive survey of their application in epilepsy research, and critically discuss their current potential and limitations in achieving successful clinical implementation for the treatment of human epilepsy. By addressing these crucial aspects, we hope to foster a deeper understanding of the current state and future prospects of optogenetics in epilepsy treatment.
Collapse
Affiliation(s)
- Marco Ledri
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Jenny Wickham
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sölvegatan 17, 223 62 Lund, Sweden.
| |
Collapse
|
16
|
Wang Y, Liu M, Wang Q. Subicular circuit in epilepsy: deconstruct heterogeneity for precise therapeutics. Front Neurosci 2023; 17:1202372. [PMID: 37383101 PMCID: PMC10293612 DOI: 10.3389/fnins.2023.1202372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Ying Wang
- Institute of Neuropsychiatric Diseases, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Mengru Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Zheng Y, Xu C, Sun J, Ming W, Dai S, Shao Y, Qiu X, Li M, Shen C, Xu J, Fei F, Fang J, Jiang X, Zheng G, Hu W, Wang Y, Wang S, Ding M, Chen Z. Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia. Signal Transduct Target Ther 2023; 8:186. [PMID: 37193687 DOI: 10.1038/s41392-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023] Open
Abstract
Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cenglin Xu
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jinyi Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Ming
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Sijie Dai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinghong Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuhong Jiang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoqing Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhong Chen
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
18
|
Lai N, Li Z, Chen Z, Wang Y. Protocol for labeling epileptic-status-related neuronal ensembles in mouse hippocampal kindling model. STAR Protoc 2023; 4:102255. [PMID: 37099430 PMCID: PMC10160588 DOI: 10.1016/j.xpro.2023.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/27/2023] Open
Abstract
Epileptic networks are characterized by two states, seizures or more prolonged interictal periods. Here, we present the procedure for labeling seizure-activated and interictal-activated neuronal ensembles in mouse hippocampal kindling model using an enhanced-synaptic-activity-responsive element. We describe the seizure model establishment, tamoxifen induction, electrical stimulation, and calcium signal recording of labeled ensembles. This protocol has demonstrated dissociated calcium activities in the two ensembles during focal seizure dynamics and can be applied to other animal models of epilepsy. For complete details on the use and execution of this protocol, please refer to Lai et al. (2022).1.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 313000, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 313000, China.
| |
Collapse
|
19
|
Avoli M, Chen LY, Di Cristo G, Librizzi L, Scalmani P, Shiri Z, Uva L, de Curtis M, Lévesque M. Ligand-gated mechanisms leading to ictogenesis in focal epileptic disorders. Neurobiol Dis 2023; 180:106097. [PMID: 36967064 DOI: 10.1016/j.nbd.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
We review here the neuronal mechanisms that cause seizures in focal epileptic disorders and, specifically, those involving limbic structures that are known to be implicated in human mesial temporal lobe epilepsy. In both epileptic patients and animal models, the initiation of focal seizures - which are most often characterized by a low-voltage fast onset EEG pattern - is presumably dependent on the synchronous firing of GABA-releasing interneurons that, by activating post-synaptic GABAA receptors, cause large increases in extracellular [K+] through the activation of the co-transporter KCC2. A similar mechanism may contribute to seizure maintenance; accordingly, inhibiting KCC2 activity transforms seizure activity into a continuous pattern of short-lasting epileptiform discharges. It has also been found that interactions between different areas of the limbic system modulate seizure occurrence by controlling extracellular [K+] homeostasis. In line with this view, low-frequency electrical or optogenetic activation of limbic networks restrain seizure generation, an effect that may also involve the activation of GABAB receptors and activity-dependent changes in epileptiform synchronization. Overall, these findings highlight the paradoxical role of GABAA signaling in both focal seizure generation and maintenance, emphasize the efficacy of low-frequency activation in abating seizures, and provide experimental evidence explaining the poor efficacy of antiepileptic drugs designed to augment GABAergic function in controlling seizures in focal epileptic disorders.
Collapse
Affiliation(s)
- Massimo Avoli
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada; Neurology & Neurosurgery and of Physiology, McGill University, Montreal H3A 2B4, Que, Canada.
| | - Li-Yuan Chen
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Québec H3T 1N8, Canada; CHU Sainte-Justine Research Center, Montréal, Québec H3T 1C5, Canada
| | - Laura Librizzi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Scalmani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Zahra Shiri
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| | - Laura Uva
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital, Departments of Neurology, Canada
| |
Collapse
|
20
|
Chen ZP, Wang S, Zhao X, Fang W, Wang Z, Ye H, Wang MJ, Ke L, Huang T, Lv P, Jiang X, Zhang Q, Li L, Xie ST, Zhu JN, Hang C, Chen D, Liu X, Yan C. Lipid-accumulated reactive astrocytes promote disease progression in epilepsy. Nat Neurosci 2023; 26:542-554. [PMID: 36941428 DOI: 10.1038/s41593-023-01288-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Reactive astrocytes play an important role in neurological diseases, but their molecular and functional phenotypes in epilepsy are unclear. Here, we show that in patients with temporal lobe epilepsy (TLE) and mouse models of epilepsy, excessive lipid accumulation in astrocytes leads to the formation of lipid-accumulated reactive astrocytes (LARAs), a new reactive astrocyte subtype characterized by elevated APOE expression. Genetic knockout of APOE inhibited LARA formation and seizure activities in epileptic mice. Single-nucleus RNA sequencing in TLE patients confirmed the existence of a LARA subpopulation with a distinct molecular signature. Functional studies in epilepsy mouse models and human brain slices showed that LARAs promote neuronal hyperactivity and disease progression. Targeting LARAs by intervention with lipid transport and metabolism could thus provide new therapeutic options for drug-resistant TLE.
Collapse
Affiliation(s)
- Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Suji Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiansen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhengge Wang
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Haojie Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng-Ju Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling Ke
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tengfei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Chunhua Hang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Xiangyu Liu
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Department of Neurosurgery, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
- Epilepsy Center, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China.
| |
Collapse
|
21
|
O’Neill N, Lignani G. From the Subiculum to the Anterior Nuclei of the Thalamus: The Key to Hippocampal Seizure Generalization? Epilepsy Curr 2023; 23:124-126. [PMID: 37122412 PMCID: PMC10131578 DOI: 10.1177/15357597221147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
[Box: see text]
Collapse
Affiliation(s)
- Nathanael O’Neill
- Department of Clinical and Experimental Epilepsy Queen Square Institute of Neurology, University College London
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy Queen Square Institute of Neurology, University College London
| |
Collapse
|
22
|
Wickham J, Ledri M, Andersson M, Kokaia M. Cell-specific switch for epileptiform activity: critical role of interneurons in the mouse subicular network. Cereb Cortex 2023; 33:6171-6183. [PMID: 36611229 PMCID: PMC10183737 DOI: 10.1093/cercor/bhac493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 01/09/2023] Open
Abstract
During epileptic seizures, neuronal network activity is hyper synchronized whereby GABAergic parvalbumin-interneurons may have a key role. Previous studies have mostly utilized 4-aminopyridine to induce epileptiform discharges in brain slices from healthy animals. However, it is not clear if the seizure-triggering ability of parvalbumin-interneurons also holds true without the use of external convulsive agents. Here, we investigate whether synchronized activation of parvalbumin-interneurons or principal cells can elicit epileptiform discharges in subiculum slices of epileptic mice. We found that selective synchronized activation of parvalbumin-interneurons or principal cells with optogenetics do not result in light-induced epileptiform discharges (LIEDs) neither in epileptic nor in normal brain slices. Adding 4-aminopyridine to slices, activation of parvalbumin-interneurons still failed to trigger LIEDs. In contrast, such activation of principal neurons readily generated LIEDs with features resembling afterdischarges. When GABAA receptor blocker was added to the perfusion medium, the LIEDs were abolished. These results demonstrate that in subiculum, selective synchronized activation of principal excitatory neurons can trigger epileptiform discharges by recruiting a large pool of downstream interneurons. This study also suggests region-specific role of principal neurons and interneurons in ictogenesis, opening towards differential targeting of specific brain areas for future treatment strategies tailored for individual patients with epilepsy.
Collapse
Affiliation(s)
- J Wickham
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| | - M Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University, Sölvegatan 17, 223 62 Lund, Sweden
| |
Collapse
|
23
|
Lai N, Cheng H, Li Z, Wang X, Ruan Y, Qi Y, Yang L, Fei F, Dai S, Chen L, Zheng Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Interictal-period-activated neuronal ensemble in piriform cortex retards further seizure development. Cell Rep 2022; 41:111798. [PMID: 36516780 DOI: 10.1016/j.celrep.2022.111798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Epileptic networks are characterized as having two states, seizures or more prolonged interictal periods. However, cellular mechanisms underlying the contribution of interictal periods to ictal events remain unclear. Here, we use an activity-dependent labeling technique combined with genetically encoded effectors to characterize and manipulate neuronal ensembles recruited by focal seizures (FS-Ens) and interictal periods (IP-Ens) in piriform cortex, a region that plays a key role in seizure generation. Ca2+ activities and histological evidence reveal a disjointed correlation between the two ensembles during FS dynamics. Optogenetic activation of FS-Ens promotes further seizure development, while IP-Ens protects against it. Interestingly, both ensembles are functionally involved in generalized seizures (GS) due to circuit rearrangement. IP-Ens bidirectionally modulates FS but not GS by controlling coherence with hippocampus. This study indicates that the interictal state may represent a seizure-preventing environment, and the interictal-activated ensemble may serve as a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Nanxi Lai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhisheng Li
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sijie Dai
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yi Wang
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
24
|
Acharya AR, Larsen LE, Delbeke J, Wadman WJ, Vonck K, Meurs A, Boon P, Raedt R. In vivo inhibition of epileptiform afterdischarges in rat hippocampus by light-activated chloride channel, stGtACR2. CNS Neurosci Ther 2022; 29:907-916. [PMID: 36482869 PMCID: PMC9928558 DOI: 10.1111/cns.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
AIMS The blue light-sensitive chloride-conducting opsin, stGtACR2, provides potent optogenetic silencing of neurons. The present study investigated whether activation of stGtACR2 in granule cells of the dentate gyrus (DG) inhibits epileptic afterdischarges in a rat model. METHODS Rats were bilaterally injected with 0.9 μl of AAV2/7-CaMKIIα-stGtACR2-fusionred in the DG. Three weeks later, afterdischarges were recorded from the DG by placing an optrode at the injection site and a stimulation electrode in the perforant path (PP). Afterdischarges were evoked every 10 min by unilateral electrical stimulation of the PP (20 Hz, 10 s). During every other afterdischarge, the DG was illuminated for 5 or 30 s, first ipsilaterally and then bilaterally to the PP stimulation. The line length metric of the afterdischarges was compared between illumination conditions. RESULTS Ipsilateral stGtACR2 activation during afterdischarges decreased the local field potential line length only during illumination and specifically at the illuminated site but did not reduce afterdischarge duration. Bilateral illumination did not terminate the afterdischarges. CONCLUSION Optogenetic inhibition of excitatory neurons using the blue-light sensitive chloride channel stGtACR2 reduced the amplitude of electrically induced afterdischarges in the DG at the site of illumination, but this local inhibitory effect was insufficient to reduce the duration of the afterdischarge.
Collapse
Affiliation(s)
- Anirudh R. Acharya
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Lars Emil Larsen
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Jean Delbeke
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Wytse J. Wadman
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Kristl Vonck
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alfred Meurs
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Paul Boon
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Robrecht Raedt
- 4BRAIN Team, Department of Head and Skin, Faculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
25
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
26
|
Schuster J, Klar J, Khalfallah A, Laan L, Hoeber J, Fatima A, Sequeira VM, Jin Z, Korol SV, Huss M, Nordgren A, Anderlid BM, Gallant C, Birnir B, Dahl N. ZEB2 haploinsufficient Mowat-Wilson syndrome induced pluripotent stem cells show disrupted GABAergic transcriptional regulation and function. Front Mol Neurosci 2022; 15:988993. [PMID: 36353360 PMCID: PMC9637781 DOI: 10.3389/fnmol.2022.988993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 07/30/2023] Open
Abstract
Mowat-Wilson syndrome (MWS) is a severe neurodevelopmental disorder caused by heterozygous variants in the gene encoding transcription factor ZEB2. Affected individuals present with structural brain abnormalities, speech delay and epilepsy. In mice, conditional loss of Zeb2 causes hippocampal degeneration, altered migration and differentiation of GABAergic interneurons, a heterogeneous population of mainly inhibitory neurons of importance for maintaining normal excitability. To get insights into GABAergic development and function in MWS we investigated ZEB2 haploinsufficient induced pluripotent stem cells (iPSC) of MWS subjects together with iPSC of healthy donors. Analysis of RNA-sequencing data at two time points of GABAergic development revealed an attenuated interneuronal identity in MWS subject derived iPSC with enrichment of differentially expressed genes required for transcriptional regulation, cell fate transition and forebrain patterning. The ZEB2 haploinsufficient neural stem cells (NSCs) showed downregulation of genes required for ventral telencephalon specification, such as FOXG1, accompanied by an impaired migratory capacity. Further differentiation into GABAergic interneuronal cells uncovered upregulation of transcription factors promoting pallial and excitatory neurons whereas cortical markers were downregulated. The differentially expressed genes formed a neural protein-protein network with extensive connections to well-established epilepsy genes. Analysis of electrophysiological properties in ZEB2 haploinsufficient GABAergic cells revealed overt perturbations manifested as impaired firing of repeated action potentials. Our iPSC model of ZEB2 haploinsufficient GABAergic development thus uncovers a dysregulated gene network leading to immature interneurons with mixed identity and altered electrophysiological properties, suggesting mechanisms contributing to the neuropathogenesis and seizures in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Jan Hoeber
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Velin Marita Sequeira
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Zhe Jin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sergiy V. Korol
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mikael Huss
- Wallenberg Long-Term Bioinformatics Support, Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Gallant
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
27
|
Gong Y, Xu C, Wang S, Wang Y, Chen Z. Computerized application for epilepsy in China: Does the era of artificial intelligence comes? Acta Neurol Scand 2022; 146:732-742. [PMID: 36156212 DOI: 10.1111/ane.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/01/2022]
Abstract
Epilepsy, one of the most common neurological diseases in China, is notorious for its spontaneous, unprovoked and recurrent seizures. The etiology of epilepsy varies among individual patients, including congenital gene mutation, traumatic injury, infections, etc. This heterogeneity partly hampered the accurate diagnosis and choice of appropriate treatments. Encouragingly, great achievements have been achieved in computational science, making it become a key player in medical fields gradually and bringing new hope for rapid and accurate diagnosis as well as targeted therapies in epilepsy. Here, we historically review the advances of computerized applications in epilepsy-especially those tremendous findings achieved in China-for different purposes including seizure prediction, localization of epileptogenic zone, post-surgical prognosis, etc. Special attentions are paid to the great progress based on artificial intelligence (AI), which is more "sensitive", "smart" and "in-depth" than human capacities. At last, we give a comprehensive discussion about the disadvantages and limitations of current computerized applications for epilepsy and propose some future directions as further stepping stones to embrace "the era of AI" in epilepsy.
Collapse
Affiliation(s)
- Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
Fei F, Wang X, Xu C, Shi J, Gong Y, Cheng H, Lai N, Ruan Y, Ding Y, Wang S, Chen Z, Wang Y. Discrete subicular circuits control generalization of hippocampal seizures. Nat Commun 2022; 13:5010. [PMID: 36008421 PMCID: PMC9411516 DOI: 10.1038/s41467-022-32742-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Epilepsy is considered a circuit-level dysfunction associated with imbalanced excitation-inhibition, it is therapeutically necessary to identify key brain regions and related circuits in epilepsy. The subiculum is an essential participant in epileptic seizures, but the circuit mechanism underlying its role remains largely elusive. Here we deconstruct the diversity of subicular circuits in a mouse model of epilepsy. We find that excitatory subicular pyramidal neurons heterogeneously control the generalization of hippocampal seizures by projecting to different downstream regions. Notably, anterior thalamus-projecting subicular neurons bidirectionally mediate seizures, while entorhinal cortex-projecting subicular neurons act oppositely in seizure modulation. These two subpopulations are structurally and functionally dissociable. An intrinsically enhanced hyperpolarization-activated current and robust bursting intensity in anterior thalamus-projecting neurons facilitate synaptic transmission, thus contributing to the generalization of hippocampal seizures. These results demonstrate that subicular circuits have diverse roles in epilepsy, suggesting the necessity to precisely target specific subicular circuits for effective treatment of epilepsy.
Collapse
Affiliation(s)
- Fan Fei
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jiaying Shi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Ding
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China. .,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Tan N, Shi J, Xu L, Zheng Y, Wang X, Lai N, Fang Z, Chen J, Wang Y, Chen Z. Lateral Hypothalamus Calcium/Calmodulin-Dependent Protein Kinase II α Neurons Encode Novelty-Seeking Signals to Promote Predatory Eating. Research (Wash D C) 2022; 2022:9802382. [PMID: 36061821 PMCID: PMC9394055 DOI: 10.34133/2022/9802382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Predatory hunting is an innate appetite-driven and evolutionarily conserved behavior essential for animal survival, integrating sequential behaviors including searching, pursuit, attack, retrieval, and ultimately consumption. Nevertheless, neural circuits underlying hunting behavior with different features remain largely unexplored. Here, we deciphered a novel function of lateral hypothalamus (LH) calcium/calmodulin-dependent protein kinase II α (CaMKIIα+) neurons in hunting behavior and uncovered upstream/downstream circuit basis. LH CaMKIIα+ neurons bidirectionally modulate novelty-seeking behavior, predatory attack, and eating in hunting behavior. LH CaMKIIα+ neurons integrate hunting-related novelty-seeking information from the medial preoptic area (MPOA) and project to the ventral periaqueductal gray (vPAG) to promote predatory eating. Our results demonstrate that LH CaMKIIα+ neurons are the key hub that integrate MPOA-conveyed novelty-seeking signals and encode predatory eating in hunting behavior, which enriched the neuronal substrate of hunting behavior.
Collapse
Affiliation(s)
- Na Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Shi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingyu Xu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhuowen Fang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jialu Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Zhong K, Qian C, Lyu R, Wang X, Hu Z, Yu J, Ma J, Ye Y. Anti-Epileptic Effect of Crocin on Experimental Temporal Lobe Epilepsy in Mice. Front Pharmacol 2022; 13:757729. [PMID: 35431921 PMCID: PMC9009530 DOI: 10.3389/fphar.2022.757729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common kind of refractory epilepsy. More than 30% TLE patients were multi-drug resistant. Some patients may even develop into status epilepticus (SE) because of failing to control seizures. Thus, one of the avid goals for anti-epileptic drug development is to discover novel potential compounds to treat TLE or even SE. Crocin, an effective component of Crocus sativus L., has been applied in several epileptogenic models to test its anti-epileptic effect. However, it is still controversial and its effect on TLE remains unclear. Therefore, we investigated the effects of crocin on epileptogenesis, generalized seizures (GS) in hippocampal rapid electrical kindling model as well as SE and spotaneous recurrent seizure (SRS) in pilocarpine-induced TLE model in ICR mice in this study. The results showed that seizure stages and cumulative afterdischarge duration were significantly depressed by crocin (20 and 50 mg/kg) during hippocampal rapid kindling acquisition. And crocin (100 mg/kg) significantly reduced the incidence of GS and average seizure stages in fully kindled animals. In pilocarpine-induced TLE model, the latency of SE was significantly prolonged and the mortality of SE was significantly decreased by crocin (100 mg/kg), which can also significantly suppress the number of SRS. The underlying mechanism of crocin may be involved in the protection of neurons, the decrease of tumor necrosis factor-α in the hippocampus and the increase of brain derived neurotrophic factor in the cortex. In conclusion, crocin may be a potential and promising anti-epileptic compound for treatment of TLE.
Collapse
Affiliation(s)
- Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chengyu Qian
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Lyu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Wang
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zhe Hu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
31
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
32
|
Földi T, Lőrincz ML, Berényi A. Temporally Targeted Interactions With Pathologic Oscillations as Therapeutical Targets in Epilepsy and Beyond. Front Neural Circuits 2021; 15:784085. [PMID: 34955760 PMCID: PMC8693222 DOI: 10.3389/fncir.2021.784085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Self-organized neuronal oscillations rely on precisely orchestrated ensemble activity in reverberating neuronal networks. Chronic, non-malignant disorders of the brain are often coupled to pathological neuronal activity patterns. In addition to the characteristic behavioral symptoms, these disturbances are giving rise to both transient and persistent changes of various brain rhythms. Increasing evidence support the causal role of these "oscillopathies" in the phenotypic emergence of the disease symptoms, identifying neuronal network oscillations as potential therapeutic targets. While the kinetics of pharmacological therapy is not suitable to compensate the disease related fine-scale disturbances of network oscillations, external biophysical modalities (e.g., electrical stimulation) can alter spike timing in a temporally precise manner. These perturbations can warp rhythmic oscillatory patterns via resonance or entrainment. Properly timed phasic stimuli can even switch between the stable states of networks acting as multistable oscillators, substantially changing the emergent oscillatory patterns. Novel transcranial electric stimulation (TES) approaches offer more reliable neuronal control by allowing higher intensities with tolerable side-effect profiles. This precise temporal steerability combined with the non- or minimally invasive nature of these novel TES interventions make them promising therapeutic candidates for functional disorders of the brain. Here we review the key experimental findings and theoretical background concerning various pathological aspects of neuronal network activity leading to the generation of epileptic seizures. The conceptual and practical state of the art of temporally targeted brain stimulation is discussed focusing on the prevention and early termination of epileptic seizures.
Collapse
Affiliation(s)
- Tamás Földi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Child and Adolescent Psychiatry, Department of the Child Health Center, University of Szeged, Szeged, Hungary
| | - Magor L Lőrincz
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, Hungary.,Neuroscience Division, Cardiff University, Cardiff, United Kingdom
| | - Antal Berényi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary.,Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary.,HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary.,Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
33
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
34
|
Wang X, Hu Z, Zhong K. The Role of Brain-Derived Neurotrophic Factor in Epileptogenesis: an Update. Front Pharmacol 2021; 12:758232. [PMID: 34899313 PMCID: PMC8661413 DOI: 10.3389/fphar.2021.758232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Epilepsy, which is characterized by spontaneous recurrent seizures, is one of the most common and serious chronic neurological diseases in the world. 30% patients failed to control seizures with multiple anti-seizure epileptic drugs, leading to serious outcomes. The pathogenesis of epilepsy is very complex and remains unclear. Brain-derived neurotrophic factor (BDNF), as a member of the neurotrophic factor family, is considered to play an important role in the survival, growth and differentiation of neurons during the development of the central nervous system. Recent years, a series of studies have reported that BDNF can maintain the function of the nervous system and promotes the regeneration of neurons after injury, which is believed to be closely related to epileptogenesis. However, two controversial views (BDNF inhibits or promotes epileptogenesis) still exist. Thus, this mini-review focuses on updating the new evidence of the role of BDNF in epileptogenesis and discussing the possibility of BDNF as an underlying target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zhe Hu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
35
|
Mao D, He Z, Xuan W, Deng J, Li W, Fang X, Li L, Zhang F. Effect and mechanism of BDNF/TrkB signaling on vestibular compensation. Bioengineered 2021; 12:11823-11836. [PMID: 34719333 PMCID: PMC8810063 DOI: 10.1080/21655979.2021.1997565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates neuronal plasticity by targeting the tyrosine kinase B receptor (TrkB) receptor, but limited researches concentrate on the role of BDNF/TrkB signaling in vestibular compensation. In this study, rats with unilateral vestibular dysfunction were established by unilateral labyrinthectomy (UL) and infusion with siBDNF or 7, 8-Dihydroxyflavone (7,8-DHF, a TrkB receptor agonist). The behavioral scores of rats with vestibular deficits were determined and the rotarod test was performed after UL. BDNF and TrkB levels after UL were determined by western blot and quantitative reverse transcription PCR (qRT-PCR). 5-bromo-2'-deoxyuridine (BrdU)-positive cells (newly generated cells) and GAD67-positive cells (GABAergic neurons) were identified by immunohistochemistry. Glial fibrillary acidic protein (GFAP) (astrocyte marker)-positive cells were identified and GABA type A receptor (GABAAR) expression was detected by immunofluorescence. We found that after UL, BDNF and TrkB levels were up-regulated with a maximum value at 4 h, and then progressively down-regulated during 4 h ~ 7 d. Blocking BDNF/TrkB signaling inhibited the recovery from vestibular deficits, decreased the numbers of newly generated cells and astrocytes in medial vestibular nucleus (MVN), inferior vestibular nerve (IVN), superior vestibular nerve (SVN) and lateral vestibular nucleus (LVN), and disrupted the balances of GABAergic neurons and GABAAR expressions in the left (lesioned) side and right (intact) side of MVN, whereas activation of BDNF/TrkB signaling caused opposite results. The current study indicated that BDNF/TrkB signaling avails vestibular compensation, depending on the number of newly generated cells and astrocytes, the rebalance of GABAergic neurons, and GABAAR expression in bilateral MVN.
Collapse
Affiliation(s)
- Dehong Mao
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Zhongmei He
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Wei Xuan
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Jiao Deng
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Weichun Li
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Xiaoying Fang
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Linglong Li
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Feng Zhang
- Department of Otolaryngology, Yongchuan Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| |
Collapse
|
36
|
Dudok B, Klein PM, Soltesz I. Toward Understanding the Diverse Roles of Perisomatic Interneurons in Epilepsy. Epilepsy Curr 2021; 22:54-60. [PMID: 35233202 PMCID: PMC8832350 DOI: 10.1177/15357597211053687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic
γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular
domains of postsynaptic excitatory cells that are critical for spike generation. With a
revolution in transcriptomics-based cell taxonomy driving the development of novel
transgenic mouse lines, selectively monitoring and modulating previously elusive
interneuron types is becoming increasingly feasible. Emerging evidence suggests that the
three types of hippocampal perisomatic interneurons, axo-axonic cells, along with
parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity
patterns in vivo, suggesting distinctive roles in regulating epileptic networks.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Xu C, Gong Y, Wang Y, Chen Z. New advances in pharmacoresistant epilepsy towards precise management-from prognosis to treatments. Pharmacol Ther 2021; 233:108026. [PMID: 34718071 DOI: 10.1016/j.pharmthera.2021.108026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy, one of the most severe neurological diseases, is characterized by abrupt recurrent seizures. Despite great progress in the development of antiseizure drugs (ASDs) based on diverse molecular targets, more than one third of epilepsy patients still show resistance to ASDs, a condition termed pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy involves serious challenges. In the past decade, promising advances have been made in the use of interdisciplinary techniques involving biophysics, bioinformatics, biomaterials and biochemistry, which allow more precise prognosis and development of drug target for pharmacoresistant epilepsy. Notably, novel experimental tools such as viral vector gene delivery, optogenetics and chemogenetics have provided a framework for promising approaches to the precise treatment of pharmacoresistant epilepsy. In this review, historical achievements especially recent advances of the past decade in the prognosis and treatment of pharmacoresistant epilepsy from both clinical and laboratory settings are presented and summarized. We propose that the further development of novel experimental tools at cellular or molecular levels with both temporal and spatial precision are necessary to make improve the management and drug development for pharmacoresistant epilepsy in the clinical arena.
Collapse
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Chen J, Ma XL, Zhao H, Wang XY, Xu MX, Wang H, Yang TQ, Peng C, Liu SS, Huang M, Zhou YD, Shen Y. Increasing astrogenesis in the developing hippocampus induces autistic-like behavior in mice via enhancing inhibitory synaptic transmission. Glia 2021; 70:106-122. [PMID: 34498776 PMCID: PMC9291003 DOI: 10.1002/glia.24091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory–inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic‐like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic‐like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hui Zhao
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Min-Xin Xu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Tian-Qi Yang
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Peng
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,National Human Brain Bank for Health and Disease, Hangzhou, China
| |
Collapse
|
39
|
Anstötz M, Fiske MP, Maccaferri G. Impaired KCC2 Function Triggers Interictal-Like Activity Driven by Parvalbumin-Expressing Interneurons in the Isolated Subiculum In Vitro. Cereb Cortex 2021; 31:4681-4698. [PMID: 33987649 PMCID: PMC8408463 DOI: 10.1093/cercor/bhab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022] Open
Abstract
The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Patrick Fiske
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, Xu S, Cui S, Ruan Y, Wang S, Wang Y, Chen Z. Subicular Caspase-1 Contributes to Pharmacoresistance in Temporal Lobe Epilepsy. Ann Neurol 2021; 90:377-390. [PMID: 34288031 DOI: 10.1002/ana.26173] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/13/2021] [Accepted: 07/18/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Unidentified mechanisms largely restrict the viability of effective therapies in pharmacoresistant epilepsy. Our previous study revealed that hyperactivity of the subiculum is crucial for the genesis of pharmacoresistance in temporal lobe epilepsy (TLE), but the underlying molecular mechanism is not clear. METHODS Here, we examined the role of subicular caspase-1, a key neural pro-inflammatory enzyme, in pharmacoresistant TLE. RESULTS We found that the expression of activated caspase-1 in the subiculum, but not the CA1, was upregulated in pharmacoresistant amygdaloid-kindled rats. Early overexpression of caspase-1 in the subiculum was sufficient to induce pharmacoresistant TLE in rats, whereas genetic ablation of caspase-1 interfered with the genesis of pharmacoresistant TLE in both kindled rats and kainic acid-treated mice. The pro-pharmacoresistance effect of subicular caspase-1 was mediated by its downstream inflammasome-dependent interleukin-1β. Further electrophysiological results showed that inhibiting caspase-1 decreased the excitability of subicular pyramidal neurons through influencing the excitation/inhibition balance of presynaptic input. Importantly, a small molecular caspase-1 inhibitor CZL80 attenuated seizures in pharmacoresistant TLE models, and decreased the neuronal excitability in the brain slices obtained from patients with pharmacoresistant TLE. INTERPRETATION These results support the subicular caspase-1-interleukin-1β inflammatory pathway as a novel alternative mechanism hypothesis for pharmacoresistant TLE, and present caspase-1 as a potential target. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiazhen Nao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yujia Shen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuheng Xu
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sunliang Cui
- Department of Pharmachemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Dubanet O, Ferreira Gomes Da Silva A, Frick A, Hirase H, Beyeler A, Leinekugel X. Probing the polarity of spontaneous perisomatic GABAergic synaptic transmission in the mouse CA3 circuit in vivo. Cell Rep 2021; 36:109381. [PMID: 34260906 DOI: 10.1016/j.celrep.2021.109381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/18/2020] [Accepted: 06/18/2021] [Indexed: 11/27/2022] Open
Abstract
The hypothesis that reversed, excitatory GABA may be involved in various brain pathologies, including epileptogenesis, is appealing but controversial because of the technical difficulty of probing endogenous GABAergic synaptic function in vivo. We overcome this challenge by non-invasive extracellular recording of neuronal firing responses to optogenetically evoked and spontaneously occurring inhibitory perisomatic GABAergic field potentials, generated by individual parvalbumin interneurons on their target pyramidal cells. Our direct probing of GABAergic transmission suggests a rather anecdotal participation of excitatory GABA in two specific models of epileptogenesis in the mouse CA3 circuit in vivo, even though this does not preclude its expression in other brain areas or pathological conditions. Our approach allows the detection of distinct alterations of inhibition during spontaneous activity in vivo, with high sensitivity. It represents a promising tool for the investigation of excitatory GABA in different pathological conditions that may affect the hippocampal circuit.
Collapse
Affiliation(s)
- Olivier Dubanet
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Arnaldo Ferreira Gomes Da Silva
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France
| | - Andreas Frick
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Hajime Hirase
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Beyeler
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Xavier Leinekugel
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France; INMED, INSERM, Aix Marseille Univ, France.
| |
Collapse
|
42
|
Cheng H, Qi Y, Lai N, Yang L, Xu C, Wang S, Guo Y, Chen Z, Wang Y. Inhibition of hyperactivity of the dorsal raphe 5-HTergic neurons ameliorates hippocampal seizure. CNS Neurosci Ther 2021; 27:963-972. [PMID: 33955651 PMCID: PMC8265946 DOI: 10.1111/cns.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aims Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5‐HTergic neurons are implicated in epilepsy. Methods In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5‐HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive‐like behavior. Results Number of c‐fos+ neurons in the DR and calcium activities of DR 5‐HTergic neurons were both increased during kindling‐induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5‐HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1‐Hz‐specific, but not 20‐Hz or 100‐Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5‐HTergic neurons, as optogenetic activation of DR 5‐HTergic neurons reversed the anti‐seizure effects of 1‐Hz DR DBS. However, DBS treatment had no effect on depressive‐like behavior. Conclusion Inhibition of hyperactivity of DR 5‐HTergic neuron may present promising anti‐seizure effect and the DR may be a potential DBS target for the therapy of TLE.
Collapse
Affiliation(s)
- Heming Cheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Wang Y, Tan B, Wang Y, Chen Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules 2021; 26:molecules26082258. [PMID: 33924731 PMCID: PMC8070422 DOI: 10.3390/molecules26082258] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| |
Collapse
|
44
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|
45
|
Xu CL, Nao JZ, Shen YJ, Gong YW, Tan B, Zhang S, Shen KX, Sun CR, Wang Y, Chen Z. Long-term music adjuvant therapy enhances the efficacy of sub-dose antiepileptic drugs in temporal lobe epilepsy. CNS Neurosci Ther 2021; 28:206-217. [PMID: 33644976 PMCID: PMC8739046 DOI: 10.1111/cns.13623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/26/2022] Open
Abstract
Aims Noninvasive music adjuvant therapy shows great potential in improving seizure control when combined with routine antiepileptic drugs. However, the diversity of previous music protocols has resulted in disparate outcomes. The optimized protocol and features for music adjuvant therapy are still not fully understood which limits its feasibility. Methods By applying different regimens of music therapy in various temporal lobe epilepsy models, we evaluated the effect of music in combination with sub‐dose drugs on epileptic seizures to determine the optimized protocol. Results A subgroup of kindled mice that were responsive to music adjuvant therapy was screened. In those mice, sub‐dose drugs which were noneffective on kindled seizures, alleviated seizure severity after 12 h/day Mozart K.448 for 14 days. Shorter durations of music therapy (2 and 6 h/day) were ineffective. Furthermore, only full‐length Mozart K.448, not its episodes or other music varieties, was capable of enhancing the efficacy of sub‐dose drugs. This music therapeutic effect was not due to increasing cerebral drug concentration, but instead was related with the modulation of seizure electroencephalogram (EEG) spectral powers in the hippocampus. Conclusion These results indicate that long‐term full‐length Mozart K.448 could enhance the anti‐seizure efficacy of sub‐dose drugs and may be a promising noninvasive adjuvant therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ceng-Lin Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Zhen Nao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Jia Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Wei Gong
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ke-Xin Shen
- Institute of Drug Metabolism and Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cui-Rong Sun
- Institute of Drug Metabolism and Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Fei F, Wang X, Wang Y, Chen Z. Dissecting the role of subiculum in epilepsy: Research update and translational potential. Prog Neurobiol 2021; 201:102029. [PMID: 33636224 DOI: 10.1016/j.pneurobio.2021.102029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/12/2021] [Accepted: 02/21/2021] [Indexed: 11/25/2022]
Abstract
The subiculum serves as the strategic core output of the hippocampus, through which neural activity exits the hippocampal proper and targets the entorhinal cortex and other more distant subcortical and cortical areas. The past decade has witnessed a growing interest in the subiculum, owing to discoveries revealing its critical role in regulating many physiological and pathophysiological processes. Notably, accumulating evidence from both clinical and experimental studies suggests that the subiculum plays a vital role in seizure initiation and propagation, in epilepsy. In this review, we briefly describe the structure and connectivity of the subiculum and then summarize the molecular and cellular mechanisms in the subiculum underlying the epileptic brain, in both epilepsy patients and animal models. Next, we review some translational approaches targeting the malfunctioned subiculum to treat epilepsy. Finally, we pose open questions for future research in the subiculum and their clinical translation challenges.
Collapse
Affiliation(s)
- Fan Fei
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Application of Optogenetics in Epilepsy Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398842 DOI: 10.1007/978-981-15-8763-4_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Epilepsy is a disease characterized by seizures arising from paroxysmal and self-limited hypersynchrony of neurons. However, the mechanism by which the normal brain develops epilepsy, which involves a chronic process of structural and morphological changes known as epileptogenesis, is not fully understood. Optogenetics involves the use of genetic engineering and optics to monitor or control nerve cell activity. Compared to classical electrophysiological experiments, the application of optogenetics in epilepsy research has many advantages because it allows selective photic stimulation of cell types and electrical observation without introducing artifacts.
Collapse
|
48
|
Wang Y, Shen Y, Cai X, Yu J, Chen C, Tan B, Tan N, Cheng H, Fan X, Wu X, Liu J, Wang S, Wang Y, Chen Z. Deep brain stimulation in the medial septum attenuates temporal lobe epilepsy via entrainment of hippocampal theta rhythm. CNS Neurosci Ther 2021; 27:577-586. [PMID: 33502829 PMCID: PMC8025637 DOI: 10.1111/cns.13617] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Aims Temporal lobe epilepsy (TLE), often associated with cognitive impairment, is one of the most common types of medically refractory epilepsy. Deep brain stimulation (DBS) shows considerable promise for the treatment of TLE. However, the optimal stimulation targets and parameters of DBS to control seizures and related cognitive impairment are still not fully illustrated. Methods In the present study, we evaluated the therapeutic potential of DBS in the medial septum (MS) on seizures and cognitive function in mouse acute and chronic epilepsy models. Results We found that DBS in the MS alleviated the severity of seizure activities in both kainic acid‐induced acute seizure model and hippocampal‐kindled epilepsy model. DBS showed antiseizure effects with a wide window of effective stimulation frequencies. The antiseizure effects of DBS were mediated by the hippocampal theta rhythm, as atropine, which reversed the DBS‐induced augmentation of the hippocampal theta oscillation, abolished the antiseizure effects of DBS. Further, in the kainic acid‐induced chronic TLE model, DBS in the MS not only reduced spontaneous seizures, but also improved behavioral performance in novel object recognition. Conclusion DBS in the MS is a promising approach to attenuate TLE probably through entrainment of the hippocampal theta rhythm, which may be therapeutically significant for refractory TLE treatment.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yating Shen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xianhui Cai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cong Chen
- Epilepsy Center, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Fan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohua Wu
- Epilepsy Center, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Zhang M, Cui Y, Zhu W, Yu J, Cheng Y, Wu X, Zhang J, Xin W, Yu Y, Sun H. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures. Free Radic Biol Med 2020; 161:212-223. [PMID: 33075502 DOI: 10.1016/j.freeradbiomed.2020.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that xenon inhalation has neuroprotective and antiepileptic effects; however, the underlying mechanisms involved remain unclear. This study aimed to investigate the possible xenon inhalation mechanisms involved in the neuroprotection and antiepileptic effects. A neonatal hypoxic C57BL/6J mouse model was used for the experiments. Immediately after hypoxia treatment, the treatment group inhaled a xenon mixture (70% xenon/21% oxygen/9% nitrogen) for 60 min, while the hypoxia group inhaled a non-xenon mixture (21% oxygen/79% nitrogen) for 60 min. Seizure activity was recorded at designated time points using electroencephalography. Oxidative stress levels, iron levels, neuronal injury, and learning and memory functions were also studied. The results showed that hypoxia increased the levels of iron, oxidative stress, mitophagy, and neurodegeneration, which were accompanied by seizures and learning and memory disorders. In addition, our results confirmed that xenon treatment significantly attenuated the hypoxia-induced seizures and cognitive defects in neonatal C57 mice. Moreover, the increased levels of iron, oxidative stress, mitophagy, and neuronal injury were reduced in xenon-treated mice. This study confirms the significant protective effects of a xenon mixture on hypoxia-induced damage in neonatal mice. Furthermore, our results suggest that reducing oxidative stress levels and iron accumulation may be the underlying mechanisms of xenon activity. Studying the protective mechanisms of xenon will advance its applications in potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
50
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. J Neurosci Methods 2020; 346:108911. [DOI: 10.1016/j.jneumeth.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
|