1
|
Fabres RB, Cardoso DS, Aragón BA, Arruda BP, Martins PP, Ikebara JM, Drobyshevsky A, Kihara AH, de Fraga LS, Netto CA, Takada SH. Consequences of oxygen deprivation on myelination and sex-dependent alterations. Mol Cell Neurosci 2023; 126:103864. [PMID: 37268283 DOI: 10.1016/j.mcn.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Débora Sterzeck Cardoso
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Bruna Petrucelli Arruda
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Pamela Pinheiro Martins
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Juliane Midori Ikebara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | | | - Alexandre Hiroaki Kihara
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil
| | - Luciano Stürmer de Fraga
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre 90050-170, Brazil
| | - Carlos Alexandre Netto
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre 90035-003, Brazil
| | - Silvia Honda Takada
- Neurogenetics Laboratory, Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo 09606-045, Brazil.
| |
Collapse
|
2
|
Deantoni M, Baillet M, Hammad G, Berthomier C, Reyt M, Jaspar M, Meyer C, Van Egroo M, Talwar P, Lambot E, Chellappa SL, Degueldre C, Luxen A, Salmon E, Balteau E, Phillips C, Dijk DJ, Vandewalle G, Collette F, Maquet P, Muto V, Schmidt C. Association between sleep slow-wave activity and in-vivo estimates of myelin in healthy young men. Neuroimage 2023; 272:120045. [PMID: 36997136 PMCID: PMC10112274 DOI: 10.1016/j.neuroimage.2023.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Sleep has been suggested to contribute to myelinogenesis and associated structural changes in the brain. As a principal hallmark of sleep, slow-wave activity (SWA) is homeostatically regulated but also differs between individuals. Besides its homeostatic function, SWA topography is suggested to reflect processes of brain maturation. Here, we assessed whether interindividual differences in sleep SWA and its homeostatic response to sleep manipulations are associated with in-vivo myelin estimates in a sample of healthy young men. Two hundred twenty-six participants (18-31 y.) underwent an in-lab protocol in which SWA was assessed at baseline (BAS), after sleep deprivation (high homeostatic sleep pressure, HSP) and after sleep saturation (low homeostatic sleep pressure, LSP). Early-night frontal SWA, the frontal-occipital SWA ratio, as well as the overnight exponential SWA decay were computed over sleep conditions. Semi-quantitative magnetization transfer saturation maps (MTsat), providing markers for myelin content, were acquired during a separate laboratory visit. Early-night frontal SWA was negatively associated with regional myelin estimates in the temporal portion of the inferior longitudinal fasciculus. By contrast, neither the responsiveness of SWA to sleep saturation or deprivation, its overnight dynamics, nor the frontal/occipital SWA ratio were associated with brain structural indices. Our results indicate that frontal SWA generation tracks inter-individual differences in continued structural brain re-organization during early adulthood. This stage of life is not only characterized by ongoing region-specific changes in myelin content, but also by a sharp decrease and a shift towards frontal predominance in SWA generation.
Collapse
Affiliation(s)
| | | | | | | | - Mathilde Reyt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Mathieu Jaspar
- ARCH, Faculty of Psychology, Logopedics and Educational Sciences, University of Liège, Belgium
| | | | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands
| | - Puneet Talwar
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Lambot
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | | | - André Luxen
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Salmon
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | | | | | - Derk-Jan Dijk
- Sleep Research Centre, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and the University of Surrey, Guildford, UK
| | | | - Fabienne Collette
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Pierre Maquet
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Department of Neurology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium.
| | - Christina Schmidt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium.
| |
Collapse
|
3
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Ding J, Huang J, Xia B, Hu S, Fan H, Dai J, Li Z, Wang J, Le C, Qiu P, Wang Y. Transfer of α-synuclein from neurons to oligodendrocytes triggers myelin sheath destruction in methamphetamine administration mice. Toxicol Lett 2021; 352:34-45. [PMID: 34562559 DOI: 10.1016/j.toxlet.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
Methamphetamine (METH), a widely abused nervous system stimulant, could induce neurotoxicity through α-synuclein (α-syn). Not much is known about the neuronal derived α-syn transmission that underlies oligodendrocyte pathology in METH mice model. In this study, we tested α-syn level, oligodendroglial pathology and autophagy lysosome pathway (ALP) function in corpus callosum in a chronic METH mice model. METH increased α-syn level in neurons and then accumulated in oligodendrocytes. METH increased phosphor-mTOR level, decreased transcription factor EB (TFEB) level and triggered autophagy lysosomal pathway (ALP) impairment, leading to myelin sheath destruction, oligodendroglial proteins loss, mature dendritic spine loss, neuron loss, and astrocyte activation. Deleting endogenous α-syn increased TFEB level, alleviated ALP deficit, and diminished neuropathology induced by METH. TFEB overexpression in oligodendrocytes exerted beneficial effects in METH mice model. These neuroprotective effects were associated with the rescued ALP machinery after oligodendroglial TFEB overexpression. Our study demonstrated, for the first time, that α-syn-TFEB axis might be involve in the METH induced myelin loss, oligodendroglial pathology, and neuropathology. In summary, targeting at the α-syn-TFEB axis might be a promising therapeutic strategy for treating METH induced oligodendroglial pathology, and to a broader view, neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jialin Dai
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
5
|
Schweigmann M, Caudal LC, Stopper G, Scheller A, Koch KP, Kirchhoff F. Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Front Cell Neurosci 2021; 15:720675. [PMID: 34447299 PMCID: PMC8383317 DOI: 10.3389/fncel.2021.720675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-of-the-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinum-plated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo.
Collapse
Affiliation(s)
- Michael Schweigmann
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Laura C Caudal
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Gebhard Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Klaus P Koch
- Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
6
|
Oligodendrocyte Development and Regenerative Therapeutics in Multiple Sclerosis. Life (Basel) 2021; 11:life11040327. [PMID: 33918664 PMCID: PMC8069894 DOI: 10.3390/life11040327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Myelination by oligodendrocytes (OLs) is an important biological process essential for central nervous system (CNS) development and functions. Oligodendroglial lineage cells undergo several morphological and molecular changes at different stages of their lineage progression into myelinating OLs. The transition steps of the oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes are defined by a specific pattern of regulated gene expression, which is under the control of coordinated signaling pathways. Any abnormal development, loss or failure of oligodendrocytes to myelinate axons can lead to several neurodegenerative diseases like multiple sclerosis (MS). MS is characterized by inflammation and demyelination, and current treatments target only the immune component of the disease, but have little impact on remyelination. Recently, several pharmacological compounds enhancing remyelination have been identified and some of them are in clinical trials. Here, we will review the current knowledge on oligodendrocyte differentiation, myelination and remyelination. We will focus on MS as a pathological condition, the most common chronic inflammatory demyelinating disease of the CNS in young adults.
Collapse
|
7
|
Mühlebner A, van Scheppingen J, de Neef A, Bongaarts A, Zimmer TS, Mills JD, Jansen FE, Spliet WGM, Krsek P, Zamecnik J, Coras R, Blumcke I, Feucht M, Scholl T, Gruber VE, Hainfellner JA, Söylemezoğlu F, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Aronica E. Myelin Pathology Beyond White Matter in Tuberous Sclerosis Complex (TSC) Cortical Tubers. J Neuropathol Exp Neurol 2021; 79:1054-1064. [PMID: 32954437 PMCID: PMC7559237 DOI: 10.1093/jnen/nlaa090] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a monogenetic disease that arises due to mutations in either the TSC1 or TSC2 gene and affects multiple organ systems. One of the hallmark manifestations of TSC are cortical malformations referred to as cortical tubers. These tubers are frequently associated with treatment-resistant epilepsy. Some of these patients are candidates for epilepsy surgery. White matter abnormalities, such as loss of myelin and oligodendroglia, have been described in a small subset of resected tubers but mechanisms underlying this phenomenon are unclear. Herein, we analyzed a variety of neuropathologic and immunohistochemical features in gray and white matter areas of resected cortical tubers from 46 TSC patients using semi-automated quantitative image analysis. We observed divergent amounts of myelin basic protein as well as numbers of oligodendroglia in both gray and white matter when compared with matched controls. Analyses of clinical data indicated that reduced numbers of oligodendroglia were associated with lower numbers on the intelligence quotient scale and that lower amounts of myelin-associated oligodendrocyte basic protein were associated with the presence of autism-spectrum disorder. In conclusion, myelin pathology in cortical tubers extends beyond the white matter and may be linked to cognitive dysfunction in TSC patients.
Collapse
Affiliation(s)
- Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrew de Neef
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center University Medical Center
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht (WGMS) Utrecht, The Netherlands
| | | | | | - Roland Coras
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blumcke
- Second Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic; Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | - Figen Söylemezoğlu
- Medical University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven
| | - Anna C Jansen
- Pediatric Neurology Unit-UZ Brussel, Brussels Belgium
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children's Memorial Health Institute.,Department of Child Neurology, Medical University of Warsaw Warsaw, Poland
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
8
|
White Matter and Neuroprotection in Alzheimer's Dementia. Molecules 2020; 25:molecules25030503. [PMID: 31979414 PMCID: PMC7038211 DOI: 10.3390/molecules25030503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.
Collapse
|
9
|
Evolutionary genomics analysis of human nucleus-encoded mitochondrial genes: implications for the roles of energy production and metabolic pathways in the pathogenesis and pathophysiology of demyelinating diseases. Neurosci Lett 2019; 715:134600. [PMID: 31726178 DOI: 10.1016/j.neulet.2019.134600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
Abstract
The myelin sheath is a plasma membrane extension that lines nerve fibers to protect, support and insulate neurons. The myelination of axons in vertebrates enables fast, saltatory impulse propagation, and this process relies on organelles, especially on mitochondria to supply energy. Approximately 99% of mitochondrial proteins are encoded in the nucleus. Since mitochondria play a central role in the energy production and metabolic pathways, which are essential for myelinogenesis, studying these nucleus-encoded genes (nMGs) may provide new insights into the roles of energy metabolism in demyelinating diseases. In this work, a multiomics-based approach was employed to 1) construct a 1,740 human nMG subset with mitochondrial localization evidence obtained from the Integrated Mitochondrial Protein Index (IMPI) and MitoCarta databases, 2) conduct an evolutionary genomics analysis across mouse, rat, monkey, chimp, and human models, 3) examine dysmyelination phenotype-related genes (nMG subset genes with oligodendrocyte- and myelin-related phenotypes, OMP-nMGs) in MGI mouse lines and human patients, 4) determine the expression discrepancy of OMP-nMGs in brain tissues of cuprizone-treated mice, multiple sclerosis patients, and normal controls, and 5) conduct literature data mining to explore OMP-nMG-associated disease impacts. By contrasting OMP-nMGs with other genes, OMP-nMGs were found to be more ubiquitously expressed (59.1% vs. 16.1%), disease-associated (67.3% vs. 20.2%), and evolutionarily conserved within the human populations. Our multiomics-based analysis identified 110 OMP-nMGs implicated in energy production and lipid and glycan biosynthesis in the pathogenesis and pathophysiology of demyelinating disorders. Future targeted characterization of OMP-nMGs in abnormal myelination conditions may allow the discovery of novel nMG mediated mechanisms underlying myelinogenesis and related diseases.
Collapse
|
10
|
Isaacs BR, Trutti AC, Pelzer E, Tittgemeyer M, Temel Y, Forstmann BU, Keuken MC. Cortico-basal white matter alterations occurring in Parkinson's disease. PLoS One 2019; 14:e0214343. [PMID: 31425517 PMCID: PMC6699705 DOI: 10.1371/journal.pone.0214343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging studies typically use standard anatomical atlases for identification and analyses of (patho-)physiological effects on specific brain areas; these atlases often fail to incorporate neuroanatomical alterations that may occur with both age and disease. The present study utilizes Parkinson's disease and age-specific anatomical atlases of the subthalamic nucleus for diffusion tractography, assessing tracts that run between the subthalamic nucleus and a-priori defined cortical areas known to be affected by Parkinson's disease. The results show that the strength of white matter fiber tracts appear to remain structurally unaffected by disease. Contrary to that, Fractional Anisotropy values were shown to decrease in Parkinson's disease patients for connections between the subthalamic nucleus and the pars opercularis of the inferior frontal gyrus, anterior cingulate cortex, the dorsolateral prefrontal cortex and the pre-supplementary motor, collectively involved in preparatory motor control, decision making and task monitoring. While the biological underpinnings of fractional anisotropy alterations remain elusive, they may nonetheless be used as an index of Parkinson's disease. Moreover, we find that failing to account for structural changes occurring in the subthalamic nucleus with age and disease reduce the accuracy and influence the results of tractography, highlighting the importance of using appropriate atlases for tractography.
Collapse
Affiliation(s)
- Bethany. R. Isaacs
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Anne. C. Trutti
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
- Cognitive Psychology, University of Leiden, Leiden, the Netherlands
| | - Esther Pelzer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurology, University Clinics, Cologne, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Birte. U. Forstmann
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| | - Max. C. Keuken
- Integrative Model-based Cognitive Neuroscience research unit, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Francke P, Tiedemann LJ, Menz MM, Beck J, Büchel C, Brassen S. Mesolimbic white matter connectivity mediates the preference for sweet food. Sci Rep 2019; 9:4349. [PMID: 30867529 PMCID: PMC6416305 DOI: 10.1038/s41598-019-40935-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Dopaminergic brain structures like the nucleus accumbens (NAc) are thought to encode the incentive salience of palatable foods motivating appetitive behaviour. Animal studies have identified neural networks mediating the regulation of hedonic feeding that comprise connections of the NAc with the ventral tegmental area (VTA) and the lateral hypothalamus (LH). Here, we investigated how structural connectivity of these pathways relates to individual variability in decisions on sweet food consumption in humans. We therefore combined probabilistic tractography on diffusion imaging data from 45 overnight fasted lean to overweight participants with real decisions about high and low sugar food consumption. Across all individuals, sugar preference and connectivity strength were not directly related, however, multiple regression analysis revealed interaction of mesolimbic structure and sugar preference to depend on individuals’ BMI score. In overweight individuals (BMI: ≥25 kg/m², N = 22) higher sugar preference was thereby specifically related to stronger connectivity within the VTA-NAc pathway while the opposite pattern emerged in participants with normal BMI (BMI: <25 kg/m², N = 23). Our structural results complement previous functional findings on the critical role of the human mesolimbic system for regulating hedonic eating in overweight individuals.
Collapse
Affiliation(s)
- Paul Francke
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Lena J Tiedemann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Mareike M Menz
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Judith Beck
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|