1
|
Sarkar C, Lipinski MM. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024; 13:1655. [PMID: 39404418 PMCID: PMC11476013 DOI: 10.3390/cells13191655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation. Peroxisomal function is also dysregulated in many neurodegenerative diseases and during brain aging, both of which are associated with neuroinflammation. This suggests that deciphering the role of peroxisomes in neuroinflammation may be important for understanding both congenital and age-related brain dysfunction. In this review, we discuss the current advances in understanding the role and function of peroxisomes in neuroinflammation.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marta M. Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
2
|
Prater MC, Scheurell AR, Paton CM, Cooper JA. Eight weeks of daily cottonseed oil intake attenuates postprandial angiopoietin-like proteins 3 and 4 responses compared to olive oil in adults with hypercholesterolemia: A secondary analysis of a randomized clinical trial. Nutr Res 2024; 123:88-100. [PMID: 38295507 DOI: 10.1016/j.nutres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Angiopoietin-like proteins (ANGPTLs) -3, -4, and -8 are regulators of lipid metabolism and have been shown to respond to changes in dietary fats. It is unknown how ANGPTLs respond to cottonseed oil (CSO) and olive oil (OO) consumption in a population with hypercholesterolemia. The purpose of this study was to determine the impact of CSO vs. OO consumption on fasting and postprandial ANGPTL responses in adults with hypercholesterolemia. We hypothesized that CSO would have lower fasting and postprandial ANGPTL responses compared with OO. Forty-two adults with high cholesterol completed a single-blind, randomized trial comparing CSO (n = 21) vs. OO (n = 21) diet enrichment. An 8-week partial outpatient feeding intervention provided ∼60% of the volunteers' total energy expenditure (∼30% of total energy expenditure as CSO or OO). The remaining 40% was not controlled. Fasting blood draws were taken at pre-, mid-, and postintervention visits. Volunteers consumed a high saturated fat meal followed by 5 hours of blood draws pre- and postvisits. Fasting ANGPTL3 had a marginally significant treatment by visit interaction (P = .06) showing an increase from pre- to postintervention in CSO vs. OO (CSO: 385.1 ± 27.7 to 440.3 ± 33.9 ng/mL; OO: 468.2 ± 38.3 to 449.2 ± 49.5 ng/mL). Both postprandial ANGPTL3 (P = .02) and ANGPTL4 (P < .01) had treatment by visit interactions suggesting increases from pre- to postintervention in OO vs. CSO with no differences between groups in ANGPTL8. These data show a worsening (increase) of postprandial ANGPTLs after the OO, but not CSO, intervention. This aligns with previously reported data in which postprandial triglycerides were protected from increases compared with OO. ANGPTLs may mediate protective effects of CSO consumption on lipid control. This trial was registered at clinicaltrials.gov (NCT04397055).
Collapse
Affiliation(s)
- M Catherine Prater
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Alex R Scheurell
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Chad M Paton
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA; Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Romariz SAA, Sanabria V, da Silva KR, Quintella ML, de Melo BAG, Porcionatto M, de Almeida DC, Longo BM. High Concentrations of Cannabidiol Induce Neurotoxicity in Neurosphere Culture System. Neurotox Res 2024; 42:14. [PMID: 38349488 DOI: 10.1007/s12640-024-00692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and β-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.
Collapse
Affiliation(s)
- Simone A A Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Viviam Sanabria
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina Ribeiro da Silva
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Miguel L Quintella
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruna A G de Melo
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marimélia Porcionatto
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Candido de Almeida
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Chen J, Zheng QY, Wang LM, Luo J, Chen KH, He YN. Proteomics reveals defective peroxisomal fatty acid oxidation during the progression of acute kidney injury and repair. Heliyon 2023; 9:e18134. [PMID: 37539197 PMCID: PMC10395357 DOI: 10.1016/j.heliyon.2023.e18134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid decrease in renal function with high mortality and risk of progression to chronic kidney disease (CKD). Ischemia and reperfusion injury (IRI) is one of the major causes of AKI. However, the cellular and molecular responses of the kidney to IRI are complex and not fully understood. Herein, we conducted unbiased proteomics and bioinformatics analyses in an IRI mouse model on days 3, 7, and 21, and validated the results using IRI, unilateral ureteral obstruction (UUO), and biopsies from patients with AKI or CKD. The results indicated an obvious temporal expression profile of differentially expressed proteins and highlighted impaired lipid metabolism during the progression of AKI to CKD. Acyl-coenzyme A oxidase 1 (Acox1), the first rate-limiting enzyme of peroxisomal fatty acid beta-oxidation, was then selected, and its disturbed expression in the two murine models validated the proteomic findings. Accordingly, Acox1 expression was significantly downregulated in renal biopsies from patients with AKI or CKD, and its expression was negatively correlated with kidney injury score. Furthermore, in contrast to the decreased Acox1 expression, lipid droplet accumulation was remarkably increased in these renal tissues, suggesting dysregulation of fatty acid oxidation. In conclusion, our results suggest that defective peroxisomal fatty acid oxidation might be a common pathological feature in the transition from AKI to CKD, and that Acox1 is a promising intervention target for kidney injury and repair.
Collapse
Affiliation(s)
- Jia Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Quan-you Zheng
- Department of Nephrology and Urology, The 958th Hospital, The First Affiliated Hospital, Army Medical University, Chongqing, 400020, China
| | - Li-ming Wang
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jia Luo
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ke-hong Chen
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ya-ni He
- Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
5
|
Son Y, Shockey J, Dowd MK, Shieh JG, Cooper JA, Paton CM. A cottonseed oil-enriched diet improves liver and plasma lipid levels in a male mouse model of fatty liver. Am J Physiol Regul Integr Comp Physiol 2023; 324:R171-R182. [PMID: 36503254 DOI: 10.1152/ajpregu.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high-fat (HF) diet causes fatty liver, hyperlipidemia, and hypercholesterolemia, and cottonseed oil (CSO) has been shown to improve liver and plasma lipids in human and mouse models. The purpose of this study was to determine the effect of CSO vs. olive oil (OO)-enriched diets on lipid levels in a HF-diet model of fatty liver disease. We placed mice on a HF diet to induce obesity and fatty liver, after which mice were placed on CSO or OO diets, with chow and HF (5.1 kcal/g) groups as control. When CSO- and OO-fed mice were given isocaloric diets with the HF group, there were no differences in body weight, plasma, or hepatic lipids. However, when the CSO and OO diets were reduced in calories (4.0 kcal/g), CSO and OO groups reduced body weight. The CSO group had lower plasma total cholesterol (-56 ± 6%, P < 0.01), free cholesterol (-53 ± 7%, P < 0.01), triglycerides (-61 ± 14%, P < 0.01), and LDL (-42 ± 16%, P = 0.01) vs. HF group whereas the OO diet lowered LDL (-18 ± 12%, P = 0.05) vs. HF. Furthermore, the CSO diet decreased hepatic total cholesterol (-40 ± 12%, P < 0.01), free cholesterol (-23 ± 11%, P = 0.04), and triglycerides (-47 ± 12%, P = 0.02). There were no significant changes in lipogenesis and fatty acid oxidation among the groups. However, the CSO group increased lipid oxidative gene expression in liver and dihydrosterculic acid increased PPARα target genes with in vitro models. Taken together, consuming a reduced calorie diet enriched in CSO reduces liver and plasma lipid profiles in an obese model of fatty liver.
Collapse
Affiliation(s)
- Yura Son
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Michael K Dowd
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana
| | - Josephine G Shieh
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Jamie A Cooper
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| | - Chad M Paton
- Department of Nutritional Sciences, https://ror.org/00te3t702University of Georgia, Athens, Georgia.,Department of Food Science & Technology, https://ror.org/00te3t702University of Georgia, Athens, Georgia
| |
Collapse
|
6
|
Essadek S, Gondcaille C, Savary S, Samadi M, Vamecq J, Lizard G, Kebbaj RE, Latruffe N, Benani A, Nasser B, Cherkaoui-Malki M, Andreoletti P. Two Argan Oil Phytosterols, Schottenol and Spinasterol, Attenuate Oxidative Stress and Restore LPS-Dysregulated Peroxisomal Functions in Acox1-/- and Wild-Type BV-2 Microglial Cells. Antioxidants (Basel) 2023; 12:168. [PMID: 36671029 PMCID: PMC9854540 DOI: 10.3390/antiox12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1β and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.
Collapse
Affiliation(s)
- Soukaina Essadek
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Catherine Gondcaille
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Joseph Vamecq
- Inserm and HMNO, CBP, CHRU Lille, and RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan 1st University, Settat 26000, Morocco
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Alexandre Benani
- CSGA—Centre des Sciences du Goût et de l’Alimentation, CNRS—Centre National de la Recherche Scientifique, INRAE—Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Dijon, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Boubker Nasser
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
7
|
Cao HJ, Huang L, Zheng MR, Zhang T, Xu LC. Characterization of circular RNAs in dorsal root ganglia after central and peripheral axon injuries. Front Cell Neurosci 2022; 16:1046050. [PMID: 36578373 PMCID: PMC9790916 DOI: 10.3389/fncel.2022.1046050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
In central nervous system, axons fail to regenerate after injury while in peripheral nervous system, axons retain certain regenerative ability. Dorsal root ganglion (DRG) neuron has an ascending central axon branch and a descending peripheral axon branch stemming from one single axon and serves as a suitable model for the comparison of growth competence following central and peripheral axon injuries. Molecular alterations underpin different injury responses of DRG branches have been investigated from many aspects, such as coding gene expression, chromatin accessibility, and histone acetylation. However, changes of circular RNAs are poorly characterized. In the present study, we comprehensively investigate circular RNA expressions in DRGs after rat central and peripheral axon injuries using sequencing analysis and identify a total of 33 differentially expressed circular RNAs after central branch injury as well as 55 differentially expressed circular RNAs after peripheral branch injury. Functional enrichment of host genes of differentially expressed circular RNAs demonstrate the participation of Hippo signaling pathway and Notch signaling pathway after both central and peripheral axon injuries. Circular RNA changes after central axon injury are also linked with apoptosis and cellular junction while changes after peripheral axon injury are associated with metabolism and PTEN-related pathways. Altogether, the present study offers a systematic evaluation of alterations of circular RNAs in rat DRGs following injuries to the central and peripheral axon branches and contributes to the deciphering of essential biological activities and mechanisms behind successful nerve regeneration.
Collapse
Affiliation(s)
- Hong-Jun Cao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Meng-Ru Zheng
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Tao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling-Chi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Ling-Chi Xu,
| |
Collapse
|
8
|
Xu Z, Hu W, Wang B, Xu T, Wang J, Wei D. Canagliflozin Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism and Inhibiting Inflammation through Induction of Autophagy. Yonsei Med J 2022; 63:619-631. [PMID: 35748073 PMCID: PMC9226837 DOI: 10.3349/ymj.2022.63.7.619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is closely associated with metabolic diseases, including obesity and diabetes, and has gradually become the most common cause of chronic liver disease. We investigated the effects of sodium glucose cotransporter 2 (SGLT2) inhibitor canagliflozin on NAFLD in high-fat diet (HFD)-induced obese mice and possible underlying mechanisms. MATERIALS AND METHODS Male C57BL/6 mice were fed a normal-diet, HFD, or HFD with canagliflozin for 14 weeks. AML-12 hepatocytes were treated with canagliflozin. Expression of related pathways was assessed. RESULTS Canagliflozin administration reduced body weight and fat mass, compared with HFD alone. Canagliflozin improved glucose and lipid metabolic disorders. Compared with HFD-fed mice, liver weight, serum alanine transaminase (ALT) levels, and hepatic lipid accumulation were decreased after canagliflozin administration. Additionally, canagliflozin upregulated lipolysis markers (CPT1a, ACOX1, and ACADM), downregulated lipogenesis markers (SREBP-1c and FASN), and suppressed the production of inflammatory cytokines (TNFα, MCP1, IL-1β, and IL-6), consistent with significantly increased LC3 II/I and Atg7 levels in the liver following canagliflozin treatment. In vitro, canagliflozin increased CPT1a, ACOX1, and ACADM expression, decreased SREBP-1c and FASN protein expression, and reduced TNFα, MCP1, IL-1β, and IL-6 mRNA levels in lipid mixture (LM)-induced hepatocytes in a dose-dependent manner. These changes were reversed by 3-MA, an autophagy inhibitor. CONCLUSION Our findings suggest that canagliflozin ameliorates the pathogenesis of NAFLD by regulating lipid metabolism and inhibiting inflammation, which may be associated with its promotion of autophagy.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Wenxin Hu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Bin Wang
- Department of Breast and Thyroid Surgery, Tengzhou Central People's Hospital, Zaozhuang, Shandong, China
| | - Ting Xu
- Department of Urology, Weifang Medical University, Weifang, Shandong, China
| | - Jianning Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Dan Wei
- Department of Comprehensive Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong, China.
| |
Collapse
|
9
|
Sonani RR, Blat A, Dubin G. Crystal structures of apo- and FAD-bound human peroxisomal acyl-CoA oxidase provide mechanistic basis explaining clinical observations. Int J Biol Macromol 2022; 205:203-210. [PMID: 35149097 DOI: 10.1016/j.ijbiomac.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Peroxisomal acyl-CoA oxidase 1a (ACOX1a) catalyzes the first and rate-limiting step of fatty acid oxidation, the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The dysfunction of human ACOX1a (hACOX1a) leads to deterioration of the nervous system manifesting in myeloneuropathy, hypotonia and convulsions. Crystal structures of hACOX1a in apo- and cofactor (FAD)-bound forms were solved at 2.00 and 2.09 Å resolution, respectively. hACOX1a exists as a homo-dimer with solvation free energy gain (ΔGo) of -44.7 kcal mol-1. Two FAD molecules bind at the interface of protein monomers completing the active sites. The substrate binding cleft of hACOX1a is wider compared to mitochondrial very-long chain specific acyl-CoA dehydrogenase. Mutations (p.G178C, p.M278V and p.N237S) reported to cause dysfunctionality of hACOX1a are analyzed on its 3D-structure to understand structure-function related perturbations and explain the associated phenotypes.
Collapse
Affiliation(s)
- Ravi R Sonani
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Artur Blat
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
10
|
Phosphatidylserine synthase plays an essential role in glia and affects development, as well as the maintenance of neuronal function. iScience 2021; 24:102899. [PMID: 34401677 PMCID: PMC8358705 DOI: 10.1016/j.isci.2021.102899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 01/05/2023] Open
Abstract
Phosphatidylserine (PS) is an integral component of eukaryotic cell membranes and organelles. The Drosophila genome contains a single PS synthase (PSS)-encoding gene (Pss) homologous to mammalian PSSs. Flies with Pss loss-of-function alleles show a reduced life span, increased bang sensitivity, locomotor defects, and vacuolated brain, which are the signs associated with neurodegeneration. We observed defective mitochondria in mutant adult brain, as well as elevated production of reactive oxygen species, and an increase in autophagy and apoptotic cell death. Intriguingly, glial-specific knockdown or overexpression of Pss alters synaptogenesis and axonal growth in the larval stage, causes developmental arrest in pupal stages, and neurodegeneration in adults. This is not observed with pan-neuronal up- or down-regulation. These findings suggest that precisely regulated expression of Pss in glia is essential for the development and maintenance of brain function. We propose a mechanism that underlies these neurodegenerative phenotypes triggered by defective PS metabolism. Loss of Pss leads to developmental defects and neurodegeneration Loss of Pss causes a mitochondrial defect, elevated ROS, and secondary necrosis Pss functions in glia are essential for synaptogenesis and neuronal maintenance Glial Pss expression level must be tightly regulated to maintain a healthy nervous system
Collapse
|
11
|
Qin X, Wang W, Chu W. Antioxidant and reducing lipid accumulation effects of rutin in Caenorhabditis elegans. Biofactors 2021; 47:686-693. [PMID: 33988888 DOI: 10.1002/biof.1755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
In this study, the effect of rutin on fatty acid metabolism and antioxidant activity were evaluated. We found that the antioxidant capacity of rutin-treated Caenorhabditis elegans was enhanced but the triglyceride content was significantly reduced. The reduction of fat accumulation by rutin was also confirmed by Oil Red O staining. RNA-seq analysis indicated that rutin significantly regulated the expression of seven genes related to lipid metabolism in C. elegans. Among the seven genes, acox-1.3, stdh-3, and fat-7 were associated with fatty acid metabolism. Rutin significantly reduced fat accumulation in both fat-6 and fat-7 mutant strains but did not affect the fat storage of fat-6/fat-7 double mutant, which indicated that the impact of rutin on fat storage depended on fat-6 and fat-7. These findings indicated that rutin reduced fat storage depending on the regulation of lipid metabolism-related genes expression and thereby regulating the biosynthesis of the corresponding unsaturated fatty acid.
Collapse
Affiliation(s)
- Xianjin Qin
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmaceutical Science, Peking University, Beijing, China
| | - Wenqian Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|