1
|
Fenerci C, Davis EE, Henderson SE, Campbell KL, Sheldon S. Shift happens: aging alters the content but not the organization of memory for complex events. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2025; 32:118-141. [PMID: 38814192 DOI: 10.1080/13825585.2024.2360216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
While cognitive aging research has compared episodic memory accuracy between younger and older adults, less work has described differences in how memories are encoded and recalled. This is important for memories of real-world experiences, since there is immense variability in which details can be accessed and organized into narratives. We investigated age effects on the organization and content of memory for complex events. In two independent samples (N = 45; 60), young and older adults encoded and recalled the same short-movie. We applied a novel scoring on the recollections to quantify recall accuracy, temporal organization (temporal contiguity, forward asymmetry), and content (perceptual, conceptual). No age-effects on recall accuracy nor on metrics of temporal organization emerged. Older adults provided more conceptual and non-episodic content, whereas younger adults reported a higher proportion of event-specific information. Our results indicate that age-related differences in episodic recall reflect distinctions in what details are assembled from the past.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Emily E Davis
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Sarah E Henderson
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Karen L Campbell
- Department of Psychology, Brock University, St. Catherines, ON, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
3
|
Andonovski N, Sutton J, McCarroll CJ. Eliminating episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230413. [PMID: 39278256 PMCID: PMC11449155 DOI: 10.1098/rstb.2023.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 09/18/2024] Open
Abstract
In Tulving's initial characterization, episodic memory was one of multiple memory systems. It was postulated, in pursuit of explanatory depth, as displaying proprietary operations, representations and substrates such as to explain a range of cognitive, behavioural and experiential phenomena. Yet the subsequent development of this research programme has, paradoxically, introduced surprising doubts about the nature, and indeed existence, of episodic memory. On dominant versions of the 'common system' view, on which a single simulation system underlies both remembering and imagining, there are no processes unique to memory to support robust generalizations with inductive potential. Eliminativism about episodic memory seems to follow from the claim that it has no dedicated neurocognitive system of its own. After identifying this under-noticed threat, we push back against modern eliminativists by surveying recent evidence that still indicates specialized mechanisms, computations and representations that are distinctly mnemic in character. We argue that contemporary realists about episodic memory can retain lessons of the common system approach while resisting the further move to eliminativism. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Nikola Andonovski
- Centre for Philosophy of Memory, IPhiG, Université Grenoble Alpes, Saint-Martin-d’Heres38400, France
| | - John Sutton
- Philosophy, Macquarie University, Sydney, New South Wales, Australia
- Philosophy, University of Stirling, Stirling, UK
| | | |
Collapse
|
4
|
Hermans EJ, Hendler T, Kalisch R. Building Resilience: The Stress Response as a Driving Force for Neuroplasticity and Adaptation. Biol Psychiatry 2024:S0006-3223(24)01700-1. [PMID: 39448004 DOI: 10.1016/j.biopsych.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
People exhibit an extraordinary capacity to adjust to stressful situations. Here, we argue that the acute stress response is a major driving force behind this adaptive process. In addition to immediately freeing energy reserves, facilitating a rapid and robust neurocognitive response, and helping to reinstate homeostasis, the stress response also critically regulates neuroplasticity. Therefore, understanding the healthy acute stress response is crucial for understanding stress resilience-the maintenance or rapid recovery of mental health during and after times of adversity. Contemporary resilience research differentiates between resilience factors and resilience mechanisms. Resilience factors refer to a broad array of social, psychological, or biological variables that are stable but potentially malleable and predict resilient outcomes. In contrast, resilience mechanisms refer to proximate mechanisms activated during acute stress that enable individuals to effectively navigate immediate challenges. In this article, we review literature related to how neurotransmitter and hormonal changes during acute stress regulate the activation of resilience mechanisms. We integrate literature on the timing-dependent and neuromodulator-specific regulation of neurocognition, episodic memory, and behavioral and motivational control, highlighting the distinct and often synergistic roles of catecholamines (dopamine and norepinephrine) and glucocorticoids. We conclude that stress resilience is bolstered by improved future predictions and the success-based reinforcement of effective coping strategies during acute stress. The resulting generalized memories of success, controllability, and safety constitute beneficial plasticity that lastingly improves self-control under stress. Insight into such mechanisms of resilience is critical for the development of novel interventions focused on prevention rather than treatment of stress-related disorders.
Collapse
Affiliation(s)
- Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Science, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raffael Kalisch
- Leibniz Institute for Resilience Research, Mainz, Germany; Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
5
|
Rasmussen KW, Kirk M, Overgaard SB, Berntsen D. The days we never forget: Flashbulb memories across the life span in Alzheimer's disease. Mem Cognit 2024; 52:1477-1493. [PMID: 38627357 PMCID: PMC11522138 DOI: 10.3758/s13421-024-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) is characterized by autobiographical memory deficits, with the ability to retrieve episodic-rich memories being particularly affected. Here, we investigated the influence of AD on a specific subtype of episodic memories known as flashbulb memories (i.e., the ability to remember the personal circumstances for the reception of important news events). We examined the frequency, characteristics, and the temporal distribution of flashbulb memories across the life span. To this aim, 28 older adults diagnosed with AD and a matched sample of 29 healthy older controls were probed for flashbulb memories for two historical events from each decade of their lives. They also estimated the subjective degree of reexperiencing for the memories reported. AD participants showed impaired access to flashbulb memories, the frequency of reported memories being lower than for healthy older adults. However, qualitative aspects of AD participants' flashbulb memories were quite similar to those of the controls, as no group differences were obtained with respect to the canonical categories or degree of reexperience. AD participants' flashbulb memories clustered during the early years of their life, consistent with a reminiscence bump, whereas healthy controls also reported memories dated to later lifetime periods. Our results suggest that probing for personal memories of important public events may serve as a powerful cue for detailed episodic memories in AD.
Collapse
Affiliation(s)
- Katrine W Rasmussen
- Center on Autobiographical Memory Research, Department of Psychology and Behavioral Sciences, Aarhus University, Bartholins Allé 9, 8000, Aarhus C, Denmark.
| | - Marie Kirk
- Center on Autobiographical Memory Research, Department of Psychology and Behavioral Sciences, Aarhus University, Bartholins Allé 9, 8000, Aarhus C, Denmark
| | - Susanne B Overgaard
- Center on Autobiographical Memory Research, Department of Psychology and Behavioral Sciences, Aarhus University, Bartholins Allé 9, 8000, Aarhus C, Denmark
| | - Dorthe Berntsen
- Center on Autobiographical Memory Research, Department of Psychology and Behavioral Sciences, Aarhus University, Bartholins Allé 9, 8000, Aarhus C, Denmark
| |
Collapse
|
6
|
Tarder-Stoll H, Baldassano C, Aly M. Consolidation Enhances Sequential Multistep Anticipation but Diminishes Access to Perceptual Features. Psychol Sci 2024; 35:1178-1199. [PMID: 39110746 PMCID: PMC11532645 DOI: 10.1177/09567976241256617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/19/2024] [Indexed: 08/10/2024] Open
Abstract
Many experiences unfold predictably over time. Memory for these temporal regularities enables anticipation of events multiple steps into the future. Because temporally predictable events repeat over days, weeks, and years, we must maintain-and potentially transform-memories of temporal structure to support adaptive behavior. We explored how individuals build durable models of temporal regularities to guide multistep anticipation. Healthy young adults (Experiment 1: N = 99, age range = 18-40 years; Experiment 2: N = 204, age range = 19-40 years) learned sequences of scene images that were predictable at the category level and contained incidental perceptual details. Individuals then anticipated upcoming scene categories multiple steps into the future, immediately and at a delay. Consolidation increased the efficiency of anticipation, particularly for events further in the future, but diminished access to perceptual features. Further, maintaining a link-based model of the sequence after consolidation improved anticipation accuracy. Consolidation may therefore promote efficient and durable models of temporal structure, thus facilitating anticipation of future events.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Canada
| | | | - Mariam Aly
- Department of Psychology, Columbia University
| |
Collapse
|
7
|
Nathaniel U, Eidelsztein S, Geskin KG, Yamasaki BL, Nir B, Dronjic V, Booth JR, Bitan T. Neural Mechanisms of Learning and Consolidation of Morphologically Derived Words in a Novel Language: Evidence From Hebrew Speakers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:864-900. [PMID: 39301207 PMCID: PMC11410356 DOI: 10.1162/nol_a_00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/07/2024] [Indexed: 09/22/2024]
Abstract
We examined neural mechanisms associated with the learning of novel morphologically derived words in native Hebrew speakers within the Complementary Learning Systems (CLS) framework. Across four sessions, 28 participants were trained on an artificial language, which included two types of morphologically complex words: linear (root + suffix) with a salient structure, and non-linear (root interleaved with template), with a prominent derivational structure in participants' first language (L1). A third simple monomorphemic condition, which served as baseline, was also included. On the first and fourth sessions, training was followed by testing in an fMRI scanner. Our behavioural results showed decomposition of both types of complex words, with the linear structure more easily learned than the non-linear structure. Our fMRI results showed involvement of frontal areas, associated with decomposition, only for the non-linear condition, after just the first session. We also observed training-related increases in activation in temporal areas specifically for the non-linear condition, which was correlated with participants' L1 morphological awareness. These results demonstrate that morphological decomposition of derived words occurs in the very early stages of word learning, is influenced by L1 experience, and can facilitate word learning. However, in contrast to the CLS framework, we found no support for a shift from reliance on hippocampus to reliance on cortical areas in any of our conditions. Instead, our findings align more closely with recent theories showing a positive correlation between changes in hippocampus and cortical areas, suggesting that these representations co-exist and continue to interact with one another beyond initial learning.
Collapse
Affiliation(s)
- Upasana Nathaniel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Stav Eidelsztein
- Department of Communication Sciences and Disorder, University of Haifa, Haifa, Israel
| | - Kate Girsh Geskin
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | | | - Bracha Nir
- Department of Communication Sciences and Disorder, University of Haifa, Haifa, Israel
| | - Vedran Dronjic
- Department of English, Northern Arizona University, Flagstaff, AZ, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- Department of Speech Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Dubinsky JM, Hamid AA. The neuroscience of active learning and direct instruction. Neurosci Biobehav Rev 2024; 163:105737. [PMID: 38796122 DOI: 10.1016/j.neubiorev.2024.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Throughout the educational system, students experiencing active learning pedagogy perform better and fail less than those taught through direct instruction. Can this be ascribed to differences in learning from a neuroscientific perspective? This review examines mechanistic, neuroscientific evidence that might explain differences in cognitive engagement contributing to learning outcomes between these instructional approaches. In classrooms, direct instruction comprehensively describes academic content, while active learning provides structured opportunities for learners to explore, apply, and manipulate content. Synaptic plasticity and its modulation by arousal or novelty are central to all learning and both approaches. As a form of social learning, direct instruction relies upon working memory. The reinforcement learning circuit, associated agency, curiosity, and peer-to-peer social interactions combine to enhance motivation, improve retention, and build higher-order-thinking skills in active learning environments. When working memory becomes overwhelmed, additionally engaging the reinforcement learning circuit improves retention, providing an explanation for the benefits of active learning. This analysis provides a mechanistic examination of how emerging neuroscience principles might inform pedagogical choices at all educational levels.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Arif A Hamid
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Matsumoto N. Meta-memory (prediction) of specific autobiographical recall: An experimental approach using a modified autobiographical memory test. Mem Cognit 2024; 52:1263-1274. [PMID: 38411779 DOI: 10.3758/s13421-024-01541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Autobiographical memory specificity is known to contribute to better mental health, social problem-solving, and episodic future thinking. While numerous studies have addressed variables that affect autobiographical memory specificity, little is known regarding the meta-memory processes that underpin memory retrieval. In this study, we introduced two meta-memory constructs, ease of retrieval judgments and anticipation of negative emotion evoked, which potentially affect autobiographical memory specificity. Participants (N = 109) first rated the ease of retrieval and anticipated emotions for positive and negative words used in a subsequent autobiographical memory test. We used the Optional Instructions of the Autobiographical Memory Test, in which participants were instructed that "specific memories are better, but other memories are permissible," allowing them to adjust how much cognitive effort they spent on generative retrieval after a failure of direct retrieval. They also self-judged whether each retrieval was generative (using additional cues with cognitive effort) or direct (immediate recall without much cognitive effort). Results showed that for generative retrieval, ease of retrieval was associated with greater specific and general memories and fewer omissions. A more negative anticipated emotion was associated with fewer specific memories and greater omissions, but was not with general memories. These results suggest that low retrievability and anticipated negative emotion prevent individuals from devoting efforts to generative retrieval. The lack of association between anticipated negative emotion and general memory calls into question the functional avoidance hypothesis regarding autobiographical memory specificity. We discussed how participants judged these meta-memories and directions for future research.
Collapse
Affiliation(s)
- Noboru Matsumoto
- Division of Psychology, Faculty of Arts, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
10
|
Sekeres MJ, Schomaker J, Nadel L, Tse D. To update or to create? The influence of novelty and prior knowledge on memory networks. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230238. [PMID: 38853571 PMCID: PMC11343309 DOI: 10.1098/rstb.2023.0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 06/11/2024] Open
Abstract
Schemas are foundational mental structures shaped by experience. They influence behaviour, guide the encoding of new memories and are shaped by associated information. The adaptability of memory schemas facilitates the integration of new information that aligns with existing knowledge structures. First, we discuss how novel information consistent with an existing schema can be swiftly assimilated when presented. This cognitive updating is facilitated by the interaction between the hippocampus and the prefrontal cortex. Second, when novel information is inconsistent with the schema, it likely engages the hippocampus to encode the information as part of an episodic memory trace. Third, novelty may enhance hippocampal dopamine through either the locus coeruleus or ventral tegmental area pathways, with the pathway involved potentially depending on the type of novelty encountered. We propose a gradient theory of schema and novelty to elucidate the neural processes by which schema updating or novel memory traces are formed. It is likely that experiences vary along a familiarity-novelty continuum, and the degree to which new experiences are increasingly novel will guide whether memory for a new experience either integrates into an existing schema or prompts the creation of a new cognitive framework. This article is part of the theme issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Melanie J. Sekeres
- School of Psychology, University of Ottawa, Ottawa, OntarioK1N 6N5, Canada
| | - Judith Schomaker
- Health, Medical & Neuropsychology, Leiden University, Leiden2333 AK, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Lynn Nadel
- Department of Psychology, University of Arizona, Tucson, AZ85721, USA
| | - Dorothy Tse
- Department of Psychology, Edge Hill University, OrmskirkL39 4QP, UK
| |
Collapse
|
11
|
Waisman A, Katz J. The autobiographical memory system and chronic pain: A neurocognitive framework for the initiation and maintenance of chronic pain. Neurosci Biobehav Rev 2024; 162:105736. [PMID: 38796124 DOI: 10.1016/j.neubiorev.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic pain affects approximately 20% of the world's population, exerting a substantial burden on the affected individual, their families, and healthcare systems globally. Deficits in autobiographical memory have been identified among individuals living with chronic pain, and even found to pose a risk for the transition to chronicity. Recent neuroimaging studies have simultaneously implicated common brain regions central to autobiographical memory processing in the maintenance of and susceptibility to chronic pain. The present review proposes a novel neurocognitive framework for chronic pain explained by mechanisms underlying the autobiographical memory system. Here, we 1) summarize the current literature on autobiographical memory in pain, 2) discuss the role of the hippocampus and cortical brain regions including the ventromedial prefrontal cortex, anterior temporal lobe, and amygdala in relation to autobiographical memory, memory schemas, emotional processing, and pain, 3) synthesize these findings in a neurocognitive framework that explains these relationships and their implications for patients' pain outcomes, and 4) propose translational directions for the prevention, management, and treatment of chronic pain.
Collapse
Affiliation(s)
- Anna Waisman
- Department of Psychology, York University, Toronto, ON, Canada.
| | - Joel Katz
- Department of Psychology, York University, Toronto, ON, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Pishdadian S, Coutrot A, Webber L, Hornberger M, Spiers H, Rosenbaum RS. Combining patient-lesion and big data approaches to reveal hippocampal contributions to spatial memory and navigation. iScience 2024; 27:109977. [PMID: 38947515 PMCID: PMC11214368 DOI: 10.1016/j.isci.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/14/2024] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Classic findings of impaired allocentric spatial learning and memory following hippocampal lesions indicate that the hippocampus supports cognitive maps of one's environment. Many studies assess navigation in vista space virtual reality environments and compare hippocampal-lesioned individuals' performance to that of small control samples, potentially stifling detection of preserved and impaired performance. Using the mobile app Sea Hero Quest, we examined navigation in diverse complex environments in two individuals with hippocampal lesions relative to demographically matched controls (N = 17,734). We found surprisingly accurate navigation in several environments, particularly those containing a constrained set of sub-goals, paths, and/or turns. Areas of impaired performance may reflect a role for the hippocampus in anterograde memory and more flexible and/or precise spatial representations, even when the need for allocentric processing is minimal. The results emphasize the value of combining single cases with big data and illustrate navigation performance profiles in individuals with hippocampal compromise.
Collapse
Affiliation(s)
- Sara Pishdadian
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Complex Care and Recovery Program, Centre for Addiction and Mental Health (CAMH), Toronto M6J 1H4, Canada
| | - Antoine Coutrot
- Centre National de la Recherche Scientifique (CNRS), University of Lyon, 69361 Lyon, France
| | - Lauren Webber
- Department of Psychology, York University, Toronto M3J 1P3, Canada
| | | | - Hugo Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1N 3AZ, UK
| | - R. Shayna Rosenbaum
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
13
|
Zou F, Kuhl BA, DuBrow S, Hutchinson JB. Benefits of spaced learning are predicted by re-encoding of past experience in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594263. [PMID: 38798652 PMCID: PMC11118271 DOI: 10.1101/2024.05.14.594263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
More than a century of research shows that spaced learning improves long-term memory. Yet, there remains debate concerning why. A major limitation to resolving theoretical debates is the lack of evidence for how neural representations change as a function of spacing. Here, leveraging a massive-scale 7T human fMRI dataset, we tracked neural representations and behavioral expressions of memory as participants viewed thousands of natural scene images that repeated at lags ranging from seconds to many months. We show that spaced learning increases the similarity of human ventromedial prefrontal cortex representations across stimulus encounters and, critically, these increases parallel and predict the behavioral benefits of spacing. Additionally, we show that these spacing benefits critically depend on remembering and, in turn, 're-encoding' past experience. Collectively, our findings provide fundamental insight into how spaced learning influences neural representations and why spacing is beneficial.
Collapse
Affiliation(s)
- Futing Zou
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Brice A. Kuhl
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
14
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Heinen R, Bierbrauer A, Wolf OT, Axmacher N. Representational formats of human memory traces. Brain Struct Funct 2024; 229:513-529. [PMID: 37022435 PMCID: PMC10978732 DOI: 10.1007/s00429-023-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Neural representations are internal brain states that constitute the brain's model of the external world or some of its features. In the presence of sensory input, a representation may reflect various properties of this input. When perceptual information is no longer available, the brain can still activate representations of previously experienced episodes due to the formation of memory traces. In this review, we aim at characterizing the nature of neural memory representations and how they can be assessed with cognitive neuroscience methods, mainly focusing on neuroimaging. We discuss how multivariate analysis techniques such as representational similarity analysis (RSA) and deep neural networks (DNNs) can be leveraged to gain insights into the structure of neural representations and their different representational formats. We provide several examples of recent studies which demonstrate that we are able to not only measure memory representations using RSA but are also able to investigate their multiple formats using DNNs. We demonstrate that in addition to slow generalization during consolidation, memory representations are subject to semantization already during short-term memory, by revealing a shift from visual to semantic format. In addition to perceptual and conceptual formats, we describe the impact of affective evaluations as an additional dimension of episodic memories. Overall, these studies illustrate how the analysis of neural representations may help us gain a deeper understanding of the nature of human memory.
Collapse
Affiliation(s)
- Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Anne Bierbrauer
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
17
|
Bein O, Davachi L. Event Integration and Temporal Differentiation: How Hierarchical Knowledge Emerges in Hippocampal Subfields through Learning. J Neurosci 2024; 44:e0627232023. [PMID: 38129134 PMCID: PMC10919070 DOI: 10.1523/jneurosci.0627-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| |
Collapse
|
18
|
Meßmer JA, Bader R, Mecklinger A. Schema-congruency supports the formation of unitized representations: Evidence from event-related potentials. Neuropsychologia 2024; 194:108782. [PMID: 38159798 DOI: 10.1016/j.neuropsychologia.2023.108782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The main goal of the present study was to investigate whether schema-based encoding of novel word pairs (i.e., novel compound words) supports the formation of unitized representations and thus, associative familiarity-based recognition. We report two experiments that both comprise an incidental learning task, in which novel noun-noun compound words were presented in semantically congruent contexts, enabling schema-supported processing of both constituents, contrasted with a schema-neutral condition. In Experiment 1, the effects of schema congruency on memory performance were larger for associative memory performance than for item memory performance in a memory test in which intact, recombined, and new compound words had to be discriminated. This supports the view that schema congruency boosts associative memory by promoting unitization. When contrasting event-related potentials (ERPs) for hits with correct rejections or associative misses, an N400 attenuation effect (520-676 ms) indicating absolute familiarity was present in the congruent condition, but not in the neutral condition. In line with this, a direct comparison of ERPs on hits across conditions revealed more positive waveforms in the congruent than in the neutral condition. This suggests that absolute familiarity contributes to associative recognition memory when schema-supported processing is established. In Experiment 2, we tested whether schema congruency enables the formation of semantically overlapping representations. Therefore, we included semantically similar lure compound words in the test phase and compared false alarm rates to these lures across conditions. In line with our hypothesis, we found higher false alarm rates in the congruent as compared to the neutral condition. In conclusion, we provide converging evidence for the view that schema congruency enables the formation of unitized representations and supports familiarity-based memory retrieval.
Collapse
Affiliation(s)
- Julia A Meßmer
- Experimental Neuropsychology Unit, Saarland University, Campus A2 4, 66123 Saarbrücken, Germany
| | - Regine Bader
- Experimental Neuropsychology Unit, Saarland University, Campus A2 4, 66123 Saarbrücken, Germany
| | - Axel Mecklinger
- Experimental Neuropsychology Unit, Saarland University, Campus A2 4, 66123 Saarbrücken, Germany.
| |
Collapse
|
19
|
Li A, Lei X, Herdman K, Waidergoren S, Gilboa A, Rosenbaum RS. Impoverished details with preserved gist in remote and recent spatial memory following hippocampal and fornix lesions. Neuropsychologia 2024; 194:108787. [PMID: 38184190 DOI: 10.1016/j.neuropsychologia.2024.108787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Cognitive Map Theory predicts that the hippocampus (HPC) plays a specialized, time-invariant role in supporting allocentric spatial memory, while Standard Consolidation Theory makes the competing prediction that the HPC plays a time-limited role, with more remote memories gaining independence of HPC function. These theories, however, are largely informed by the results of laboratory-based tests that are unlikely to simulate the demands of representing real-world environments in humans. Validation of these theories is further limited by an overall focus on spatial memory of newly encountered environments and on individuals with extensive lesions to the HPC and to surrounding medial temporal lobe (MTL) regions. The current study incorporates naturalistic tests of spatial memory based on recently and remotely encountered environments navigated by individuals with lesions to the HPC/MTL or that are limited to the HPC's major output, the fornix. METHODS Four participants with bilateral HPC/MTL and/or fornix lesions drew sketch maps of recently and remotely experienced neighbourhoods and houses. Tests of the appearance, distances, and routes between landmarks from the same real-world environments were also administered. Performance on the tasks was compared to that of control participants closely matched in terms of exposure to the same neighbourhoods and home environments as well as to actual maps. RESULTS The performance of individuals with fornix/MTL lesions was found to be largely comparable to that of controls on objective tests of spatial memory, other than one case who was impaired on remote and recent conditions for several tasks. The nature of deficits in recent and remote spatial memory were further revealed on house floorplan drawings, which contained spatial distortions, room/structure transpositions, and omissions, and on neighbourhood sketch maps, which were intact in terms of overall layout but sparse in details such as landmarks. CONCLUSION Lab-based tests of spatial memory of newly learned environments are unlikely to fully capture patterns of spared and impaired representations of real-world environments (e.g., peripheral features, configurations). Naturalistic tasks, including generative drawing tasks, indicate that contrary to Cognitive Map Theory, neither HPC nor MTL are critical for allocentric gross representations of large-scale environments. Conversely, the HPC appears critical for representing detailed spatial information of local naturalistic environments and environmental objects regardless of the age of the memory, contrary to Standard Consolidation Theory.
Collapse
Affiliation(s)
| | - Xuehui Lei
- York University, Toronto, Ontario, Canada
| | | | | | - Asaf Gilboa
- Rotman Research Institute, Toronto, Ontario, Canada
| | - R Shayna Rosenbaum
- York University, Toronto, Ontario, Canada; Rotman Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Levi A, Pugsley A, Fernandes MA, Turner GR, Gilboa A. Drawing improves memory in patients with hippocampal damage. Mem Cognit 2024:10.3758/s13421-023-01505-4. [PMID: 38180603 DOI: 10.3758/s13421-023-01505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
The hippocampus plays a critical role in the formation of declarative memories, and hippocampal damage leads to significant impairments in new memory formation. Drawing can serve as a form of multi-modal encoding that improves declarative memory performance relative to other multimodal encoding strategies such as writing. We examined whether, and to what extent, patients with hippocampal damage could benefit from the mnemonic strategy of drawing. Three patients with focal hippocampal damage, and one patient with both hippocampal and cortical lesions, in addition to 22 age-, sex-, and education-matched controls, were shown a list of words one at a time during encoding and instructed to either draw a picture or repeatedly write each word for 40 s. Following a brief filled delay, free recall and recognition memory for words from both encoding trial types were assessed. Controls showed enhanced recall and recognition memory for words drawn versus those that were written, an effect that was even more pronounced in patients with focal hippocampal damage. By contrast, the patient with both hippocampal and cortical lesions showed no drawing-mediated boost in either recall or recognition memory. These findings demonstrate that drawing is an effective encoding strategy, likely accruing from the engagement of extra-hippocampal processes including the integration of cortical-based motor, visual, and semantic processing, enabling more elaborative encoding.
Collapse
Affiliation(s)
- A Levi
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada.
- Department of Psychology, York University, Toronto, Ontario, Canada.
| | - A Pugsley
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - M A Fernandes
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - G R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - A Gilboa
- Rotman Research Institute at Baycrest Hospital, 3560 Bathurst St., North York, Ontario, M6A 2E1, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Hu Z, Yang J. Effects of memory cue and interest in remembering and forgetting of gist and details. Front Psychol 2023; 14:1244288. [PMID: 38144975 PMCID: PMC10748407 DOI: 10.3389/fpsyg.2023.1244288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
The gist and details of an event are both important for us to establish and maintain episodic memory. On the other hand, episodic memory is influenced by both external and internal factors, such as memory cue and intrinsic motivation. To what extent these factors and their interaction modulate memory and forgetting of gist and detailed information remains unclear. In this study, 29 participants watched film clips accompanied by either gist or detailed cues and rated their interest in these clips. Their memories of gist and detailed information were tested after 10 min, 1 day, and 1 week. The results showed that memory cue modulated the forgetting of gist and detailed memories. Specifically, when gist cues were used, gist memory was forgotten more slowly than detailed memory. When detailed cues were used, detailed memory was forgotten more slowly than gist memory. Differently, the subjective interest in the clips enhanced memory accuracy irrespective of memory type but did not influence the forgetting of gist and detailed memories. Moreover, there was a significant interaction between memory cue and interest, showing that gist cues enhanced memory than detailed cues only for low-interest clips. These results suggest that external and internal factors have differential effects on memory and forgetting, and the effectiveness of external factors depends on the state of intrinsic motivation. The significant interplay of different factors in influencing the remembering or forgetting of gist and detailed memories provides potential ways to enhance memory and retention of gist and detailed information.
Collapse
Affiliation(s)
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
22
|
Moscovitch DA, Moscovitch M, Sheldon S. Neurocognitive Model of Schema-Congruent and -Incongruent Learning in Clinical Disorders: Application to Social Anxiety and Beyond. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1412-1435. [PMID: 36795637 PMCID: PMC10623626 DOI: 10.1177/17456916221141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Negative schemas lie at the core of many common and debilitating mental disorders. Thus, intervention scientists and clinicians have long recognized the importance of designing effective interventions that target schema change. Here, we suggest that the optimal development and administration of such interventions can benefit from a framework outlining how schema change occurs in the brain. Guided by basic neuroscientific findings, we provide a memory-based neurocognitive framework for conceptualizing how schemas emerge and change over time and how they can be modified during psychological treatment of clinical disorders. We highlight the critical roles of the hippocampus, ventromedial prefrontal cortex, amygdala, and posterior neocortex in directing schema-congruent and -incongruent learning (SCIL) in the interactive neural network that comprises the autobiographical memory system. We then use this framework, which we call the SCIL model, to derive new insights about the optimal design features of clinical interventions that aim to strengthen or weaken schema-based knowledge through the core processes of episodic mental simulation and prediction error. Finally, we examine clinical applications of the SCIL model to schema-change interventions in psychotherapy and provide cognitive-behavior therapy for social anxiety disorder as an illustrative example.
Collapse
Affiliation(s)
- David A. Moscovitch
- Department of Psychology and Centre for Mental Health Research & Treatment, University of Waterloo
| | - Morris Moscovitch
- Rotman Research Institute and Department of Psychology, Baycrest Centre for Geriatric Care
- Department of Psychology, University of Toronto
| | | |
Collapse
|
23
|
Simpson S, Eskandaripour M, Levine B. Effects of Healthy and Neuropathological Aging on Autobiographical Memory: A Meta-Analysis of Studies Using the Autobiographical Interview. J Gerontol B Psychol Sci Soc Sci 2023; 78:1617-1624. [PMID: 37224530 PMCID: PMC10561892 DOI: 10.1093/geronb/gbad077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 05/26/2023] Open
Abstract
OBJECTIVES A meta-analytic review was conducted to assess the effects of healthy aging, amnestic mild cognitive impairment (MCI), and Alzheimer's disease (AD) on naturalistic autobiographical memory using the Autobiographical Interview, a widely used, standardized assessment that derives measures of internal (episodic) and external (nonepisodic) details from freely recalled autobiographical narratives. METHODS A comprehensive literature search identified 21 aging, 6 MCI, and 7 AD studies (total N = 1,556 participants). Summary statistics for internal and external details for each comparison (younger vs older or MCI/AD vs age-matched comparison groups) and effect size statistics were extracted and summarized using Hedges' g (random effects model) and adjusted for the presence of publication bias. RESULTS The pattern of reduced internal and elevated external details in aging was robust and consistent across nearly all 21 studies. MCI and-to a greater extent-AD were associated with reduced internal details, whereas the external detail elevation faded with MCI and AD. Although there was evidence of publication bias on reporting of internal detail effects, these effects remained robust after correction. DISCUSSION The canonical changes to episodic memory observed in aging and neurodegenerative disease are mirrored in the free recall of real-life events. Our findings indicate that the onset of neuropathology overwhelms the capacity of older adults to draw upon distributed neural systems to elaborate on past experiences, including both episodic details specific to identified events and nonepisodic content characteristic of healthy older adults' autobiographical narratives.
Collapse
Affiliation(s)
- Stephanie Simpson
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Mona Eskandaripour
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Levine
- Rotman Research Institute at Baycrest Health Sciences, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Bein O, Gasser C, Amer T, Maril A, Davachi L. Predictions transform memories: How expected versus unexpected events are integrated or separated in memory. Neurosci Biobehav Rev 2023; 153:105368. [PMID: 37619645 PMCID: PMC10591973 DOI: 10.1016/j.neubiorev.2023.105368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Our brains constantly generate predictions about the environment based on prior knowledge. Many of the events we experience are consistent with these predictions, while others might be inconsistent with prior knowledge and thus violate our predictions. To guide future behavior, the memory system must be able to strengthen, transform, or add to existing knowledge based on the accuracy of our predictions. We synthesize recent evidence suggesting that when an event is consistent with our predictions, it leads to neural integration between related memories, which is associated with enhanced associative memory, as well as memory biases. Prediction errors, in turn, can promote both neural integration and separation, and lead to multiple mnemonic outcomes. We review these findings and how they interact with factors such as memory reactivation, prediction error strength, and task goals, to offer insight into what determines memory for events that violate our predictions. In doing so, this review brings together recent neural and behavioral research to advance our understanding of how predictions shape memory, and why.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States.
| | - Camille Gasser
- Department of Psychology, Columbia University, New York, NY, United States.
| | - Tarek Amer
- Department of Psychology, University of Victoria, Victoria, Canada
| | - Anat Maril
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lila Davachi
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
25
|
Ziegler MG, Liu ZX, Arsenault J, Dang C, Grady C, Rosenbaum RS, Moscovitch M. Differential involvement of the anterior and posterior hippocampus, parahippocampus, and retrosplenial cortex in making precise judgments of spatial distance and object size for remotely acquired memories of environments and objects. Cereb Cortex 2023; 33:10139-10154. [PMID: 37522288 PMCID: PMC10502799 DOI: 10.1093/cercor/bhad272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
The hippocampus is known to support processing of precise spatial information in recently learned environments. It is less clear, but crucial for theories of systems consolidation, to know whether it also supports processing of precise spatial information in familiar environments learned long ago and whether such precision extends to objects and numbers. In this fMRI study, we asked participants to make progressively more refined spatial distance judgments among well-known Toronto landmarks (whether landmark A is closer to landmark B or C) to examine hippocampal involvement. We also tested whether the hippocampus was similarly engaged in estimating magnitude regarding sizes of familiar animals and numbers. We found that the hippocampus was only engaged in spatial judgment. Activation was greater and lasted longer in the posterior than anterior hippocampus, which instead showed greater modulation as discrimination between spatial distances became more fine grained. These findings suggest that the anterior and posterior hippocampus have different functions which are influenced differently by estimation of differential distance. Similarly, parahippocampal-place-area and retrosplenial cortex were involved only in the spatial condition. By contrast, activation of the intraparietal sulcus was modulated by precision in all conditions. Therefore, our study supports the idea that the hippocampus and related structures are implicated in retrieving and operating even on remote spatial memories whenever precision is required, as posted by some theories of systems consolidation.
Collapse
Affiliation(s)
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan–Dearborn, 4901 Evergreen RD, Dearborn, United States
| | - Jessica Arsenault
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
| | - Christa Dang
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
| | - Cheryl Grady
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
| | - R Shayna Rosenbaum
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Department of Psychology and Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| | - Morris Moscovitch
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
26
|
Guo D, Chen H, Wang L, Yang J. Effects of prior knowledge on brain activation and functional connectivity during memory retrieval. Sci Rep 2023; 13:13650. [PMID: 37608065 PMCID: PMC10444832 DOI: 10.1038/s41598-023-40966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Previous studies have shown that the ventral medial prefrontal cortex (vmPFC) plays an important role in schema-related memory. However, there is an intensive debate to what extent the activation of subregions of the hippocampus is involved in retrieving schema-related memory. In addition, it is unclear how the functional connectivity (FC) between the vmPFC and the hippocampus, as well as the connectivity of the vmPFC with other regions, are modulated by prior knowledge (PK) during memory retrieval over time. To address these issues, participants learned paragraphs that described features of each unfamiliar word from familiar and unfamiliar categories (i.e., high and low PK conditions) 20 min, 1 day, and 1 week before the test. They then performed a recognition task to judge whether the sentences were old in the scanner. The results showed that the activation of the anterior-medial hippocampus (amHPC) cluster was stronger when the old sentences with high (vs. low) PK were correctly retrieved. The activation of the posterior hippocampus (pHPC) cluster, as well as the vmPFC, was stronger when the new sentences with high (vs. low) PK were correctly rejected (i.e., CR trials), whereas the cluster of anterior-lateral hippocampus (alHPC) showed the opposite. The FC of the vmPFC with the amHPC and perirhinal cortex/inferior temporal gyrus was stronger in the high (vs. low) PK condition, whereas the FC of the vmPFC with the alHPC, thalamus and frontal regions showed the opposite for the CR trials. This study highlighted that different brain networks, which were associated with the vmPFC, subregions of the hippocampus and cognitive control regions, were responsible for retrieving the information with high and low PK.
Collapse
Affiliation(s)
- Dingrong Guo
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Haoyu Chen
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Lingwei Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Sun W, Advani M, Spruston N, Saxe A, Fitzgerald JE. Organizing memories for generalization in complementary learning systems. Nat Neurosci 2023; 26:1438-1448. [PMID: 37474639 PMCID: PMC10400413 DOI: 10.1038/s41593-023-01382-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
Memorization and generalization are complementary cognitive processes that jointly promote adaptive behavior. For example, animals should memorize safe routes to specific water sources and generalize from these memories to discover environmental features that predict new ones. These functions depend on systems consolidation mechanisms that construct neocortical memory traces from hippocampal precursors, but why systems consolidation only applies to a subset of hippocampal memories is unclear. Here we introduce a new neural network formalization of systems consolidation that reveals an overlooked tension-unregulated neocortical memory transfer can cause overfitting and harm generalization in an unpredictable world. We resolve this tension by postulating that memories only consolidate when it aids generalization. This framework accounts for partial hippocampal-cortical memory transfer and provides a normative principle for reconceptualizing numerous observations in the field. Generalization-optimized systems consolidation thus provides new insight into how adaptive behavior benefits from complementary learning systems specialized for memorization and generalization.
Collapse
Affiliation(s)
- Weinan Sun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Madhu Advani
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Andrew Saxe
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre, UCL, London, UK.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| | - James E Fitzgerald
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
28
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front Hum Neurosci 2023; 17:1217093. [PMID: 37565054 PMCID: PMC10410470 DOI: 10.3389/fnhum.2023.1217093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
This paper explores memory from a cognitive neuroscience perspective and examines associated neural mechanisms. It examines the different types of memory: working, declarative, and non-declarative, and the brain regions involved in each type. The paper highlights the role of different brain regions, such as the prefrontal cortex in working memory and the hippocampus in declarative memory. The paper also examines the mechanisms that underlie the formation and consolidation of memory, including the importance of sleep in the consolidation of memory and the role of the hippocampus in linking new memories to existing cognitive schemata. The paper highlights two types of memory consolidation processes: cellular consolidation and system consolidation. Cellular consolidation is the process of stabilizing information by strengthening synaptic connections. System consolidation models suggest that memories are initially stored in the hippocampus and are gradually consolidated into the neocortex over time. The consolidation process involves a hippocampal-neocortical binding process incorporating newly acquired information into existing cognitive schemata. The paper highlights the role of the medial temporal lobe and its involvement in autobiographical memory. Further, the paper discusses the relationship between episodic and semantic memory and the role of the hippocampus. Finally, the paper underscores the need for further research into the neurobiological mechanisms underlying non-declarative memory, particularly conditioning. Overall, the paper provides a comprehensive overview from a cognitive neuroscience perspective of the different processes involved in memory consolidation of different types of memory.
Collapse
Affiliation(s)
- Sruthi Sridhar
- Department of Psychology, Mount Allison University, Sackville, NB, Canada
| | - Abdulrahman Khamaj
- Department of Industrial Engineering, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | - Manish Kumar Asthana
- Department of Humanities and Social Sciences, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
30
|
Mok RM, Love BC. A multilevel account of hippocampal function in spatial and concept learning: Bridging models of behavior and neural assemblies. SCIENCE ADVANCES 2023; 9:eade6903. [PMID: 37478189 PMCID: PMC10361583 DOI: 10.1126/sciadv.ade6903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
A complete neuroscience requires multilevel theories that address phenomena ranging from higher-level cognitive behaviors to activities within a cell. We propose an extension to the level of mechanism approach where a computational model of cognition sits in between behavior and brain: It explains the higher-level behavior and can be decomposed into lower-level component mechanisms to provide a richer understanding of the system than any level alone. Toward this end, we decomposed a cognitive model into neuron-like units using a neural flocking approach that parallels recurrent hippocampal activity. Neural flocking coordinates units that collectively form higher-level mental constructs. The decomposed model suggested how brain-scale neural populations coordinate to form assemblies encoding concept and spatial representations and why so many neurons are needed for robust performance at the cognitive level. This multilevel explanation provides a way to understand how cognition and symbol-like representations are supported by coordinated neural populations (assemblies) formed through learning.
Collapse
Affiliation(s)
- Robert M. Mok
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Bradley C. Love
- UCL Department of Experimental Psychology, 26 Bedford Way, London WC1H 0AP, UK
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
31
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
32
|
Fivush R, Grysman A. Accuracy and reconstruction in autobiographical memory: (Re)consolidating neuroscience and sociocultural developmental approaches. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1620. [PMID: 36125799 DOI: 10.1002/wcs.1620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
Autobiographical memories are never isolated episodes; they are embedded in a network that is continually updated and prediction driven. We present autobiographical memory as a meaning-driven process that includes both veridical traces and reconstructive schemas. Our developmental approach delineates how autobiographical memory develops across childhood and throughout adulthood, and our sociocultural approach examines the ways in which autobiographical memories are shaped by everyday social interactions embedded within cultural worldviews. These approaches are enhanced by a focus on autobiographical memory functions, namely self-coherence, social embeddedness, and directing future behaviors. Neuroscience models of memory outlined in multiple trace and trace transformation theories and perceptual principles of predictive processing establish mechanisms and frameworks into which autobiographical memory processes are incorporated. Rather than conceptualizing autobiographical and episodic memories as accurate versus error-prone, we frame memory as a dynamic process that is continuously updated to create coherent meaning for individuals living in complex sociocultural worlds. Autobiographical memory is a process of both accuracy and error, an intricate weaving of specific episodic details, inferences and confusions among similar experiences; it incorporates post-event information through reminiscing and conversations, in the service of creating more meaningful coherent memories that define self, others, and the world. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Robyn Fivush
- Institute for the Liberal Arts, Emory University, Atlanta, Georgia, USA
| | - Azriel Grysman
- Psychology, Dickinson College, Carlisle, Pennsylvania, USA
| |
Collapse
|
33
|
Shao X, Li A, Chen C, Loftus EF, Zhu B. Cross-stage neural pattern similarity in the hippocampus predicts false memory derived from post-event inaccurate information. Nat Commun 2023; 14:2299. [PMID: 37085518 PMCID: PMC10121656 DOI: 10.1038/s41467-023-38046-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
The misinformation effect occurs when people's memory of an event is altered by subsequent inaccurate information. No study has systematically tested theories about the dynamics of human hippocampal representations during the three stages of misinformation-induced false memory. This study replicates behavioral results of the misinformation effect, and investigates the cross-stage pattern similarity in the hippocampus and cortex using functional magnetic resonance imaging. Results show item-specific hippocampal pattern similarity between original-event and post-event stages. During the memory-test stage, hippocampal representations of original information are weakened for true memory, whereas hippocampal representations of misinformation compete with original information to create false memory. When false memory occurs, this conflict is resolved by the lateral prefrontal cortex. Individuals' memory traces of post-event information in the hippocampus predict false memory, whereas original information in the lateral parietal cortex predicts true memory. These findings support the multiple-trace model, and emphasize the reconstructive nature of human memory.
Collapse
Affiliation(s)
- Xuhao Shao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China
| | - Ao Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Elizabeth F Loftus
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875, Beijing, China.
- Institute of Developmental Psychology, Beijing Normal University, 100875, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
34
|
Tambini A, Miller J, Ehlert L, Kiyonaga A, D’Esposito M. Structured memory representations develop at multiple time scales in hippocampal-cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535935. [PMID: 37066263 PMCID: PMC10104124 DOI: 10.1101/2023.04.06.535935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Influential views of systems memory consolidation posit that the hippocampus rapidly forms representations of specific events, while neocortical networks extract regularities across events, forming the basis of schemas and semantic knowledge. Neocortical extraction of schematic memory representations is thought to occur on a protracted timescale of months, especially for information that is unrelated to prior knowledge. However, this theorized evolution of memory representations across extended timescales, and differences in the temporal dynamics of consolidation across brain regions, lack reliable empirical support. To examine the temporal dynamics of memory representations, we repeatedly exposed human participants to structured information via sequences of fractals, while undergoing longitudinal fMRI for three months. Sequence-specific activation patterns emerged in the hippocampus during the first 1-2 weeks of learning, followed one week later by high-level visual cortex, and subsequently the medial prefrontal and parietal cortices. Schematic, sequence-general representations emerged in the prefrontal cortex after 3 weeks of learning, followed by the medial temporal lobe and anterior temporal cortex. Moreover, hippocampal and most neocortical representations showed sustained rather than time-limited dynamics, suggesting that representations tend to persist across learning. These results show that specific hippocampal representations emerge early, followed by both specific and schematic representations at a gradient of timescales across hippocampal-cortical networks as learning unfolds. Thus, memory representations do not exist only in specific brain regions at a given point in time, but are simultaneously present at multiple levels of abstraction across hippocampal-cortical networks.
Collapse
Affiliation(s)
- Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY
| | - Jacob Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT
| | - Luke Ehlert
- Department of Neurobiology and Behavior, University of California. Irvine, CA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA
- Department of Psychology, University of California, Berkeley, CA
| |
Collapse
|
35
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Wang L, Yang J. Learning from errors: Distinct neural networks for monitoring errors and maintaining corrects through repeated practice and feedback. Neuroimage 2023; 271:120001. [PMID: 36878457 DOI: 10.1016/j.neuroimage.2023.120001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
How memory representations are eventually established and maintained in the brain is one of central issues in memory research. Although the hippocampus and various brain regions have been shown to be involved in learning and memory, how they coordinate to support successful memory through errors is unclear. In this study, a retrieval practice (RP) - feedback (FB) paradigm was adopted to address this issue. Fifty-six participants (27 in the behavioral group, and 29 in the fMRI group) learned 120 Swahili-Chinese words associations and underwent two RP-answer FB cycles (i.e., RP1, FB1, RP2, FB2). The responses of the fMRI group were recorded in the fMRI scanner. The trials were divided based on participant's performance (correct or incorrect, C or I) during the two RPs and the final test (i.e., trial type, CCC, ICC, IIC III). The results showed that the regions in the salience and executive control networks (S-ECN) during RP, but not during FB, was strongly predictive of final successful memory. Their activation was just before the errors were corrected (i.e., RP1 in ICC trials and RP2 in IIC trials). The anterior insula (AI) is a core region in monitoring repeated errors, and it had differential connectivity with the default mode network (DMN) regions and the hippocampus during the RP and FB phases to inhibit incorrect answers and update memory. In contrast, maintaining corrected memory representation requires repeated RP and FB, which was associated with the DMN activation. Our study clarified how different brain regions support error monitoring and memory maintenance through repeated RP and FB, and emphasized the role of the insula in learning from errors.
Collapse
Affiliation(s)
- Lingwei Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
38
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Flanagin VL, Klinkowski S, Brodt S, Graetsch M, Roselli C, Glasauer S, Gais S. The precuneus as a central node in declarative memory retrieval. Cereb Cortex 2023; 33:5981-5990. [PMID: 36610736 DOI: 10.1093/cercor/bhac476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Both, the hippocampal formation and the neocortex are contributing to declarative memory, but their functional specialization remains unclear. We investigated the differential contribution of both memory systems during free recall of word lists. In total, 21 women and 17 men studied the same list but with the help of different encoding associations. Participants associated the words either sequentially with the previous word on the list, with spatial locations on a well-known path, or with unique autobiographical events. After intensive rehearsal, subjects recalled the words during functional magnetic resonance imaging (fMRI). Common activity to all three types of encoding associations was identified in the posterior parietal cortex, in particular in the precuneus. Additionally, when associating spatial or autobiographical material, retrosplenial cortex activity was elicited during word list recall, while hippocampal activity emerged only for autobiographically associated words. These findings support a general, critical function of the precuneus in episodic memory storage and retrieval. The encoding-retrieval repetitions during learning seem to have accelerated hippocampus-independence and lead to direct neocortical integration in the sequentially associated and spatially associated word list tasks. During recall of words associated with autobiographical memories, the hippocampus might add spatiotemporal information supporting detailed scenic and contextual memories.
Collapse
Affiliation(s)
- Virginia L Flanagin
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,IFB-LMU, Dept. of Neurology, Marchioninistr. 15, 81377 München, Germany
| | - Svenja Klinkowski
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Svenja Brodt
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| | - Melanie Graetsch
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Carolina Roselli
- General and Experimental Psychology, Ludwig Maximilians University München, Leopoldstr. 13, 80802 München, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.,Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
| | - Steffen Gais
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Silcherstr. 5, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Roüast NM, Schönauer M. Continuously changing memories: a framework for proactive and non-linear consolidation. Trends Neurosci 2023; 46:8-19. [PMID: 36428193 DOI: 10.1016/j.tins.2022.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
The traditional view of long-term memory is that memory traces mature in a predetermined 'linear' process: their neural substrate shifts from rapidly plastic medial temporal regions towards stable neocortical networks. We propose that memories remain malleable, not by repeated reinstantiations of this linear process but instead via dynamic routes of proactive and non-linear consolidation: memories change, their trajectory is flexible and reversible, and their physical basis develops continuously according to anticipated demands. Studies demonstrating memory updating, increasing hippocampal dependence to support adaptive use, and rapid neocortical plasticity provide evidence for continued non-linear consolidation. Although anticipated demand can affect all stages of memory formation, the extent to which it shapes the physical memory trace repeatedly and proactively will require further dedicated research.
Collapse
Affiliation(s)
- Nora Malika Roüast
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| | - Monika Schönauer
- Institute for Psychology, Neuropsychology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Offline neuronal activity and synaptic plasticity during sleep and memory consolidation. Neurosci Res 2022; 189:29-36. [PMID: 36584924 DOI: 10.1016/j.neures.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
After initial formation during learning, memories are further processed in the brain during subsequent days for long-term consolidation, with sleep playing a key role in this process. Studies have shown that neuronal activity patterns during the awake period are repeated in the hippocampus during sleep, which may coordinate brain-wide reactivation leading to memory consolidation. Consistently, perturbation of this activity blocks the formation of long-term memory. This 'replay' of activity during sleep likely triggers plastic changes in synaptic transmission, a cellular substrate of memory, in multiple brain regions, which likely plays a critical role in long-term memory. Two forms of synaptic plasticity, potentiation and depression of synaptic transmission, are induced in parallel during sleep and is termed "offline synaptic plasticity", as opposed to the "online synaptic plasticity" that occurs immediately following a memory event.
Collapse
|
42
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
43
|
Liu S, Wong HY, Xie L, Iqbal Z, Lei Z, Fu Z, Lam YY, Ramkrishnan AS, Li Y. Astrocytes in CA1 modulate schema establishment in the hippocampal-cortical neuron network. BMC Biol 2022; 20:250. [DOI: 10.1186/s12915-022-01445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Schema, a concept from cognitive psychology used to explain how new information is integrated with previous experience, is a framework of acquired knowledge within associative network structures as biological correlate, which allows new relevant information to be quickly assimilated by parallel cortical encoding in the hippocampus (HPC) and cortex. Previous work demonstrated that myelin generation in the anterior cingulate cortex (ACC) plays a critical role for dynamic paired association (PA) learning and consolidation, while astrocytes in ACC play a vital role in cognitive decision-making. However, circuit components and mechanism involving HPC-anterior cingulate cortex (ACC) during schema formation remain uncertain. Moreover, the correlation between HPC-ACC circuit and HPC astrocytic activity is unclear.
Results
Utilizing a paired association (PA) behavioral paradigm, we dynamically recorded calcium signals of CA1-ACC projection neurons and ACC neurons during schema formation. Depending on the characteristics of the calcium signals, three distinct stages of schema establishment process were identified. The recruitment of CA1-ACC network was investigated in each stage under CA1 astrocytes Gi pathway chemogenetic activation. Results showed that CA1-ACC projecting neurons excitation gradually decreased along with schema development, while ACC neurons revealed an excitation peak in the middle stage. CA1 astrocytic Gi pathway activation will disrupt memory schema development by reducing CA1-ACC projection neuron recruitment in the initial stage and prevent both CA1-ACC projection neurons and ACC neuron excitation in the middle stage. CA1 astrocytes Gi markedly suppress new PA assimilation into the established memory schema.
Conclusions
These results not only reveal the dynamic feature of CA1-ACC network during schema establishment, but also suggest CA1 astrocyte contribution in different stages of schema establishment.
Collapse
|
44
|
Irish M. Autobiographical memory in dementia syndromes—An integrative review. WIRES COGNITIVE SCIENCE 2022; 14:e1630. [DOI: 10.1002/wcs.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Muireann Irish
- School of Psychology and Brain & Mind Centre The University of Sydney Sydney Australia
| |
Collapse
|
45
|
Bradley-Garcia M, Winocur G, Sekeres MJ. Episodic Memory and Recollection Network Disruptions Following Chemotherapy Treatment in Breast Cancer Survivors: A Review of Neuroimaging Findings. Cancers (Basel) 2022; 14:4752. [PMID: 36230678 PMCID: PMC9563268 DOI: 10.3390/cancers14194752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term memory disturbances are amongst the most common and disruptive cognitive symptoms experienced by breast cancer survivors following chemotherapy. To date, most clinical assessments of long-term memory dysfunction in breast cancer survivors have utilized basic verbal and visual memory tasks that do not capture the complexities of everyday event memories. Complex event memories, including episodic memory and autobiographical memory, critically rely on hippocampal processing for encoding and retrieval. Systemic chemotherapy treatments used in breast cancer commonly cause neurotoxicity within the hippocampus, thereby creating a vulnerability to memory impairment. We review structural and functional neuroimaging studies that have identified disruptions in the recollection network and related episodic memory impairments in chemotherapy-treated breast cancer survivors, and argue for the need to better characterize hippocampally mediated memory dysfunction following chemotherapy treatments. Given the importance of autobiographical memory for a person's sense of identity, ability to plan for the future, and general functioning, under-appreciation of how this type of memory is impacted by cancer treatment can lead to overlooking or minimizing the negative experiences of breast cancer survivors, and neglecting a cognitive domain that may benefit from intervention strategies.
Collapse
Affiliation(s)
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Centre, Toronto, ON M6A 2E1, Canada
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Melanie J Sekeres
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
46
|
Katyal S. Reducing and deducing the structures of consciousness through meditation. Front Psychol 2022; 13:884512. [PMID: 36160556 PMCID: PMC9493263 DOI: 10.3389/fpsyg.2022.884512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
According to many first-person accounts, consciousness comprises a subject-object structure involving a mental action or attitude starting from the “subjective pole” upon an object of experience. In recent years, many paradigms have been developed to manipulate and empirically investigate the object of consciousness. However, well-controlled investigation of subjective aspects of consciousness has been more challenging. One way, subjective aspects of consciousness are proposed to be studied is using meditation states that alter its subject-object structure. Most work to study consciousness in this way has been done using Buddhist meditation traditions and techniques. There is another meditation tradition that has been around for at least as long as early Buddhist traditions (if not longer) with the central goal of developing a fine-grained first-person understanding of consciousness and its constituents by its manipulation through meditation, namely the Tantric tradition of Yoga. However, due to the heavy reliance of Yogic traditions on the ancient Indian Samkhya philosophical system, their insights about consciousness have been more challenging to translate into contemporary research. Where such translation has been attempted, they have lacked accompanying phenomenological description of the procedures undertaken for making the precise subject-object manipulations as postulated. In this paper, I address these issues by first detailing how Tantric Yoga philosophy can be effectively translated as a systematic phenomenological account of consciousness spanning the entirety of the subject-object space divided into four “structures of consciousness” from subject to object. This follows from the work of the 20th century polymath and founder of the Tantric Yoga school of Ananda Marga, Prabhat Ranjan Sarkar, who expounded on the “cognitivization” of Samkhya philosophy. I then detail stepwise meditation procedures that make theoretical knowledge of these structures of consciousness a practical reality to a Tantric Yoga meditator in the first-person. This is achieved by entering meditative states through stepwise experiential reduction of the structures of consciousness from object to subject, as part of their meditative goal of “self-realization.” I end by briefly discussing the overlap of these putative meditation states with proposed states from other meditation traditions, and how these states could help advance an empirical study of consciousness.
Collapse
|
47
|
Xue G. From remembering to reconstruction: The transformative neural representation of episodic memory. Prog Neurobiol 2022; 219:102351. [PMID: 36089107 DOI: 10.1016/j.pneurobio.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Although memory has long been recognized as a generative process, neural research of memory in recent decades has been predominantly influenced by Tulving's "mental time traveling" perspective and focused on the reactivation and consolidation of encoded memory representations. With the development of multiple powerful analytical approaches to characterize the contents and formats of neural representations, recent studies are able to provide detailed examinations of the representations at various processing stages and have provided exciting new insights into the transformative nature of episodic memory. These studies have revealed the rapid, substantial, and continuous transformation of memory representation during the encoding, maintenance, consolidation, and retrieval of both single and multiple events, as well as event sequences. These transformations are characterized by the abstraction, integration, differentiation, and reorganization of memory representations, enabling the long-term retention and generalization of memory. These studies mark a significant shift in perspective from remembering to reconstruction, which might better reveal the nature of memory and its roles in supporting more effective learning, adaptive decision-making, and creative problem solving.
Collapse
Affiliation(s)
- Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, PR China; Chinese Institute for Brain Research, Beijing 102206, PR China.
| |
Collapse
|
48
|
Tallman CW, Clark RE, Smith CN. A way forward for design and analysis of neuroimaging studies of memory consolidation. Cogn Neurosci 2022; 13:158-164. [PMID: 36112016 PMCID: PMC9673460 DOI: 10.1080/17588928.2022.2121274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/03/2022]
Abstract
Several novel ideas and suggestions were made in response to our discussion paper (Tallman et al., this issue). Careful consideration of the content and context of memory while accounting for the neuroanatomy and functional specialization of the hippocampus may reveal more consistent patterns in fMRI studies of memory consolidation. Below we address these ideas as well as issues that arise when interpreting the fMRI signal in memory consolidation studies. In addition, we describe new analyses suggested by the commentators that clarify our findings with respect to current theories.
Collapse
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, UCSD, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
| | - Robert E. Clark
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, Irvine, CA, USA
| | - Christine N. Smith
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, CA, USA
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, Irvine, CA, USA
| |
Collapse
|
49
|
Yang J. Beyond the hippocampus: boundary conditions for cortical connectivity and activity over time. Cogn Neurosci 2022; 13:156-157. [PMID: 35621182 DOI: 10.1080/17588928.2022.2080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
By including four different time intervals and controlling for behavioral confounds, Tallman et al. (this issue) found that brain connectivity of cortical regions with the vmPFC or with the hippocampus changed over time, although hippocampal activity did not change significantly. This study shed light on how memory is consolidated as it ages. Further studies could clarify the extent to which other factors, such as memory content, influence brain connectivity with more than two time intervals. The roles of different cortical regions in memory consolidation should also be addressed.
Collapse
Affiliation(s)
- Jiongjiong Yang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Haidian, Beijing, China
| |
Collapse
|
50
|
Gellersen HM, Simons JS. The devil may be in the details: The need for contextually rich stimuli in memory consolidation research. Cogn Neurosci 2022; 13:139-140. [PMID: 35587688 DOI: 10.1080/17588928.2022.2076077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Systems consolidation theory (SCT) proposes that the hippocampus is not required for retrieval of remote memories. In this issue, Tallman and colleagues observe reduced hippocampal-cortical connectivity in recognition memory as a function of memory age, which they interpret as supportive of SCT. We suggest that research seeking to inform this debate would benefit from using perceptually rich stimuli that promote the recollection of high-fidelity contextual details. Tests of recognition alone may not be capable of discerning whether reductions in hippocampal activity or connectivity reflect remote memory retrieval independent of hippocampus (consistent with SCT) or a time-dependent decline in episodic detail.
Collapse
Affiliation(s)
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|