1
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2024:10.1007/s00109-024-02504-x. [PMID: 39601807 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
3
|
Hille M, Kühn S, Kempermann G, Bonhoeffer T, Lindenberger U. From animal models to human individuality: Integrative approaches to the study of brain plasticity. Neuron 2024; 112:3522-3541. [PMID: 39461332 DOI: 10.1016/j.neuron.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
Collapse
Affiliation(s)
- Maike Hille
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tobias Bonhoeffer
- Synapses-Circuits-Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK.
| |
Collapse
|
4
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Kim Y, Hong I, Kaang BK. Synaptic correlates of the corticocortical circuit in motor learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230228. [PMID: 38853557 PMCID: PMC11343186 DOI: 10.1098/rstb.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Rodents actively learn new motor skills for survival in reaction to changing environments. Despite the classic view of the primary motor cortex (M1) as a simple muscle relay region, it is now known to play a significant role in motor skill acquisition. The secondary motor cortex (M2) is reported to be a crucial region for motor learning as well as for its role in motor execution and planning. Although these two regions are known for the part they play in motor learning, the role of direct connection and synaptic correlates between these two regions remains elusive. Here, we confirm M2 to M1 connectivity with a series of tracing experiments. We also show that the accelerating rotarod task successfully induces motor skill acquisition in mice. For mice that underwent rotarod training, learner mice showed increased synaptic density and spine head size for synapses between activated cell populations of M2 and M1. Non-learner mice did not show these synaptic changes. Collectively, these data suggest the potential importance of synaptic plasticity between activated cell populations as a potential mechanism of motor learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yeonjun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
| | - Ilgang Hong
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul08826, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul08826, South Korea
| |
Collapse
|
6
|
Sheng M, Lu D, Sheng K, Ding JB. Activity-Dependent Remodeling of Corticostriatal Axonal Boutons During Motor Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598366. [PMID: 38915677 PMCID: PMC11195117 DOI: 10.1101/2024.06.10.598366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Motor skill learning induces long-lasting synaptic plasticity at not only the inputs, such as dendritic spines1-4, but also at the outputs to the striatum of motor cortical neurons5,6. However, very little is known about the activity and structural plasticity of corticostriatal axons during learning in the adult brain. Here, we used longitudinal in vivo two-photon imaging to monitor the activity and structure of thousands of corticostriatal axonal boutons in the dorsolateral striatum in awake mice. We found that learning a new motor skill induces dynamic regulation of axonal boutons. The activities of motor corticostriatal axonal boutons exhibited selectivity for rewarded movements (RM) and un-rewarded movements (UM). Strikingly, boutons on the same axonal branches showed diverse responses during behavior. Motor learning significantly increased the fraction of RM boutons and reduced the heterogeneity of bouton activities. Moreover, motor learning-induced profound structural dynamism in boutons. By combining structural and functional imaging, we identified that newly formed axonal boutons are more likely to exhibit selectivity for RM and are stabilized during motor learning, while UM boutons are selectively eliminated. Our results highlight a novel form of plasticity at corticostriatal axons induced by motor learning, indicating that motor corticostriatal axonal boutons undergo dynamic reorganization that facilitates the acquisition and execution of motor skills.
Collapse
Affiliation(s)
- Mengjun Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Di Lu
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- These authors contributed equally
| | - Kaiwen Sheng
- Department of Neurosurgery, Stanford University School of Medicine
- Stanford Bioengineering PhD program, Stanford University
| | - Jun B Ding
- Department of Neurosurgery, Stanford University School of Medicine
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
7
|
Jáidar O, Albarran E, Albarran EN, Wu YW, Ding JB. Refinement of efficient encodings of movement in the dorsolateral striatum throughout learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.596654. [PMID: 38895486 PMCID: PMC11185645 DOI: 10.1101/2024.06.06.596654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The striatum is required for normal action selection, movement, and sensorimotor learning. Although action-specific striatal ensembles have been well documented, it is not well understood how these ensembles are formed and how their dynamics may evolve throughout motor learning. Here we used longitudinal 2-photon Ca2+ imaging of dorsal striatal neurons in head-fixed mice as they learned to self-generate locomotion. We observed a significant activation of both direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs, respectively) during early locomotion bouts and sessions that gradually decreased over time. For dSPNs, onset- and offset-ensembles were gradually refined from active motion-nonspecific cells. iSPN ensembles emerged from neurons initially active during opponent actions before becoming onset- or offset-specific. Our results show that as striatal ensembles are progressively refined, the number of active nonspecific striatal neurons decrease and the overall efficiency of the striatum information encoding for learned actions increases.
Collapse
Affiliation(s)
- Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Eddy Albarran
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Current address: Columbia University
| | | | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Current address: Institute of Molecular Biology, Academia Sinica
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University
| |
Collapse
|
8
|
Lemke SM, Celotto M, Maffulli R, Ganguly K, Panzeri S. Information flow between motor cortex and striatum reverses during skill learning. Curr Biol 2024; 34:1831-1843.e7. [PMID: 38604168 PMCID: PMC11078609 DOI: 10.1016/j.cub.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.
Collapse
Affiliation(s)
- Stefan M Lemke
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA; Neuroscience Center, University of North Carolina, Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA.
| | - Marco Celotto
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Roberto Maffulli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA; Department of Neurology, University of California, San Francisco, 1700 Owens Street, San Francisco, CA 94158, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
9
|
Pei J, Zhang C, Zhang X, Zhao Z, Zhang X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory in vascular dementia by enhancing neuronal activity and promoting spine formation. Neuroimage 2024; 291:120584. [PMID: 38522806 DOI: 10.1016/j.neuroimage.2024.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Memory is closely associated with neuronal activity and dendritic spine formation. Low-intensity transcranial ultrasound stimulation (TUS) improves the memory of individuals with vascular dementia (VD). However, it is unclear whether neuronal activity and dendritic spine formation under ultrasound stimulation are involved in memory improvement in VD. In this study, we found that seven days of TUS improved memory in VD model while simultaneously increasing pyramidal neuron activity, promoting dendritic spine formation, and reducing dendritic spine elimination. These effects lasted for 7 days but disappeared on 14 d after TUS. Neuronal activity and dendritic spine formation strongly corresponded to improvements in memory behavior over time. In addition, we also found that the memory, neuronal activity and dendritic spine of VD mice cannot be restored again by TUS of 7 days after 28 d. Collectively, these findings suggest that TUS increases neuronal activity and promotes dendritic spine formation and is thus important for improving memory in patients with VD.
Collapse
Affiliation(s)
- Jiamin Pei
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Cong Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China
| | - Xiao Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China
| | - Zhe Zhao
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, No.215 Heping Road, Shijiazhuang 050000, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
11
|
Djurišić M. Immune receptors and aging brain. Biosci Rep 2024; 44:BSR20222267. [PMID: 38299364 PMCID: PMC10866841 DOI: 10.1042/bsr20222267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Aging brings about a myriad of degenerative processes throughout the body. A decrease in cognitive abilities is one of the hallmark phenotypes of aging, underpinned by neuroinflammation and neurodegeneration occurring in the brain. This review focuses on the role of different immune receptors expressed in cells of the central and peripheral nervous systems. We will discuss how immune receptors in the brain act as sentinels and effectors of the age-dependent shift in ligand composition. Within this 'old-age-ligand soup,' some immune receptors contribute directly to excessive synaptic weakening from within the neuronal compartment, while others amplify the damaging inflammatory environment in the brain. Ultimately, chronic inflammation sets up a positive feedback loop that increases the impact of immune ligand-receptor interactions in the brain, leading to permanent synaptic and neuronal loss.
Collapse
Affiliation(s)
- Maja Djurišić
- Departments of Biology, Neurobiology, and Bio-X, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
12
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
13
|
Claiborne N, Anisimova M, Zito K. Activity-Dependent Stabilization of Nascent Dendritic Spines Requires Nonenzymatic CaMKIIα Function. J Neurosci 2024; 44:e1393222023. [PMID: 38050081 PMCID: PMC10860566 DOI: 10.1523/jneurosci.1393-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The outgrowth and stabilization of nascent dendritic spines are crucial processes underlying learning and memory. Most new spines retract shortly after growth; only a small subset is stabilized and integrated into the new circuit connections that support learning. New spine stabilization has been shown to rely upon activity-dependent molecular mechanisms that also contribute to long-term potentiation (LTP) of synaptic strength. Indeed, disruption of the activity-dependent targeting of the kinase CaMKIIα to the GluN2B subunit of the NMDA-type glutamate receptor disrupts both LTP and activity-dependent stabilization of new spines. Yet it is not known which of CaMKIIα's many enzymatic and structural functions are important for new spine stabilization. Here, we used two-photon imaging and photolysis of caged glutamate to monitor the activity-dependent stabilization of new dendritic spines on hippocampal CA1 neurons from mice of both sexes in conditions where CaMKIIα functional and structural interactions were altered. Surprisingly, we found that inhibiting CaMKIIα kinase activity either genetically or pharmacologically did not impair activity-dependent new spine stabilization. In contrast, shRNA knockdown of CaMKIIα abolished activity-dependent new spine stabilization, which was rescued by co-expressing shRNA-resistant full-length CaMKIIα, but not by a truncated monomeric CaMKIIα. Notably, overexpression of phospho-mimetic CaMKIIα-T286D, which exhibits activity-independent targeting to GluN2B, enhanced basal new spine survivorship in the absence of additional glutamatergic stimulation, even when kinase activity was disrupted. Together, our results support a model in which nascent dendritic spine stabilization requires structural and scaffolding interactions mediated by dodecameric CaMKIIα that are independent of its enzymatic activities.
Collapse
Affiliation(s)
- Nicole Claiborne
- Center for Neuroscience, University of California, Davis, California 95618
| | | | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
14
|
Wang G, Hou P, Tu Y, Zheng J, Li P, Liu L. Activation of p38 MAPK hinders the reactivation of visual cortical plasticity in adult amblyopic mice. Exp Eye Res 2023; 236:109651. [PMID: 37748716 DOI: 10.1016/j.exer.2023.109651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To investigate the impact of p38 mitogen-activated protein kinase (MAPK) signaling on reactivating visual cortical plasticity in adult amblyopic mice. MATERIALS AND METHODS Reverse suture (RS), environment enrichment (EE), and combined with left intracerebroventricular injection of p38 MAPK inhibitor (SB203580, SB) or p38 MAPK agonist (dehydrocorydaline hydrochloride, DHC) were utilized to treat adult amblyopic mice with monocular deprivation (MD). The visual water task, visual cliff test, and Flash visual-evoked potential were used to measure the visual function. Then, Golgi staining and transmission electron microscopy were used to assess the reactivation of structural plasticity in adult amblyopic mice. Western blot and immunohistochemistry detected the expression of ATF2, PSD-95, p38 MAPK, and phospho-p38 MAPK in the left visual cortex. RESULTS No statistically significant difference was observed in the visual function in each pre-intervention group. Compared to pre-intervention, the visual acuity of deprived eyes was improved significantly, the impairment of visual depth perception was alleviated, and the P wave amplitude and C/I ratio were increased in the EE + RS, the EE + RS + SB, and the EE + RS + DMSO groups, but no significant difference was detected in the EE + RS + DHC group. Compared to EE + RS + DHC group, the density of dendritic spines was significantly higher, the synaptic density of the left visual cortex increased significantly, the length of the active synaptic zone increased, and the thickness of post-synaptic density (PSD) thickened in the left visual cortex of EE + RS, EE + RS + SB, and EE + RS + DMSO groups. And that, the protein expression of p-p38 MAPK increased while that of PSD-95 and ATF2 decreased significantly in the left visual cortex of the EE + RS + DHC group mice. CONCLUSION RS and EE intervention improved the visual function and synaptic plasticity of the visual cortex in adult amblyopic mice. However, activating p38 MAPK hinders the recovery of visual function by upregulating the phosphorylation of p38 MAPK and decreasing the ATF2 protein expression.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Peixian Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Yanqiong Tu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Pinxiong Li
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Kogan E, Lu J, Zuo Y. Cortical circuit dynamics underlying motor skill learning: from rodents to humans. Front Mol Neurosci 2023; 16:1292685. [PMID: 37965043 PMCID: PMC10641381 DOI: 10.3389/fnmol.2023.1292685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Motor learning is crucial for the survival of many animals. Acquiring a new motor skill involves complex alterations in both local neural circuits in many brain regions and long-range connections between them. Such changes can be observed anatomically and functionally. The primary motor cortex (M1) integrates information from diverse brain regions and plays a pivotal role in the acquisition and refinement of new motor skills. In this review, we discuss how motor learning affects the M1 at synaptic, cellular, and circuit levels. Wherever applicable, we attempt to relate and compare findings in humans, non-human primates, and rodents. Understanding the underlying principles shared by different species will deepen our understanding of the neurobiological and computational basis of motor learning.
Collapse
Affiliation(s)
| | | | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
16
|
Shinotsuka T, Tanaka YR, Terada SI, Hatano N, Matsuzaki M. Layer 5 Intratelencephalic Neurons in the Motor Cortex Stably Encode Skilled Movement. J Neurosci 2023; 43:7130-7148. [PMID: 37699714 PMCID: PMC10601372 DOI: 10.1523/jneurosci.0428-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/29/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.
Collapse
Affiliation(s)
- Takanori Shinotsuka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuhiro R Tanaka
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Shin-Ichiro Terada
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Natsuki Hatano
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Zhang Y, He G, Ma L, Liu X, Hjorth JJJ, Kozlov A, He Y, Zhang S, Kotaleski JH, Tian Y, Grillner S, Du K, Huang T. A GPU-based computational framework that bridges neuron simulation and artificial intelligence. Nat Commun 2023; 14:5798. [PMID: 37723170 PMCID: PMC10507119 DOI: 10.1038/s41467-023-41553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2023] [Indexed: 09/20/2023] Open
Abstract
Biophysically detailed multi-compartment models are powerful tools to explore computational principles of the brain and also serve as a theoretical framework to generate algorithms for artificial intelligence (AI) systems. However, the expensive computational cost severely limits the applications in both the neuroscience and AI fields. The major bottleneck during simulating detailed compartment models is the ability of a simulator to solve large systems of linear equations. Here, we present a novel Dendritic Hierarchical Scheduling (DHS) method to markedly accelerate such a process. We theoretically prove that the DHS implementation is computationally optimal and accurate. This GPU-based method performs with 2-3 orders of magnitude higher speed than that of the classic serial Hines method in the conventional CPU platform. We build a DeepDendrite framework, which integrates the DHS method and the GPU computing engine of the NEURON simulator and demonstrate applications of DeepDendrite in neuroscience tasks. We investigate how spatial patterns of spine inputs affect neuronal excitability in a detailed human pyramidal neuron model with 25,000 spines. Furthermore, we provide a brief discussion on the potential of DeepDendrite for AI, specifically highlighting its ability to enable the efficient training of biophysically detailed models in typical image classification tasks.
Collapse
Affiliation(s)
- Yichen Zhang
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
| | - Gan He
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
| | - Lei Ma
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
- Beijing Academy of Artificial Intelligence (BAAI), Beijing, 100084, China
| | - Xiaofei Liu
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China
| | - J J Johannes Hjorth
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, Royal Institute of Technology KTH, Stockholm, SE-10044, Sweden
| | - Alexander Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, Royal Institute of Technology KTH, Stockholm, SE-10044, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, SE-17165, Sweden
| | - Yutao He
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
| | - Shenjian Zhang
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, Royal Institute of Technology KTH, Stockholm, SE-10044, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, SE-17165, Sweden
| | - Yonghong Tian
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
- School of Electrical and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, SE-17165, Sweden
| | - Kai Du
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China.
| | - Tiejun Huang
- National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100871, China
- Beijing Academy of Artificial Intelligence (BAAI), Beijing, 100084, China
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China
| |
Collapse
|
19
|
Ugarte G, Piña R, Contreras D, Godoy F, Rubio D, Rozas C, Zeise M, Vidal R, Escobar J, Morales B. Attention Deficit-Hyperactivity Disorder (ADHD): From Abnormal Behavior to Impairment in Synaptic Plasticity. BIOLOGY 2023; 12:1241. [PMID: 37759640 PMCID: PMC10525904 DOI: 10.3390/biology12091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Attention deficit-hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high incidence in children and adolescents characterized by motor hyperactivity, impulsivity, and inattention. Magnetic resonance imaging (MRI) has revealed that neuroanatomical abnormalities such as the volume reduction in the neocortex and hippocampus are shared by several neuropsychiatric diseases such as schizophrenia, autism spectrum disorder and ADHD. Furthermore, the abnormal development and postnatal pruning of dendritic spines of neocortical neurons in schizophrenia, autism spectrum disorder and intellectual disability are well documented. Dendritic spines are dynamic structures exhibiting Hebbian and homeostatic plasticity that triggers intracellular cascades involving glutamate receptors, calcium influx and remodeling of the F-actin network. The long-term potentiation (LTP)-induced insertion of postsynaptic glutamate receptors is associated with the enlargement of spine heads and long-term depression (LTD) with spine shrinkage. Using a murine model of ADHD, a delay in dendritic spines' maturation in CA1 hippocampal neurons correlated with impaired working memory and hippocampal LTP has recently reported. The aim of this review is to summarize recent evidence that has emerged from studies focused on the neuroanatomical and genetic features found in ADHD patients as well as reports from animal models describing the molecular structure and remodeling of dendritic spines.
Collapse
Affiliation(s)
- Gonzalo Ugarte
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Ricardo Piña
- Department of Biology, Faculty of Sciences, Metropolitan University of Education Sciences, Santiago 7760197, Chile;
- Department of Human Sciences, Faculty of Human Science, Bernardo O’Higgins University, Santiago 8370854, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Felipe Godoy
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - David Rubio
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| | - Marc Zeise
- School of Psychology, Faculty of Humanities, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile;
| | - Jorge Escobar
- Institute of Chemistry, Pontifical Catholic University of Valparaíso, Valparaíso 2340000, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (G.U.); (D.C.); (F.G.); (D.R.); (C.R.)
| |
Collapse
|
20
|
Hossain MS, Seddique AB, Sharmin S, Rashid MMO, Islam A, Hossain MM. Nigella sativa Oil Improves Motor Skill Learning of Albino Mice: In Vivo and In Silico Investigations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8498066. [PMID: 37663783 PMCID: PMC10473895 DOI: 10.1155/2023/8498066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Experimental evidences demonstrated that Nigella sativa oil (NSO) can restore neuronal integrities and processes by increasing the neuronal density, decreasing apoptosis, preventing inflammatory processes, and improving the neurogenic cells in the hippocampus. This refurbishment enhances the learning process and memory. The antioxidant defense mechanism of NSO slows down the process of neurodegeneration and motor deficit. The present study aimed to investigate the effects of NSO on motor skill learning using the single pellet reaching task method on Swiss albino mice, followed by in silico studies. Mice (total of 16) were randomly divided into the control group and treatment group (n = 8). The treatment group received 1 ml/kg b.w. NSO orally once daily for 7 days, and a control group received 1 ml/kg normal saline instead of NSO in a similar manner. The average success rate due to ingestion of NSO in the treatment group mice increased significantly (P < 0.05) compared to controlled mice. Molecular docking analysis revealed that thymoquinone, carvacrol, thymohydroquinone, p-cymene, and t-anethole have binding affinities for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) that ranges from (-5.1 to -6.2) kcal/mol, which is comparable to the reference ligand glutamic acid binding affinity with AMPA-R (-6.6 kcal/mol). Thymoquinone and carvacrol formed hydrogen bonds with AMPA receptor at TYR61, SER142, and SER143 residues, comparable to the binding affinity of glutamic acid. ADMET analysis reported that all the compounds have higher bioavailability (>90%) and can cross the BBB easily (logBB> 0.3). Based on our experimental data and in silico report, we concluded that the enhanced motor skill learning effects of NSO are due to presence of potent antioxidants-thymoquinone and carvacrol-which might serve as AMPA receptor agonists. These phytoconstituents may play role in synaptic strengthening and promote experience-dependent motor skill learning.
Collapse
Affiliation(s)
- Md. Siam Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Abu Baker Seddique
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Suraiya Sharmin
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Mamun Or Rashid
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Arifin Islam
- Department of Accounting & Information Systems, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka 1100, Bangladesh
| | - Md. Monir Hossain
- Department of Pharmacy, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka 1100, Bangladesh
| |
Collapse
|
21
|
Wang G, Tu Y, Hou P, Li P, Liu L. Regulatory role of the p38 MAPK/ATF2 signaling pathway in visual function and visual cortical plasticity in mice with monocular deprivation. Neurosci Lett 2023:137353. [PMID: 37393009 DOI: 10.1016/j.neulet.2023.137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND This study aimed to examine the role of the p38 mitogen-activated protein kinase (MAPK)/ activating transcription factor 2 (ATF2) signaling in visual function impairment and visual cortical plasticity in mice with monocular deprivation (MD). METHODS Visual behavioral tests, including visual water task, visual cliff test, and flash visual evoked potential, were performed on each group. We studied the density of dendritic spines and the synaptic ultrastructure by Golgi staining and transmission electron microscope. We performed Western blot and immunohistochemistry and detected the expression of ATF2, PSD-95, p38 MAPK, and phosphor-p38 MAPK in the left visual cortex. RESULTS In the MD + SB group, the visual acuity in deprived eyes substantially improved, the impairment of visual depth perception was alleviated, and the P wave amplitude and C/I ratio increased. The density of dendritic spines and the numerical density of synapses increased significantly, the width of the synaptic cleft decreased significantly, and the length of the active synaptic zone and the thickness of post-synaptic density (PSD) increased substantially. The protein expression of phosphor-p38 MAPK decreased, whereas that of PSD-95 and ATF2 increased significantly. CONCLUSIONS Inhibiting the phosphorylation of p38 MAPK and negative feedback upregulated ATF2 expression, alleviated damage to visual function, and protected against synaptic plasticity in mice with MD.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, China
| | - Yanqiong Tu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Peixian Hou
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China
| | - Pinxiong Li
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou 646000, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, 37 Guoxue Xiang, Chengdu, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Tan S, Mo X, Qin H, Dong B, Zhou J, Long C, Yang L. Biocytin-Labeling in Whole-Cell Recording: Electrophysiological and Morphological Properties of Pyramidal Neurons in CYLD-Deficient Mice. Molecules 2023; 28:molecules28104092. [PMID: 37241833 DOI: 10.3390/molecules28104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Biocytin, a chemical compound that is an amide formed from the vitamin biotin and the amino acid L-lysine, has been used as a histological dye to stain nerve cells. Electrophysiological activity and morphology are two key characteristics of neurons, but revealing both the electrophysiological and morphological properties of the same neuron is challenging. This article introduces a detailed and easy-to-operate procedure for single-cell labeling in combination with whole-cell patch-clamp recording. Using a recording electrode filled with a biocytin-containing internal solution, we demonstrate the electrophysiological and morphological characteristics of pyramidal (PNs), medial spiny (MSNs) and parvalbumin neurons (PVs) in brain slices, where the electrophysiological and morphological properties of the same individual cell are elucidated. We first introduce a protocol for whole-cell patch-clamp recording in various neurons, coupled with the intracellular diffusion of biocytin delivered by the glass capillary of the recording electrode, followed by a post hoc procedure to reveal the architecture and morphology of biocytin-labeled neurons. An analysis of action potentials (APs) and neuronal morphology, including the dendritic length, number of intersections, and spine density of biocytin-labeled neurons, were performed using ClampFit and Fiji Image (ImageJ), respectively. Next, to take advantage of the techniques introduced above, we uncovered defects in the APs and the dendritic spines of PNs in the primary motor cortex (M1) of deubiquitinase cylindromatosis (CYLD) knock-out (Cyld-/-) mice. In summary, this article provides a detailed methodology for revealing the morphology as well as the electrophysiological activity of a single neuron that will have many applications in neurobiology.
Collapse
Affiliation(s)
- Shuyi Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiuping Mo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huihui Qin
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Binbin Dong
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiankui Zhou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Murthy BKB, Somatakis S, Ulivi AF, Klimmt H, Castello-Waldow TP, Haynes N, Huettl RE, Chen A, Attardo A. Arc-driven mGRASP highlights CA1 to CA3 synaptic engrams. Front Behav Neurosci 2023; 16:1072571. [PMID: 36793796 PMCID: PMC9924068 DOI: 10.3389/fnbeh.2022.1072571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Subpopulations of neurons display increased activity during memory encoding and manipulating the activity of these neurons can induce artificial formation or erasure of memories. Thus, these neurons are thought to be cellular engrams. Moreover, correlated activity between pre- and postsynaptic engram neurons is thought to lead to strengthening of their synaptic connections, thus increasing the probability of neural activity patterns occurring during encoding to reoccur at recall. Therefore, synapses between engram neurons can also be considered as a substrate of memory, or a synaptic engram. One can label synaptic engrams by targeting two complementary, non-fluorescent, synapse-targeted GFP fragments separately to the pre- and postsynaptic compartment of engram neurons; the two GFP fragments reconstitute a fluorescent GFP at the synaptic cleft between the engram neurons, thereby highlighting synaptic engrams. In this work we explored a transsynaptic GFP reconstitution system (mGRASP) to label synaptic engrams between hippocampal CA1 and CA3 engram neurons identified by different Immediate-Early Genes: cFos and Arc. We characterized the expression of the cellular and synaptic labels of the mGRASP system upon exposure to a novel environment or learning of a hippocampal-dependent memory task. We found that mGRASP under the control of transgenic ArcCreERT2 labeled synaptic engrams more efficiently than when controlled by viral cFostTA, possibly due to differences in the genetic systems rather than the specific IEG promoters.
Collapse
Affiliation(s)
- B. K. B. Murthy
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - S. Somatakis
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. F. Ulivi
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - H. Klimmt
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | | | - N. Haynes
- Max Planck Institute of Psychiatry, Munich, Germany
| | - R. E. Huettl
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. Chen
- Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,Weizmann Institute of Science, Rehovot, Israel
| | - Alessio Attardo
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,*Correspondence: Alessio Attardo,
| |
Collapse
|
24
|
Li X, Zhai Q, Gou X, Quan M, Li Y, Zhang X, Deng B, Tian Y, Wang Q, Hou L. Involvement of Paired Immunoglobulin-Like Receptor B in Cognitive Dysfunction Through Hippocampal-Dependent Synaptic Plasticity Impairments in Mice Subjected to Chronic Sleep Restriction. Mol Neurobiol 2023; 60:1132-1149. [PMID: 36417104 PMCID: PMC9899186 DOI: 10.1007/s12035-022-03127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Sleep loss is often associated with cognitive dysfunction. Alterations in the structure and function of synapses in the hippocampus are thought to underlie memory storage. Paired immunoglobulin-like receptor B (PirB) plays a negative role in various neurological diseases by inhibiting axon regeneration and synaptic plasticity. However, the contributions of PirB to the mechanisms underlying the changes in synaptic plasticity after sleep loss that ultimately promote deficits in cognitive function have not been well elucidated. Here, we showed that chronic sleep restriction (CSR) mice displayed cognitive impairment and synaptic deficits accompanied by upregulation of PirB expression in the hippocampus. Mechanistically, PirB caused the dysregulation of actin through the RhoA/ROCK2/LIMK1/cofilin signalling pathway, leading to abnormal structural and functional plasticity, which in turn resulted in cognitive dysfunction. PirB knockdown alleviated synaptic deficits and cognitive impairment after CSR by inhibiting the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Moreover, we found that fasudil, a widely used ROCK2 inhibitor, could mimic the beneficial effect of PirB knockdown and ameliorate synaptic deficits and cognitive impairment, further demonstrating that PirB induced cognitive dysfunction after CSR via the RhoA/ROCK2/LIMK1/cofilin signalling pathway. Our study sheds new light on the role of PirB as an important mediator in modulating the dysfunction of synaptic plasticity and cognitive function via the RhoA/ROCK2/LIMK1/cofilin signalling pathway, which indicated that hippocampal PirB is a promising therapeutic target for counteracting cognitive impairment after CSR. This illustration depicts the signalling pathway by PirB in mediating cognitive impairment and synaptic deficits in CSR mice. In the hippocampus of CSR mice, the expression level of PirB was significantly increased. In addition, CSR increases RhoA and ROCK2 levels and reduces levels of both LIMK1 and cofilin phosphorylation. PirB knockdown reverses cognitive impairment and synaptic plasticity disorders caused by CSR through the RhoA/ROCK2/LIMK1/cofilin signalling pathway.
Collapse
Affiliation(s)
- Xuying Li
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China ,Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qian Zhai
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Minxue Quan
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yi Tian
- Department of Anesthesiology, Affiliated Haikou Hospital, Xiangya Medical College of Central South University, Haikou, 570000 Hainan China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lichao Hou
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|
25
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
26
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Kawaguchi Y, Matsubayashi J, Kawakami Y, Nishida R, Kurihara Y, Takei K. LOTUS suppresses amyloid β-induced dendritic spine elimination through the blockade of amyloid β binding to PirB. Mol Med 2022; 28:154. [PMID: 36510132 PMCID: PMC9743548 DOI: 10.1186/s10020-022-00581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide but has no effective treatment. Amyloid beta (Aβ) protein, a primary risk factor for AD, accumulates and aggregates in the brain of patients with AD. Paired immunoglobulin-like receptor B (PirB) has been identified as a receptor of Aβ and Aβ-PirB molecular interactions that cause synapse elimination and synaptic dysfunction. PirB deletion has been shown to suppress Aβ-induced synaptic dysfunction and behavioral deficits in AD model mice, implying that PirB mediates Aβ-induced AD pathology. Therefore, inhibiting the Aβ-PirB molecular interaction could be a successful approach for combating AD pathology. We previously showed that lateral olfactory tract usher substance (LOTUS) is an endogenous antagonist of type1 Nogo receptor and PirB and that LOTUS overexpression promotes neuronal regeneration following damage to the central nervous system, including spinal cord injury and ischemic stroke. Therefore, in this study, we investigated whether LOTUS inhibits Aβ-PirB interaction and Aβ-induced dendritic spine elimination. METHODS The inhibitory role of LOTUS against Aβ-PirB (or leukocyte immunoglobulin-like receptor subfamily B member 2: LilrB2) binding was assessed using a ligand-receptor binding assay in Cos7 cells overexpressing PirB and/or LOTUS. We assessed whether LOTUS inhibits Aβ-induced intracellular alterations and synaptotoxicity using immunoblots and spine imaging in a primary cultured hippocampal neuron. RESULTS We found that LOTUS inhibits the binding of Aβ to PirB overexpressed in Cos7 cells. In addition, we found that Aβ-induced dephosphorylation of cofilin and Aβ-induced decrease in post-synaptic density-95 expression were suppressed in cultured hippocampal neurons from LOTUS-overexpressing transgenic (LOTUS-tg) mice compared with that in wild-type mice. Moreover, primary cultured hippocampal neurons from LOTUS-tg mice improved the Aβ-induced decrease in dendritic spine density. Finally, we studied whether human LOTUS protein inhibits Aβ binding to LilrB2, a human homolog of PirB, and found that human LOTUS inhibited the binding of Aβ to LilrB2 in a similar manner. CONCLUSIONS This study implied that LOTUS improved Aβ-induced synapse elimination by suppressing Aβ-PirB interaction in rodents and inhibited Aβ-LilrB2 interaction in humans. Our findings revealed that LOTUS may be a promising therapeutic agent in counteracting Aβ-induced AD pathologies.
Collapse
Affiliation(s)
- Yuki Kawaguchi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Junpei Matsubayashi
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yutaka Kawakami
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.419280.60000 0004 1763 8916Department of Anesthesiology, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryohei Nishida
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| | - Yuji Kurihara
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan ,grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kohtaro Takei
- grid.268441.d0000 0001 1033 6139Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-Cho, Tsurumi Ward, Yokohama, 230-0045 Japan
| |
Collapse
|
28
|
Li C, Wu XJ, Li W. Neuropeptide S promotes maintenance of newly formed dendritic spines and performance improvement after motor learning in mice. Peptides 2022; 156:170860. [PMID: 35970276 DOI: 10.1016/j.peptides.2022.170860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Neuropeptide S (NPS), an endogenous neuropeptide consisting of 20 amino acids, selectively binds and activates G protein-coupled receptor named neuropeptide S receptor (NPSR) to regulate a variety of physiological functions. NPS/NPSR system has been shown to play a pivotal role in regulating learning and memory in rodents. However, it remains unclear that how NPS/NPSR system affects neuronal functions and synaptic plasticity after learning. We found that intracerebroventricular (i.c.v.) injection of NPS promoted performance improvement and reduced sleep duration after motor learning, which could be blocked by pre-treatment with intraperitoneal (i.p.) injection of NPSR antagonist SHA 68. Using intravital two-photon imaging, we examined the effect of NPS on the postsynaptic dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex after motor learning. We found that i.c.v. injection of NPS strengthened learning-induce new spines and facilitated their survival over time. Furthermore, i.c.v. injection of NPS increased calcium activity of apical dendrites and dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex during the running period. These findings suggest that activation of NPSR by NPS increases synaptic calcium activity and learning-related synapse maintenance, thereby contributing to performance improvement after motor learning.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu-Jun Wu
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
29
|
Hwang FJ, Roth RH, Wu YW, Sun Y, Kwon DK, Liu Y, Ding JB. Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons. Neuron 2022; 110:2790-2801.e5. [PMID: 35809573 PMCID: PMC9464700 DOI: 10.1016/j.neuron.2022.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Learning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1). We find that the degree of M1 engram neuron reactivation correlates with motor performance. We further demonstrate that learning-induced dendritic spine reorganization specifically occurs in these M1 engram neurons. In addition, we find that motor learning leads to an increase in the strength of M1 engram neuron outputs onto striatal spiny projection neurons (SPNs) and that these synapses form clusters along SPN dendrites. These results identify a highly specific synaptic plasticity during the formation of long-lasting motor memory traces in the corticostriatal circuit.
Collapse
Affiliation(s)
- Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yue Sun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Destany K Kwon
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 2022; 110:3339-3355.e8. [PMID: 36099920 DOI: 10.1016/j.neuron.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
During motor learning, dendritic spines on pyramidal neurons (PNs) in the primary motor cortex (M1) undergo reorganization. Intriguingly, the inhibition from local somatostatin-expressing inhibitory neurons (SST-INs) plays an important role in regulating the PN plasticity and thus new motor skill acquisition. However, the molecular mechanisms underlying this process remain unclear. Here, we identified that the early-response transcription factor, NPAS4, is selectively expressed in SST-INs during motor learning. By utilizing in vivo two-photon imaging in mice, we found that cell-type-specific deletion of Npas4 in M1 disrupted learning-induced spine reorganization among PNs and impaired motor learning. In addition, NPAS4-expressing SST-INs exhibited lower neuronal activity during task-related movements, and chemogenetically increasing the activity of NPAS4-expressing ensembles was sufficient to mimic the effects of Npas4 deletion. Together, our results reveal an instructive role of NPAS4-expressing SST-INs in modulating the inhibition to downstream task-related PNs to allow proper spine reorganization that is critical for motor learning.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pablo Serrano
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaochen Sun
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yingxi Lin
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
31
|
Lee C, Kim Y, Kaang BK. The primary motor cortex: the hub of motor learning in rodents. Neuroscience 2022; 485:163-170. [PMID: 35051529 DOI: 10.1016/j.neuroscience.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
The primary motor cortex, a dynamic center for overall motion control and decision making, undergoes significant alterations upon neural stimulation. Over the last few decades, data from numerous studies using rodent models have improved our understanding of the morphological and functional plasticity of the primary motor cortex. In particular, spatially specific formation of dendritic spines and their maintenance during distinct behaviors is considered crucial for motor learning. However, whether the modifications of specific synapses are associated with motor learning should be studied further. In this review, we summarized the findings of prior studies on the features and dynamics of the primary motor cortex in rodents.
Collapse
Affiliation(s)
- Chaery Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjun Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Jang J, Anisimova M, Oh WC, Zito K. Induction of input-specific spine shrinkage on dendrites of rodent hippocampal CA1 neurons using two-photon glutamate uncaging. STAR Protoc 2021; 2:100996. [PMID: 34950882 PMCID: PMC8672044 DOI: 10.1016/j.xpro.2021.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shrinkage and loss of dendritic spines are vital components of the neuronal plasticity that supports learning. To investigate the mechanisms of spine shrinkage and loss, Oh and colleagues established a two-photon glutamate uncaging protocol that reliably induces input-specific spine shrinkage on dendrites of rodent hippocampal CA1 pyramidal neurons. Here, we provide a detailed description of that protocol and also an optimized version that can be used to induce input- and synapse-specific shrinkage of dendritic spines at physiological Ca2+ levels. For complete details on the use and execution of this protocol, please refer to Oh et al. (2013), Stein et al. (2015), Stein et al. (2020), and Stein et al. (2021).
Collapse
Affiliation(s)
- Jinyoung Jang
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | | | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA 95616, USA
- Corresponding author
| |
Collapse
|