1
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Robert H Edwards
- Department of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hilal A Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-Aux-Roses, France
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stella M Papa
- Department of Neurology, School of Medicine, and Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Leonidas Stefanis
- First Department of Neurology, Eginitio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Amanda L Woerman
- Department of Biology, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Lorraine V Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Boran HE, Akgor MC, Kurtkaya Kocak O, Alaydin HC, Kilinc H, Turkmen N, Cengiz B. Imagining Speeds up the Effect of Motor Imagery on Central Motor Conduction Time. Cureus 2024; 16:e71798. [PMID: 39429991 PMCID: PMC11491126 DOI: 10.7759/cureus.71798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Although motor imagery (MI) has been reported to increase motor cortical excitability, its effect on central motor conduction time (CMCT), a widely used neurophysiological diagnostic method, has not been investigated. In this study, we sought to determine the effect of MI on CMCT. METHODS In this cross-sectional study, 21 healthy volunteers (11 females, 10 males) aged 24 to 67 years (mean age: 38.8 years) were recruited between April 2022 and June 2023. CMCT was calculated during MI from the abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. Measurements were also performed with conventional measurement methods, such as resting and voluntary contraction, to compare the effect of MI on CMCT. RESULTS The ANOVA test revealed that the CMCT session (rest, MI, and voluntary contraction) was a significant factor (p < 0.05). In both muscles, CMCT was shorter in the imagery state than in the resting state but longer than in the voluntary contraction state (p < 0.05). Similarly, motor-evoked potential (MEP) latencies obtained during imagery were shorter for both muscles than the resting state but longer for the voluntary contraction state. CONCLUSION The study's findings suggest that MI is a mental activity that modulates CMCT measurement. MI shows a voluntary contraction-like effect on CMCT and MEP latency, although the effect is more uncertain.
Collapse
Affiliation(s)
- H Evren Boran
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| | - Merve Ceren Akgor
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Ozlem Kurtkaya Kocak
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Halil Can Alaydin
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
| | - Hasan Kilinc
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| | - Nur Turkmen
- Department of Neurology, Ankara Bilkent City Hospital, Ankara, TUR
| | - Bulent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Clinical Neurophysiology, Gazi University Faculty of Medicine, Ankara, TUR
- Department of Brain Stimulation and Motor Control, Neuroscience and Neurotechnology Center of Excellence (NOROM), Ankara, TUR
| |
Collapse
|
3
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
5
|
Long X, Zeng J. Why non-human primates are needed in stroke preclinical research. Stroke Vasc Neurol 2024:svn-2024-003504. [PMID: 39209380 DOI: 10.1136/svn-2024-003504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous seemingly promising cerebroprotectants previously validated in rodents almost all have failed in stroke clinical trials. The failure of clinical translation strikes an essential need to employ more ideal animal models in stroke research. Compared with the most commonly used rodent models of stroke, non-human primates (NHPs) are far more comparable to humans regarding brain anatomy, functionality and pathological features. The aim of this perspective was to summarise the advantages of NHPs stroke models over rodents, discuss the current limitations of NHPs models, and cast an outlook on the future development of NHPs in stroke preclinical research.
Collapse
Affiliation(s)
- Xiya Long
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department, Key Discipline of Neurology, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China
- National Key Clinical Department, Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
6
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
8
|
Bjørndal JR, Beck MM, Jespersen L, Christiansen L, Lundbye-Jensen J. Hebbian priming of human motor learning. Nat Commun 2024; 15:5126. [PMID: 38879614 PMCID: PMC11180091 DOI: 10.1038/s41467-024-49478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Motor learning relies on experience-dependent plasticity in relevant neural circuits. In four experiments, we provide initial evidence and a double-blinded, sham-controlled replication (Experiment I-II) demonstrating that motor learning involving ballistic index finger movements is improved by preceding paired corticospinal-motoneuronal stimulation (PCMS), a human model for exogenous induction of spike-timing-dependent plasticity. Behavioral effects of PCMS targeting corticomotoneuronal (CM) synapses are order- and timing-specific and partially bidirectional (Experiment III). PCMS with a 2 ms inter-arrival interval at CM-synapses enhances learning and increases corticospinal excitability compared to control protocols. Unpaired stimulations did not increase corticospinal excitability (Experiment IV). Our findings demonstrate that non-invasively induced plasticity interacts positively with experience-dependent plasticity to promote motor learning. The effects of PCMS on motor learning approximate Hebbian learning rules, while the effects on corticospinal excitability demonstrate timing-specificity but not bidirectionality. These findings offer a mechanistic rationale to enhance motor practice effects by priming sensorimotor training with individualized PCMS.
Collapse
Affiliation(s)
- Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| | - Mikkel Malling Beck
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
| | - Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| |
Collapse
|
9
|
Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Ribelles AA, Tsoulfas P, Venkatesh I, Blackmore MG. Injury distance limits the transcriptional response to spinal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596075. [PMID: 38854133 PMCID: PMC11160615 DOI: 10.1101/2024.05.27.596075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown. Here we employed single-nuclei sequencing in mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury triggered only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Moreover, CST neurons also responded minimally to cervical injury but much more strongly to intracortical axotomy, including upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neuron to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited sensing of distant injuries and the subsequent modest baseline neuronal response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | - Manojkumar Kumaran
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | - Elizabeth Batsel
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ishwariya Venkatesh
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | | |
Collapse
|
10
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Taga M, Hong YNG, Charalambous CC, Raju S, Hayes L, Lin J, Zhang Y, Shao Y, Houston M, Zhang Y, Mazzoni P, Roh J, Schambra HM. Corticospinal and corticoreticulospinal projections benefit motor behaviors in chronic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588112. [PMID: 38645144 PMCID: PMC11030245 DOI: 10.1101/2024.04.04.588112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
After corticospinal tract (CST) stroke, several motor deficits in the upper extremity (UE) emerge, including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE and may have different innervation patterns for the proximal and distal UE segments. These patterns may underpin distinct pathway relationships to separable motor behaviors. In this cross-sectional study of 15 chronic stroke patients and 28 healthy subjects, we examined two key questions: (1) whether segmental motor behaviors differentially relate to ipsilesional CST and contralesional CReST projection strengths, and (2) whether motor behaviors segmentally differ in the paretic UE. We measured strength, motor control, and muscle individuation in a proximal (biceps, BIC) and distal muscle (first dorsal interosseous, FDI) of the paretic UE. We measured the projection strengths of the ipsilesional CST and contralesional CReST to these muscles using transcranial magnetic stimulation (TMS). Stroke subjects had abnormal motor control and muscle individuation despite strength comparable to healthy subjects. In stroke subjects, stronger ipsilesional CST projections were linked to superior motor control in both UE segments, whereas stronger contralesional CReST projections were linked to superior muscle strength and individuation in both UE segments. Notably, both pathways also shared associations with behaviors in the proximal segment. Motor control deficits were segmentally comparable, but muscle individuation was worse for distal motor performance. These results suggest that each pathway has specialized contributions to chronic motor behaviors but also work together, with varying levels of success in supporting chronic deficits. Key points summary Individuals with chronic stroke typically have deficits in strength, motor control, and muscle individuation in their paretic upper extremity (UE). It remains unclear how these altered behaviors relate to descending motor pathways and whether they differ by proximal and distal UE segment.In this study, we used transcranial magnetic stimulation (TMS) to examine projection strengths of the ipsilesional corticospinal tract (CST) and contralesional corticoreticulospinal tract (CReST) with respect to quantitated motor behaviors in chronic stroke.We found that stronger ipsilesional CST projections were associated with better motor control in both UE segments, whereas stronger contralesional CReST projections were associated with better strength and individuation in both UE segments. In addition, projections of both pathways shared associations with motor behaviors in the proximal UE segment.We also found that deficits in strength and motor control were comparable across UE segments, but muscle individuation was worse with controlled movement in the distal UE segment.These results suggest that the CST and CReST have specialized contributions to chronic motor behaviors and also work together, although with different degrees of efficacy.
Collapse
|
12
|
Lemon R. The Corticospinal System and Amyotrophic Lateral Sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 160:56-67. [PMID: 38401191 DOI: 10.1016/j.clinph.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Corticospinal neurons located in motor areas of the cerebral neocortex project corticospinal axons which synapse with the spinal network; a parallel corticobulbar system projects to the cranial motor network and to brainstem motor pathways. The primate corticospinal system has a widespread cortical origin and an extensive range of different fibre diameters, including thick, fast-conducting axons. Direct cortico-motoneuronal (CM) projections from the motor cortex to arm and hand alpha motoneurons are a recent evolutionary feature, that is well developed in dexterous primates and particularly in humans. Many of these projections originate from the caudal subdivision of area 4 ('new' M1: primary motor cortex). They arise from corticospinal neurons of varied soma size, including those with fast- and relatively slow-conducting axons. This CM system has been shown to be involved in the control of skilled movements, carried out with fractionation of the distal extremities and at low force levels. During movement, corticospinal neurons are activated quite differently from 'lower' motoneurons, and there is no simple or fixed functional relationship between a so-called 'upper' motoneuron and its target lower motoneuron. There are key differences in the organisation and function of the corticospinal and CM system in primates versus non-primates, such as rodents. These differences need to be recognized when making the choice of animal model for understanding disorders such as amyotrophic lateral sclerosis (ALS). In this neurodegenerative brain disease there is a selective loss of fast-conducting corticospinal axons, and their synaptic connections, and this is reflected in responses to non-invasive cortical stimuli and measures of cortico-muscular coherence. The loss of CM connections influencing distal limb muscles results in a differential loss of muscle strength or 'split-hand' phenotype. Importantly, there is also a unique impairment in the coordination of skilled hand tasks that require fractionation of digit movement. Scores on validated tests of skilled hand function could be used to assess disease progression.
Collapse
Affiliation(s)
- Roger Lemon
- Department of Clinical and Movement Sciences, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK.
| |
Collapse
|
13
|
Katic Secerovic N, Balaguer JM, Gorskii O, Pavlova N, Liang L, Ho J, Grigsby E, Gerszten PC, Karal-Ogly D, Bulgin D, Orlov S, Pirondini E, Musienko P, Raspopovic S, Capogrosso M. Neural population dynamics reveals disruption of spinal circuits' responses to proprioceptive input during electrical stimulation of sensory afferents. Cell Rep 2024; 43:113695. [PMID: 38245870 PMCID: PMC10962447 DOI: 10.1016/j.celrep.2024.113695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs. We recorded intraspinal neural activity in four monkeys while generating proprioceptive inputs from the radial nerve. We then applied continuous stimulation to the radial nerve cutaneous branch and quantified the impact of the stimulation on spinal processing of proprioceptive inputs via neural population dynamics. Proprioceptive pulses consistently produce neural trajectories that are disrupted by concurrent cutaneous stimulation. This disruption propagates to the somatosensory cortex, suggesting that electrical stimulation can perturb natural information processing across the neural axis.
Collapse
Affiliation(s)
- Natalija Katic Secerovic
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia; The Mihajlo Pupin Institute, University of Belgrade, 11060 Belgrade, Serbia; Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Oleg Gorskii
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; National University of Science and Technology "MISIS," 4 Leninskiy Pr., 119049 Moscow, Russia
| | - Natalia Pavlova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Lucy Liang
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan Ho
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erinn Grigsby
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dzhina Karal-Ogly
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Dmitry Bulgin
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergei Orlov
- National Research Centre "Kurchatov Institute," 123098 Moscow, Russia
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pavel Musienko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; Sirius University of Science and Technology, 354340 Sochi, Russia; Life Improvement by Future Technologies Center "LIFT," 143025 Moscow, Russia
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Rouiller EM. Adaptation of the layer V supraspinal motor corticofugal projections from the primary (M1) and premotor (PM) cortices after CNS motor disorders in non-human primates: A survey. Transl Neurosci 2024; 15:20220342. [PMID: 38860225 PMCID: PMC11163158 DOI: 10.1515/tnsci-2022-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys. A dominant effect was a nearly complete suppression of the corticorubral projection density and a strong downregulation of the corticoreticular projection density, with the noticeable exception in the latter case of a considerable increase of projection density following spinal cord injury, even enhanced when an anti-NogoA antibody treatment was administered. The effects were diverse and less prominent on the corticotectal and corticosubthalamic projections. The CS projection may still be the major efferent pathway through which motor adaptations can take place after motor trauma or disease. However, the parallel supraspinal motor corticofugal projections may also participate in connectional adaptations supporting the functional recovery of motor abilities, representing potential targets for future clinical strategies, such as selective electrical neurostimulations.
Collapse
Affiliation(s)
- Eric M. Rouiller
- Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700Fribourg, Switzerland
| |
Collapse
|
15
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, Lemon RN, Ganguly K, Darling WG. Terminal organization of the corticospinal projection from the arm/hand region of the rostral primary motor cortex (M1r or old M1) to the cervical enlargement (C5-T1) in rhesus monkey. J Comp Neurol 2023; 531:1996-2018. [PMID: 37938897 PMCID: PMC10842044 DOI: 10.1002/cne.25557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/12/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
High-resolution anterograde tracers and stereology were used to study the terminal organization of the corticospinal projection (CSP) from the rostral portion of the primary motor cortex (M1r) to spinal levels C5-T1. Most of this projection (90%) terminated contralaterally within laminae V-IX, with the densest distribution in lamina VII. Moderate bouton numbers occurred in laminae VI, VIII, and IX with few in lamina V. Within lamina VII, labeling occurred over the distal-related dorsolateral subsectors and proximal-related ventromedial subsectors. Within motoneuron lamina IX, most terminations occurred in the proximal-related dorsomedial quadrant, followed by the distal-related dorsolateral quadrant. Segmentally, the contralateral lamina VII CSP gradually declined from C5-T1 but was consistently distributed at C5-C7 in lamina IX. The ipsilateral CSP ended in axial-related lamina VIII and adjacent ventromedial region of lamina VII. These findings demonstrate the M1r CSP influences distal and proximal/axial-related spinal targets. Thus, the M1r CSP represents a transitional CSP, positioned between the caudal M1 (M1c) CSP, which is 98% contralateral and optimally organized to mediate distal upper extremity movements (Morecraft et al., 2013), and dorsolateral premotor (LPMCd) CSP being 79% contralateral and optimally organized to mediate proximal/axial movements (Morecraft et al., 2019). This distal to proximal CSP gradient corresponds to the clinical deficits accompanying caudal to rostral motor cortex injury. The lamina IX CSP is considered in the light of anatomical and neurophysiological evidence which suggests M1c gives rise to the major proportion of the cortico-motoneuronal (CM) projection, while there is a limited M1r CM projection.
Collapse
Affiliation(s)
- Robert J. Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Kimberly S. Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Roger N. Lemon
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, California, USA
- Neurology Service, SFVAHSC, San Francisco, California, USA
| | - Warren G. Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Shakil H, Santaguida C, Wilson JR, Farhadi HF, Levi AD, Wilcox JT. Pathophysiology and surgical decision-making in central cord syndrome and degenerative cervical myelopathy: correcting the somatotopic fallacy. Front Neurol 2023; 14:1276399. [PMID: 38046579 PMCID: PMC10690824 DOI: 10.3389/fneur.2023.1276399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Our understanding of Central Cord Syndrome (CCS), a form of incomplete spinal cord injury characterized by disproportionate upper extremity weakness, is evolving. Recent advances challenge the traditional somatotopic model of corticospinal tract organization within the spinal cord, suggesting that CCS is likely a diffuse injury rather than focal lesion. Diagnostic criteria for CCS lack consensus, and varied definitions impact patient identification and treatment. Evidence has mounted for early surgery for CCS, although significant variability persists in surgical timing preferences among practitioners. A demographic shift toward an aging population has increased the overlap between CCS and Degenerative Cervical Myelopathy (DCM). Understanding this intersection is crucial for comprehensive patient care. Assessment tools, including quantitative measures and objective evaluations, aid in distinguishing CCS from DCM. The treatment landscape for CCS in the context of pre-existing DCM is complex, requiring careful consideration of pre-existing neurologic injury, patient factors, and injury factors. This review synthesizes emerging evidence, outlines current guidelines in diagnosis and management, and emphasizes the need for ongoing research to refine our understanding and treatment strategies for this evolving patient population.
Collapse
Affiliation(s)
- Husain Shakil
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Carlo Santaguida
- McGill University Health Center, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Jefferson R. Wilson
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - H. Francis Farhadi
- Department of Neurosurgery, University of Kentucky, Lexington, KY, United States
| | - Allan D. Levi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jared T. Wilcox
- Department of Neurosurgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
17
|
Lohss M, Ho J, Naylor N, Cashman S, Fu R, Tonya Stefko S, Byrne LC. Adaptable three-pin skull clamp for large animal research. HARDWAREX 2023; 15:e00472. [PMID: 37680492 PMCID: PMC10480779 DOI: 10.1016/j.ohx.2023.e00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Traditionally, surgical head immobilization for neurobiological research with large animals is achieved using stereotaxic frames. Despite their widespread use, these frames are bulky, expensive, and inflexible, ultimately limiting surgical access and preventing research groups from practicing surgical approaches used to treat humans. Here, we designed a mobile, low-cost, three-pin skull clamp for performing a variety of neurosurgical procedures on non-human primates. Modeled after skull clamps used to operate on humans, our system was designed with added adjustability to secure heads with small or irregular geometries for innovative surgical approaches. The system has six degrees of freedom with skull pins attached to setscrews for independent, fine-tuned depth adjustment. Unlike other conventional skull clamps which require additional mounting fixtures, our system has an integrated tray with mounting bracket for easy use on most operating room tables. Our system has successfully secured primate heads in the supine and lateral position, allowing surgeons to match surgical approaches currently practiced when operating on humans. The system also expands the opportunity for researchers to utilize imaged-guided robotic surgery techniques. Overall, we hope that our system can serve as an adaptable, affordable, and robust surgery platform for any laboratory performing neurobiological research with large animal models.
Collapse
Affiliation(s)
- Maxwell Lohss
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Jonathan Ho
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, United States
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, United States
| | - Nathan Naylor
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Stacy Cashman
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, United States
| | - Roxana Fu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - S. Tonya Stefko
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
| | - Leah C. Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
18
|
Datta A. The effect of dorsal column lesions in the primary somatosensory cortex and medulla of adult rats. IBRO Neurosci Rep 2023; 14:466-482. [PMID: 37273897 PMCID: PMC10238474 DOI: 10.1016/j.ibneur.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
Spinal cord injury is a devastating condition that haunts human lives. Typically, patients experience referred phantom sensations on the hand when they are touched on the face. In adult monkeys, massive deafferentations such as chronic dorsal column lesions at higher cervical levels result in the large-scale expansion of face inputs into the deafferented hand cortex of area 3b. However, adult rats with thoracic dorsal column lesions do not demonstrate such large-scale reorganization. The large-scale face expansion in area 3b of monkeys is driven by the reorganization of the cuneate nucleus in the medulla. The sprouting of afferents from the trigeminal nucleus to the adjacent deafferented cuneate nucleus is facilitated by close proximity and compactness of the medulla in primates. Previously, in adult rats with thoracic lesions, the cuneate nucleus was not deafferented and its functional organization was not explored. The extent of the deafferentation and the duration of the recovery period are two major factors that determine the extent of reorganization. Hence, higher cervical (C3-C4) dorsal column lesions were performed, which cause massive deafferentations, and physiological maps were obtained after prolonged recovery periods (3 weeks -18 months). In spite of the above, the expansion of the intact face inputs was not observed in the deafferented zones of the primary somatosensory cortex (SI) and medulla of adult rats. The deafferented forelimb and hindlimb representations in SI were unresponsive to cutaneous stimulation of any part of the body. The cuneate and gracile nuclei in rats with complete dorsal column lesions remained mostly inactive except for a few sites which responded to stimulation of the spared upper arm. Hence, dorsal column lesions have different effects on the adult primate and rodent somatosensory systems. Appreciating this inter-species difference can aid in identifying the underlying neural substrates and restrict maladaptive reorganizations to cure phantom sensations.
Collapse
|
19
|
Lemon RN, Morecraft RJ. The evidence against somatotopic organization of function in the primate corticospinal tract. Brain 2023; 146:1791-1803. [PMID: 36575147 PMCID: PMC10411942 DOI: 10.1093/brain/awac496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
We review the spatial organization of corticospinal outputs from different cortical areas and how this reflects the varied functions mediated by the corticospinal tract. A long-standing question is whether the primate corticospinal tract shows somatotopical organization. Although this has been clearly demonstrated for corticofugal outputs passing through the internal capsule and cerebral peduncle, there is accumulating evidence against somatotopy in the pyramidal tract in the lower brainstem and in the spinal course of the corticospinal tract. Answering the question on somatotopy has important consequences for understanding the effects of incomplete spinal cord injury. Our recent study in the macaque monkey, using high-resolution dextran tracers, demonstrated a great deal of intermingling of fibres originating from primary motor cortex arm/hand, shoulder and leg areas. We quantified the distribution of fibres belonging to these different projections and found no significant difference in their distribution across different subsectors of the pyramidal tract or lateral corticospinal tract, arguing against somatotopy. We further demonstrated intermingling with corticospinal outputs derived from premotor and supplementary motor arm areas. We present new evidence against somatotopy for corticospinal projections from rostral and caudal cingulate motor areas and from somatosensory areas of the parietal cortex. In the pyramidal tract and lateral corticospinal tract, fibres from the cingulate motor areas overlap with each other. Fibres from the primary somatosensory cortex arm area completely overlap those from the leg area. There is also substantial overlap of both these outputs with those from posterior parietal sensorimotor areas. We argue that the extensive intermingling of corticospinal outputs from so many different cortical regions must represent an organizational principle, closely related to its mediation of many different functions and its large range of fibre diameters. The motor sequelae of incomplete spinal injury, such as central cord syndrome and 'cruciate paralysis', include much greater deficits in upper than in lower limb movement. Current teaching and text book explanations of these symptoms are still based on a supposed corticospinal somatotopy or 'lamination', with greater vulnerability of arm and hand versus leg fibres. We suggest that such explanations should now be finally abandoned. Instead, the clinical and neurobiological implications of the complex organization of the corticospinal tract need now to be taken into consideration. This leads us to consider the evidence for a greater relative influence of the corticospinal tract on upper versus lower limb movements, the former best characterized by skilled hand and digit movements.
Collapse
Affiliation(s)
- Roger N Lemon
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Robert J Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
20
|
Heffernan KS, Galvan A. Building and Characterization of an Affordable diOlistic Device for Single-Cell Labeling in Rodent and Non-Human Primate Brain Slices. Curr Protoc 2023; 3:e760. [PMID: 37068198 PMCID: PMC10347685 DOI: 10.1002/cpz1.760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
In the brain, cell morphology often reflects function and thus provides a first glance into cell-specific changes in health and disease. Studying the morphology of individual cells, including neurons and glia, is essential to fully understand brain connectivity and changes in disease states. Many recent morphological studies of brain cells have relied on transgenic animals and viral vectors to label individual cells. However, transgenic animals are not always available, and in non-human primate (NHP) models, viral transduction poses several practical and financial challenges, limiting the number of researchers that can thoroughly investigate cell morphology in NHP or other non-transgenic animals. The diOlistic system for delivering fluorescent lipophilic dye-coated gold or tungsten particles into brain tissue has been used to label single cells, but the currently available systems are expensive, have limited applications, and are rare in laboratories. Investigations of cell morphology without transgenic or viral approaches rely on immunohistochemical markers that may not reveal structural detail, such as in astrocytes. To overcome these practical limitations to expand our understanding of cell morphology across species with an emphasis on astrocytes, we constructed a low-cost ballistic method to deliver dye-coated gold or tungsten particles into NHP and rodent brain slices. We have optimized the tissue processing parameters to achieve penetration of DiI-coated particles, allowing for the complete reconstruction of individual cells within a brain slice. While we report on astrocytes in rodent and NHP brain slices, this protocol can be adapted and implemented across species and tissue types to evaluate cell morphology. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Building the diOlistic device Basic Protocol 2: Preparation of dye "bullet" carriers Basic Protocol 3: Perfusion, brain sectioning, and diOlistic labeling Alternate Protocol: Immunohistochemical labeling of sections prior to diOlistic bombardment.
Collapse
Affiliation(s)
- Kate S Heffernan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Udall Center of Excellence for Parkinson’s Disease Research, Emory University, Atlanta, GA, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Borgognon S, Rouiller EM. Loss of Motor Cortical Inputs to the Red Nucleus after CNS Disorders in Nonhuman Primates. J Neurosci 2023; 43:1682-1691. [PMID: 36693756 PMCID: PMC10010457 DOI: 10.1523/jneurosci.1942-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
The premotor (PM) and primary motor (M1) cortical areas broadcast voluntary motor commands through multiple neuronal pathways, including the corticorubral projection that reaches the red nucleus (RN). However, the respective contribution of M1 and PM to corticorubral projections as well as changes induced by motor disorders or injuries are not known in nonhuman primates. Here, we quantified the density and topography of axonal endings of the corticorubral pathway in RN in intact monkeys, as well as in monkeys subjected to either cervical spinal cord injury (SCI), Parkinson's disease (PD)-like symptoms or primary motor cortex injury (MCI). Twenty adult macaque monkeys of either sex were injected with the biotinylated dextran amine anterograde tracer either in PM or in M1. We developed a semiautomated algorithm to reliably detect and count axonal boutons within the magnocellular and parvocellular (pRN) subdivisions of RN. In intact monkeys, PM and M1 preferentially target the medial part of the ipsilateral pRN, reflecting its somatotopic organization. Projection of PM to the ipsilateral pRN is denser than that of M1, matching previous observations for the corticotectal, corticoreticular, and corticosubthalamic projections (Fregosi et al., 2018, 2019; Borgognon et al., 2020). In all three types of motor disorders, there was a uniform and strong decrease (near loss) of the corticorubral projections from PM and M1. The RN may contribute to functional recovery after SCI, PD, and MCI, by reducing direct cortical influence. This reduction possibly privileges direct access to the final output motor system, via emphasis on the direct corticospinal projection.SIGNIFICANCE STATEMENT We measured the corticorubral projection density arising from the PM or the M1 cortices in adult macaques. The premotor cortex sent denser corticorubral projections than the primary motor cortex, as previously observed for the corticotectal, corticoreticular, and corticosubthalamic projections. The premotor cortex may thus exert more influence than primary motor cortex onto subcortical structures. We next asked whether the corticorubral motor projections undergo lesion-dependent plasticity after either cervical spinal cord injury, Parkinson's disease-like symptoms, or primary motor cortex lesion. In all three types of pathology, there was a strong decrease of the corticorubral motor projection density, suggesting that the red nucleus may contribute to functional recovery after such motor system disorders based on a reduced direct cortical influence.
Collapse
Affiliation(s)
- Simon Borgognon
- Center for the Neural Basis of Cognition, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Eric M Rouiller
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|