1
|
Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X, Ma D, Shu Q, Li X. Mettl3-m 6A-NPY axis governing neuron-microglia interaction regulates sleep amount of mice. Cell Discov 2025; 11:10. [PMID: 39905012 PMCID: PMC11794856 DOI: 10.1038/s41421-024-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/13/2024] [Indexed: 02/06/2025] Open
Abstract
Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.
Collapse
Affiliation(s)
- Qihang Sun
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinpiao Zhu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiaoli Huang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenzheng Qu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xia Tang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Daqing Ma
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Qiang Shu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xuekun Li
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Peña-Ortega F. Microglial modulation of neuronal network function and plasticity. J Neurophysiol 2025; 133:661-680. [PMID: 39819084 DOI: 10.1152/jn.00458.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease. Here, the author reviews recent evidence of the modulations induced by microglia, a highly heterogeneous cell type, on synaptic and intrinsic neuronal properties, and on neuronal network patterns during perinatal development and adulthood. The reviewed evidence clearly indicates that microglia are important, if not essential, for brain function and plasticity in both health and disease.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
3
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2025; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Sokolova D, Ghansah SA, Puletti F, Georgiades T, De Schepper S, Zheng Y, Crowley G, Wu L, Rueda-Carrasco J, Koutsiouroumpa A, Muckett P, Freeman OJ, Khakh BS, Hong S. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer's disease mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.606944. [PMID: 39257734 PMCID: PMC11383703 DOI: 10.1101/2024.08.31.606944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Region-specific synapse loss is an early pathological hallmark in Alzheimer's disease (AD). Emerging data in mice and humans highlight microglia, the brain-resident macrophages, as cellular mediators of synapse loss; however, the upstream modulators of microglia-synapse engulfment remain elusive. Here, we report a distinct subset of astrocytes, which are glial cells essential for maintaining synapse homeostasis, appearing in a region-specific manner with age and amyloidosis at onset of synapse loss. These astrocytes are distinguished by their peri-synaptic processes which are 'bulbous' in morphology, contain accumulated p62-immunoreactive bodies, and have reduced territorial domains, resulting in a decrease of astrocyte-synapse coverage. Using integrated in vitro and in vivo approaches, we show that astrocytes upregulate and secrete phagocytic modulator, milk fat globule-EGF factor 8 (MFG-E8), which is sufficient and necessary for promoting microglia-synapse engulfment in their local milieu. Finally, we show that knocking down Mfge8 specifically from astrocytes using a viral CRISPR-saCas9 system prevents microglia-synapse engulfment and ameliorates synapse loss in two independent amyloidosis mouse models of AD. Altogether, our findings highlight astrocyte-microglia crosstalk in determining synapse fate in amyloid models and nominate astrocytic MFGE8 as a potential target to ameliorate synapse loss during the earliest stages of AD.
Collapse
Affiliation(s)
- Dimitra Sokolova
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Shari Addington Ghansah
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesca Puletti
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Tatiana Georgiades
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sebastiaan De Schepper
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Yongjing Zheng
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gerard Crowley
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ling Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Javier Rueda-Carrasco
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Angeliki Koutsiouroumpa
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Philip Muckett
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Oliver J. Freeman
- Neuroscience BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Baljit S. Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Zhao LX, Ren H, Su JY, Zhang Q, He DL, Wu TY, Zhang YH, Wang ZY, Fan YG. Osmundacetone ameliorates Alzheimer's-like pathologies by inhibiting β-amyloid fibrillation, oxidative damage and neuroinflammation in APP/PS1 transgenic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156091. [PMID: 39332101 DOI: 10.1016/j.phymed.2024.156091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND β-Amyloid (Aβ) fibrillation is critical for Aβ deposition and cytotoxicity during the progression of Alzheimer's disease (AD). Consequently, anti-Aβ monoclonal antibody drugs targeting Aβ oligomers and aggregation are considered potential therapeutic strategies for AD treatment. Similar to the working mechanisms of anti-Aβ monoclonal antibody drugs, our study identified osmundacetone (OAC), a small-molecule compound isolated from the traditional Chinese medicine Rhizoma Osmundae, as exerting anti-AD effects by targeting Aβ. PURPOSE This study sought to determine whether OAC influences the Aβ burden in APP/PS1 mice and to identify potential regulatory mechanisms. METHODS Five-month-old APP/PS1 mice were injected intraperitoneally with OAC at a dose of 1 mg/kg for 12 weeks. The cognitive functions of the mice were assessed via the Morris water maze test and the open field test. Osmundacetone was analyzed via molecular docking, an isothermal dose‒response fingerprint-cellular context thermal shift assay, a thioflavine T fluorescence assay, and an atomic force microscopy assay to analyze the effects of OAC on Aβ fibrillation. Immunofluorescence, immunoblotting, and immunohistochemistry were used to assess Aβ clearance, AD pathology, oxidative stress, and inflammatory responses. RESULTS The innovative biochemical and physical data illustrated that the ability of OAC to inhibit Aβ fibrillation was accomplished by binding directly to Aβ, which differed from the majority of previously reported natural polyphenols that modulate the Aβ content and structure in an indirect manner. The inhibition of Aβ fibrosis by OAC subsequently promoted Aβ lysosomal degradation, resulting in a decreased Aβ burden in APP/PS1 mice. Furthermore, OAC treatment inhibited oxidative damage by upregulating glutathione peroxidase expression and attenuated the production of inflammatory factors by downregulating nuclear factor-kB phosphorylation in APP/PS1 mice. CONCLUSION These findings demonstrate, for the first time, that OAC could reduce the brain Aβ burden in APP/PS1 mice by inhibiting Aβ fibrillation through direct binding to Aβ and improve cognitive dysfunction by attenuating oxidative damage and neuroinflammation. These findings indicate that OAC may be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Jing-Yang Su
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Da-Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yan-Hui Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
7
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
8
|
Ferrarelli LK. Biasing microglia to help, not hurt. Sci Signal 2024; 17:eadp3241. [PMID: 38530879 DOI: 10.1126/scisignal.adp3241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Blocking complement signaling biases microglia to destroy amyloid aggregates, not neuronal synapses.
Collapse
|