1
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Khalilpour J, Zangbar HS, Alipour MR, Pakdel FQ, Zavari Z, Shahabi P. Chronic Sustained Hypoxia Leads to Brainstem Tauopathy and Declines the Power of Rhythms in the Ventrolateral Medulla: Shedding Light on a Possible Mechanism. Mol Neurobiol 2024; 61:3121-3143. [PMID: 37976025 DOI: 10.1007/s12035-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Firouz Qaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
3
|
Montalto G, Ricciarelli R. Tau, tau kinases, and tauopathies: An updated overview. Biofactors 2023. [PMID: 36688478 DOI: 10.1002/biof.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 01/24/2023]
Abstract
Tau is a macrotubule-associated protein primarily involved in the stabilization of the cytoskeleton. Under normal conditions, phosphorylation reduces the affinity of tau for tubulin, allowing the protein to detach from microtubules and ensuring the system dynamics in neuronal cells. However, hyperphosphorylated tau aggregates into paired helical filaments, the main constituents of neurofibrillary tangles found in the brains of patients with Alzheimer's disease and other tauopathies. In this review, we provide an overview of the structure of tau and the pathophysiological roles of tau phosphorylation. We also evaluate the major protein kinases involved and discuss the progress made in the development of drug therapies aimed at inhibiting tau kinases.
Collapse
Affiliation(s)
- Giulia Montalto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
4
|
In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. J Proteomics 2022; 262:104591. [DOI: 10.1016/j.jprot.2022.104591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
|
5
|
Zamarbide M, Martinez-Pinilla E, Gil-Bea F, Yanagisawa M, Franco R, Perez-Mediavilla A. Genetic Inactivation of Free Fatty Acid Receptor 3 Impedes Behavioral Deficits and Pathological Hallmarks in the APP swe Alzheimer's Disease Mouse Model. Int J Mol Sci 2022; 23:ijms23073533. [PMID: 35408893 PMCID: PMC8999053 DOI: 10.3390/ijms23073533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
The free fatty acid FFA3 receptor (FFA3R) belongs to the superfamily of G-protein-coupled receptors (GPCRs). In the intestine and adipose tissue, it is involved in the regulation of energy metabolism, but its function in the brain is unknown. We aimed, first, to investigate the expression of the receptor in the hippocampus of Alzheimer disease (AD) patients at different stages of the disease and, second, to assess whether genetic inactivation of the Ffar3 gene could affect the phenotypic features of the APPswe mouse model. The expression of transcripts for FFA receptors in postmortem human hippocampal samples and in the hippocampus of wild-type and transgenic mice was analyzed by RT-qPCR. We generated a double transgenic mouse, FFA3R−/−/APPswe, to perform cognition studies and to assess, by immunoblotting Aβ and tau pathologies and the differential expression of synaptic plasticity-related proteins. For the first time, the occurrence of the FFA3R in the human hippocampus and its overexpression, even in the first stages of AD, was demonstrated. Remarkably, FFA3R−/−/APPswe mice do not have the characteristic memory impairment of 12-month-old APPswe mice. Additionally, this newly generated transgenic line does not develop the most important Alzheimer’s disease (AD)-related features, such as amyloid beta (Aβ) brain accumulations and tau hyperphosphorylation. These findings are accompanied by increased levels of the insulin-degrading enzyme (IDE) and lower activity of the tau kinases GSK3β and Cdk5. We conclude that the brain FFA3R is involved in cognitive processes and that its inactivation prevents AD-like cognitive decline and pathological hallmarks.
Collapse
Affiliation(s)
- Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Eva Martinez-Pinilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Gil-Bea
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Rafael Franco
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Network Center, Neurodegenerative Diseases, CiberNed, Spanish National Health Institute “Carlos III”, 28031 Madrid, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| | - Alberto Perez-Mediavilla
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.Z.); (E.M.-P.); (F.G.-B.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (R.F.); (A.P.-M.); Tel.: +34-934021208 (R.F.); +34-948194700 (ext. 2033) (A.P.-M.)
| |
Collapse
|
6
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Sanders O, Rajagopal L. Phosphodiesterase Inhibitors for Alzheimer's Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale. J Alzheimers Dis Rep 2020; 4:185-215. [PMID: 32715279 PMCID: PMC7369141 DOI: 10.3233/adr-200191] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies, clinical trials, and reviews suggest increasing 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in Alzheimer's disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). cAMP/PKA and cGMP/PKG activate Sirtuin-1, which activates PGC1α. PGC1α induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1. cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3β. OBJECTIVE AND METHODS We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate whether phosphodiesteraseinhibitors prevent or treat AD. RESULTS Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed. Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated wild-type Aβ deposition. CONCLUSION Phosphodiesterase inhibitors may prevent and treat AD.
Collapse
|
8
|
Janitschke D, Nelke C, Lauer AA, Regner L, Winkler J, Thiel A, Grimm HS, Hartmann T, Grimm MOW. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019; 9:E689. [PMID: 31684105 PMCID: PMC6920871 DOI: 10.3390/biom9110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer's disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD.
Collapse
Affiliation(s)
- Daniel Janitschke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Christopher Nelke
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Liesa Regner
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Jakob Winkler
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Andrea Thiel
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
| | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany.
- Deutsches Institut für DemenzPrävention (DIDP), Saarland University, 66424 Homburg/Saar, Germany.
| |
Collapse
|
9
|
Kimura T, Sharma G, Ishiguro K, Hisanaga SI. Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Front Neurosci 2018; 12:44. [PMID: 29467609 PMCID: PMC5808175 DOI: 10.3389/fnins.2018.00044] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein which regulates the assembly and stability of microtubules in the axons of neurons. Tau is also a major component of neurofibrillary tangles (NFTs), a pathological hallmark in Alzheimer's disease (AD). A characteristic of AD tau is hyperphosphorylation with more than 40 phosphorylation sites. Aggregates of hyperphosphorylated tau are also found in other neurodegenerative diseases which are collectively called tauopathies. Although a large number of studies have been performed on the phosphorylation of AD tau, it is not known if there is disease-specific phosphorylation among tauopathies. This is due to the lack of a proper method for analyzing tau phosphorylation in vivo. Most previous phosphorylation studies were conducted using a range of phosphorylation site-specific antibodies. These studies describe relative changes of different phosphorylation sites, however, it is hard to estimate total, absolute and collective changes in phosphorylation. To overcome these problems, we have recently applied the Phos-Tag technique to the analysis of tau phosphorylation in vitro and in vivo. This method separates tau into many bands during SDS-PAGE depending on its phosphorylation states, creating a bar code appearance. We propose calling this banding pattern of tau the "phospho-tau bar code." In this review article, we describe what is newly discovered regarding tau phosphorylation through the use of the Phos-Tag. We would like to propose its use for the postmortem diagnosis of tauopathy which is presently done by immunostaining diseased brains with anti-phospho-antibodies. While Phos-tag SDS-PAGE, like other biochemical assays, will lose morphological information, it could provide other types of valuable information such as disease-specific phosphorylation.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
10
|
Kimura T, Hosokawa T, Taoka M, Tsutsumi K, Ando K, Ishiguro K, Hosokawa M, Hasegawa M, Hisanaga SI. Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Sci Rep 2016; 6:33479. [PMID: 27641626 PMCID: PMC5027580 DOI: 10.1038/srep33479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
Tau is hyperphosphorylated in the brains of patients with tauopathies, such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). However, neither the mechanism of hyperphosphorylation nor its contribution to pathogenesis is known. We applied Phos-tag SDS-PAGE, a phosphoaffinity electrophoresis, to the analysis of tau phosphorylation in vitro by Cdk5, in cultured cells and in mouse brain. Here, we found that Cdk5-p25 phosphorylated tau in vitro at Ser404, Ser235, Thr205 and Ser202 in this order. In contrast in cultured cells, Ser404 was preferentially phosphorylated by Cdk5-p35, whereas Thr205 was not phosphorylated. Ser202 and Ser235 were phosphorylated by endogenous kinases. Tau exhibited ~12 phosphorylation isotypes in COS-7 cells with different combinations of phosphorylation at Thr181, Ser202, Thr231, Ser235 and Ser404. These phosphorylation sites were similar to tau phosphorylated in mouse brains. FTDP-17 tau with a mutation in the C-terminal region had different banding patterns, indicating a different phosphorylation pattern. In particular, it was clear that the R406W mutation causes loss of Ser404 phosphorylation. These results demonstrate the usefulness of the Phos-tag technique in the quantitative analysis of site-specific in vivo phosphorylation of tau and provide detailed information on in situ combinatory phosphorylation of tau.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tomohisa Hosokawa
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | - Masato Hosokawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Shin-ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Gatto R, Chauhan M, Chauhan N. Anti-edema effects of rhEpo in experimental traumatic brain injury. Restor Neurol Neurosci 2016; 33:927-41. [PMID: 26484701 DOI: 10.3233/rnn-150577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) is one of the leading causes of disability and death which begins with the formation of edema as the persistent primary causative factor in TBI. Although medical management of cerebral edema by hypothermia, ventriculostomy, mannitol or hypertonic saline have been effective in treating edema, many of these therapies end up with some neurologic deficits, necessitating novel treatment options for treating post-TBI edema. This study investigated edema reducing effects of recombinant human Erythropoietin (rhEPO) in reducing acute brain edema in the CCI mouse model of TBI. METHODS Anti-edema effects of rhEpo in reducing acute brain edema after injury in the CCI mouse model of TBI were assessed by T2 weighted magnetic resonance imaging (T2wMRI) as the accurate detector of brain edema in correlation with Western blot analysis of cerebral aquaporin 4 (AQP4) index as the critical marker of edema. RESULTS Results show that rhEpo treatment significantly reduced brain edema with concomitant reduction in AQP4 immunoexpression in the CCI mouse model of TBI. CONCLUSION Current results emphasize clinical utility of rhEpo in treating post-TBI edema.
Collapse
Affiliation(s)
- Rodolfo Gatto
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima Chauhan
- Neuroscience Research, R&D, Jesse Brown VA Medical Center, Chicago, IL, USA.,Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Kimura T, Hatsuta H, Masuda-Suzukake M, Hosokawa M, Ishiguro K, Akiyama H, Murayama S, Hasegawa M, Hisanaga SI. The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:398-409. [PMID: 26687814 DOI: 10.1016/j.ajpath.2015.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by aggregates of hyperphosphorylated tau. Previous studies have identified many disease-related phosphorylation sites on tau. However, it is not understood how tau is hyperphosphorylated and what extent these sites are phosphorylated in both diseased and normal brains. Most previous studies have used phospho-specific antibodies to analyze tau phosphorylation. These results are useful but do not provide information about nonphosphorylated tau. Here, we applied the method of Phos-tag SDS-PAGE, in which phosphorylated tau was separated from nonphosphorylated tau in vivo. Among heterogeneously phosphorylated tau species in adult mouse brains, the nonphosphorylated 0N4R isoform was detected most abundantly. In contrast, perinatal tau and tau in cold water-stressed mice were all phosphorylated with a similar extent of phosphorylation. In normal elderly human brains, nonphosphorylated 0N3R and 0N4R tau were most abundant. A slightly higher phosphorylation of tau, which may represent the early step of hyperphosphorylation, was increased in Alzheimer disease patients at Braak stage V. Tau with this phosphorylation state was pelleted by centrifugation, and sarkosyl-soluble tau in either Alzheimer disease or corticobasal degeneration brains showed phosphorylation profiles similar to tau in normal human brain, suggesting that hyperphosphorylation occurs in aggregated tau. These results indicate that tau molecules are present in multiple phosphorylation states in vivo, and nonphosphorylated forms are highly expressed among them.
Collapse
Affiliation(s)
- Taeko Kimura
- Department of Biological Sciences, Laboratory of Molecular Neuroscience, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Hiroyuki Hatsuta
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Masami Masuda-Suzukake
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Masato Hosokawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Shin-ichi Hisanaga
- Department of Biological Sciences, Laboratory of Molecular Neuroscience, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
13
|
Mehla J, Chauhan BC, Chauhan NB. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 2014; 39:145-62. [PMID: 24121970 DOI: 10.3233/jad-131238] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
Collapse
Affiliation(s)
- Jogender Mehla
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Neelima B Chauhan
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL, USA Department of Pediatrics, University of Illinois Hospital & Health Science System-Children's Hospital, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
14
|
Kimura T, Ishiguro K, Hisanaga SI. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 2014; 7:65. [PMID: 25076872 PMCID: PMC4097945 DOI: 10.3389/fnmol.2014.00065] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| |
Collapse
|
15
|
Sawmiller D, Li S, Shahaduzzaman M, Smith AJ, Obregon D, Giunta B, Borlongan CV, Sanberg PR, Tan J. Luteolin reduces Alzheimer's disease pathologies induced by traumatic brain injury. Int J Mol Sci 2014; 15:895-904. [PMID: 24413756 PMCID: PMC3907845 DOI: 10.3390/ijms15010895] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer’s disease (AD). Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aβ) deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aβ depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3) activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI.
Collapse
Affiliation(s)
- Darrell Sawmiller
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Song Li
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Md Shahaduzzaman
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Adam J Smith
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Demian Obregon
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Brian Giunta
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Paul R Sanberg
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| | - Jun Tan
- James A. Haley Veteran's Administration Hospital, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Peng CX, Hu J, Liu D, Hong XP, Wu YY, Zhu LQ, Wang JZ. Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer's animal model. Neurobiol Aging 2013; 34:1555-63. [PMID: 23402899 DOI: 10.1016/j.neurobiolaging.2012.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/17/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
The current therapies for Alzheimer's disease (AD) are merely palliative that cannot arrest the pathologic progression of the disease. Therefore, it is critical to develop treatments that can target the disease-modifying molecule(s). In the present study, we found that treatment of tg2576 mice with melatonin from 4-8 months of age did not improve the pathology or behavioral performance of the mice. However, remarkable attenuation of tau and β-amyloid pathologies with memory improvement were observed when melatonin was supplied from the age of 8-12 months or 4-12 months of the mice; more importantly, the improvements were still significant when the mice survived to old age. We also found that the disease stage-specific alteration of glycogen synthase kinase-3β (GSK-3β) but not protein phosphatase-2A, was correlated with the alterations of the pathology and behavior, and the timely targeting of GSK-3β was critical for the efficacy of melatonin. Our finding suggests that melatonin treatment only at proper timing could arrest AD by targeting the activated GSK-3β, which provides primary evidence for the importance and strategy in developing disease-modifying interventions of AD.
Collapse
Affiliation(s)
- Cai-Xia Peng
- Pathophysiology Department, Key Laboratory of Education Ministry for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Res Rev 2013; 12:116-40. [PMID: 22982398 DOI: 10.1016/j.arr.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders, bringing about huge medical and social burden in the elderly worldwide. Many aspects of its pathogenesis have remained unclear and no effective treatment exists for it. Within the past 20 years, various mice models harboring AD-related human mutations have been produced. These models imitate diverse AD-related pathologies and have been used for basic and therapeutic investigations in AD. In this regard, there are a wide variety of preclinical trials of potential therapeutic modalities using AD mice models which are of paramount importance for future clinical trials and applications. This review summarizes more than 140 substances and treatment modalities being used in transgenic AD mice models from 2001 to 2011. We also discuss advantages and disadvantages of each model to be used in therapeutic development for AD.
Collapse
|
18
|
Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis 2012; 2012:381029. [PMID: 22888461 PMCID: PMC3408674 DOI: 10.1155/2012/381029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials.
Collapse
|
19
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
20
|
Bitner RS, Markosyan S, Nikkel AL, Brioni JD. In-vivo histamine H3 receptor antagonism activates cellular signaling suggestive of symptomatic and disease modifying efficacy in Alzheimer’s disease. Neuropharmacology 2011; 60:460-6. [DOI: 10.1016/j.neuropharm.2010.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
|
21
|
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1380-99. [PMID: 21145878 DOI: 10.1016/j.bbamem.2010.12.001] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 02/06/2023]
Abstract
Adenosine acts in parallel as a neuromodulator and as a homeostatic modulator in the central nervous system. Its neuromodulatory role relies on a balanced activation of inhibitory A(1) receptors (A1R) and facilitatory A(2A) receptors (A2AR), mostly controlling excitatory glutamatergic synapses: A1R impose a tonic brake on excitatory transmission, whereas A2AR are selectively engaged to promote synaptic plasticity phenomena. This neuromodulatory role of adenosine is strikingly similar to the role of adenosine in the control of brain disorders; thus, A1R mostly act as a hurdle that needs to be overcame to begin neurodegeneration and, accordingly, A1R only effectively control neurodegeneration if activated in the temporal vicinity of brain insults; in contrast, the blockade of A2AR alleviates the long-term burden of brain disorders in different neurodegenerative conditions such as ischemia, epilepsy, Parkinson's or Alzheimer's disease and also seem to afford benefits in some psychiatric conditions. In spite of this qualitative agreement between neuromodulation and neuroprotection by A1R and A2AR, it is still unclear if the role of A1R and A2AR in the control of neuroprotection is mostly due to the control of glutamatergic transmission, or if it is instead due to the different homeostatic roles of these receptors related with the control of metabolism, of neuron-glia communication, of neuroinflammation, of neurogenesis or of the control of action of growth factors. In spite of this current mechanistic uncertainty, it seems evident that targeting adenosine receptors might indeed constitute a novel strategy to control the demise of different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Catarina V Gomes
- Center for Neurosciences of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
22
|
Chauhan NB, Gatto R. Synergistic benefits of erythropoietin and simvastatin after traumatic brain injury. Brain Res 2010; 1360:177-92. [PMID: 20833152 DOI: 10.1016/j.brainres.2010.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Simvastatin and recombinant human erythropoietin (rhEpo) are implicated as potential therapeutic candidates for traumatic brain injury (TBI). Prominent effects of simvastatin include its anti-inflammatory, neurotrophic and neuroregenerative actions studied in various models of neuronal injury. On the other hand, rhEpo has been shown to promote cell survival mechanisms by producing anti-apoptotic and cell proliferative actions. Beneficial effects of rhEpo and statin monotherapies have been well studied. However, there are no reports showing combined use of rhEpo and statins after TBI. This investigation examined if combined efficacy of cell proliferative ability of rhEpo along with the neuroregenerative ability of simvastatin will render maximum recovery in a controlled cortical impact (CCI) mouse model of TBI. Results showed that compared to baseline TBI, rhEpo was more effective than simvastatin in promoting cell proliferation while simvastatin was more effective than rhEpo in restoring axonal damage following TBI. Combined treatment with simvastatin and rhEpo maximally restored axonal integrity while simultaneously inducing greater proliferation of newly formed cells resulting in better functional recovery after TBI than either alone. This is the first study showing the efficacy of erythropoietin-simvastatin combinational therapeutic approach in achieving greater structural and cognitive recovery after TBI.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Jesse Brown VA Medical Center, University of Illinois, Chicago, USA.
| | | |
Collapse
|
23
|
Greco SJ, Bryan KJ, Sarkar S, Zhu X, Smith MA, Ashford JW, Johnston JM, Tezapsidis N, Casadesus G. Leptin reduces pathology and improves memory in a transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 2010; 19:1155-67. [PMID: 20308782 DOI: 10.3233/jad-2010-1308] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously reported anti-amyloidogenic effects of leptin using in vitro and in vivo models and, more recently, demonstrated the ability of leptin to reduce tau phosphorylation in neuronal cells. The present study examined the efficacy of leptin in ameliorating the Alzheimer's disease (AD)-like pathology in 6-month old CRND8 transgenic mice (TgCRND8) following 8 weeks of treatment. Leptin-treated transgenic mice showed significantly reduced levels of amyloid-beta (Abeta){1-40} in both brain extracts (52% reduction, p= 0.047) and serum (55% reduction, p= 0.049), as detected by ELISA, and significant reduction in amyloid burden (47% reduction, p=0.041) in the hippocampus, as detected by immunocytochemistry. The decrease in the levels of Abeta in the brain correlated with a decrease in the levels of C99 C-terminal fragments of the amyloid-beta protein precursor, consistent with a role for beta -secretase in mediating the effect of leptin. In addition, leptin-treated TgCRND8 mice had significantly lower levels of phosphorylated tau, as detected by AT8 and anti-tau-Ser{396} antibodies. Importantly, after 4 or 8 weeks of treatment, there was no significant increase in the levels of C-reactive protein, tumor necrosis factor-alpha, and cortisol in the plasma of leptin-treated TgCRND8 animals compared to saline-treated controls, indicating no inflammatory reaction. These biochemical and pathological changes were correlated with behavioral improvements, as early as after 4 weeks of treatment, as recorded by a novel object recognition test and particularly the contextual and cued fear conditioning test after 8 weeks of treatment. Leptin-treated TgCRND8 animals significantly outperformed saline-treated littermates in these behavioral tests. These findings solidly demonstrate the potential for leptin as a disease modifying therapeutic in transgenic animals of AD, driving optimism for its safety and efficacy in humans.
Collapse
|
24
|
Saxena U. Lipid metabolism and Alzheimer's disease: pathways and possibilities. Expert Opin Ther Targets 2009; 13:331-8. [DOI: 10.1517/14728220902738720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Affiliation(s)
- Rodrigo A Cunha
- Centro de Neurociencias de Coimbra. Instituto de Bioquímica. Facultad de Medicina. Universidad de Coimbra. Coimbra. Portugal.
| |
Collapse
|
26
|
Robles A. Pharmacological Treatment of Alzheimer's Disease: Is it Progressing Adequately? Open Neurol J 2009; 3:27-44. [PMID: 19461897 PMCID: PMC2684708 DOI: 10.2174/1874205x00903010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/26/2008] [Accepted: 01/02/2009] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Between 1993 and 2000 four acetylcholinesterase inhibitors were marketed as a symptomatic treatment for Alzheimer's disease (AD), as well as memantine in 2003. Current research is focused on finding drugs that favorably modify the course of the disease. However, their entrance into the market does not seem to be imminent. RESEARCH DEVELOPMENT The aim of AD research is to find substances that inhibit certain elements of the AD pathogenic chain (beta- and gamma-secretase inhibitors, alpha-secretase stimulants, beta-amyloid aggregability reducers or disaggregation and elimination inductors, as well as tau-hyperphosphorylation, glutamate excitotoxicity, oxidative stress and mitochondrial damage reducers, among other action mechanisms). Demonstrating a disease's retarding effect demands longer trials than those necessary to ascertain symptomatic improvement. Besides, a high number of patients (thousands of them) is necessary, all of which turns out to be difficult and costly. Furthermore, it would be necessary to count on diagnosis and progression markers in the disease's pre-clinical stage, markers for specific phenotypes, as well as high-selectivity molecules acting only where necessary. In order to compensate these difficulties, drugs acting on several defects of the pathogenic chain or showing both symptomatic and neuroprotective action simultaneously are being researched. CONCLUSIONS There are multiple molecules used in research to modify AD progression. Although it turns out to be difficult to obtain drugs with sufficient efficacy so that their marketing is approved, if they were achieved they would lead to a reduction of AD prevalence.
Collapse
Affiliation(s)
- Alfredo Robles
- La Rosaleda Hospital, Santiago León de Caracas street, no. 1, 15706 – Santiago de Compostela, Spain
| |
Collapse
|
27
|
Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M. Selective α7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3β and decreases tau phosphorylation in vivo. Brain Res 2009; 1265:65-74. [DOI: 10.1016/j.brainres.2009.01.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 11/27/2022]
|
28
|
Husain MM, Trevino K, Siddique H, McClintock SM. Present and prospective clinical therapeutic regimens for Alzheimer's disease. Neuropsychiatr Dis Treat 2008; 4:765-77. [PMID: 19043521 PMCID: PMC2536544 DOI: 10.2147/ndt.s2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder that produces cognitive impairments that increase in severity as the disease progresses. The clinical symptoms are related to the presence of neuritic plaques and neurofibrillary tangles in the cerebral cortex which represent the pathophysiological hallmarks of AD. The debilitating nature of the disease can result in clinical burden for the patient, emotional strain for those that care for patients with Alzheimer's, and significant financial burden to society. The goals of current treatments, such as cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonist, are to reduce the severity or slow the progression of cognitive symptoms. Although these treatments have demonstrated modest clinical benefit, they are unable to prevent, prohibit, or reverse the underlying pathophysiology of AD. Considerable progress has been made toward the development of disease-modifying treatments. Treatments currently under development mainly target the production, aggregation, and removal of existing amyloid beta-peptide aggregates which are believed to instigate the overall development of the neuropathology. Additional strategies that target tau pathology are being studied to promote neural protection against AD pathology. The current research has continued to expand our knowledge toward the development of disease modifying Alzheimer's therapies; however, no specific treatment strategy capable of demonstrating empirical efficacy and safety has yet to emerge.
Collapse
Affiliation(s)
- Mustafa M Husain
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | | | | | |
Collapse
|
29
|
van Balken I, Litvan I. Current and future therapeutic approaches in progressive supranuclear palsy. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:493-508. [PMID: 18631772 DOI: 10.1016/s0072-9752(07)01246-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Irene van Balken
- Movement Disorders Program, University of Louisville School of Medicine, Department of Neurology, Louisville, KY 40202, USA
| | | |
Collapse
|
30
|
Chen JF, Sonsalla PK, Pedata F, Melani A, Domenici MR, Popoli P, Geiger J, Lopes LV, de Mendonça A. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol 2007; 83:310-31. [DOI: 10.1016/j.pneurobio.2007.09.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/10/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
31
|
Chauhan NB, Sandoval J. Amelioration of early cognitive deficits by aged garlic extract in Alzheimer's transgenic mice. Phytother Res 2007; 21:629-40. [PMID: 17380553 DOI: 10.1002/ptr.2122] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Subtle accumulation of beta-amyloid peptide (Abeta) oligomers of Abeta42 species in particular, is known to correlate with cognitive deficits independent of Abeta plaque deposition in the brain. Majority of the research showing behavioral improvement after cerebral Abeta reduction has been reported when the animals carried fewer/abundant amyloid plaques in the brain. Very few studies have addressed whether or not behavioral deficits exist even at the pre-plaque stage or in the absence of plaques that would parallel the mild cognitive impairment (MCI) stage of Alzheimer's disease (AD). Current study was undertaken to determine whether there exists any cognitive impairment during the pre-plaque stage which may parallel the MCI stage of AD, and to confirm whether the observed behavioral deficits correlate with Abeta42 predominance. In addition, the study determined whether anti-amyloidogenic effects of dietary aged garlic extract would prevent progressive behavioral impairment. For this purpose we used Tg2576 model showing slow plaque development with a predominance of Abeta40, and the TgCRND8 model showing accelerated plaque development with a predominance of Abeta42. The results show that at 2 months of age Tg2576 mice did not exhibit behavioral impairment in any of the tasks studied. While 2-month-old TgCRND8 mice displayed only a subtle behavioral deficit that matched the behavioral deficits observed in 7-month-old Tg2576 mice which may correlate with the MCI stage of AD. TgCRND8 mice at 7 months of age exhibited advanced deterioration in all behavioral tasks studied, suggesting that accelerated Abeta accumulation and the predominance of Abeta42 species may account for the pronounced cognitive deficits observed in TgCRND8. Feeding of aged garlic extract prevented deterioration of hippocampal based memory tasks in these mice, suggesting that aged garlic extract has a potential for preventing AD progression.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Research and Development (151), Jesse Brown VA Medical Center Chicago, Department of Anesthesiology, University of Illinois at Chicago, IL 60612, USA.
| | | |
Collapse
|
32
|
Tumini E, Porcellini E, Chiappelli M, Conti CM, Beraudi A, Poli A, Caciagli F, Doyle R, Conti P, Licastro F. The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer's disease patients. Hum Psychopharmacol 2007; 22:75-80. [PMID: 17221831 DOI: 10.1002/hup.823] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a polygenic and multifactorial complex disease, whose etiopathology is still unclear, however several genetic factors have shown to increase the risk of developing the disease. Purine nucleotides and nucleosides play an important role in the brain. Besides their role in neurotransmission and neuromodulation, they are involved in trophic factor release, apoptosis, and inflammatory responses. These mediators may also have a pivotal role in the control of neurodegenerative processes associated with AD. In this report the distribution of the exonic G/A single nucleotide polymorphism (SNP) in purine nucleoside phosphorylase (PNP) gene, resulting in the amino acid substitution serine to glycine at position 51 (G51S), was investigated in a large population of AD patients (n=321) and non-demented control (n=208). The PNP polymorphism distribution was not different between patients and controls. The polymorphism distribution was also analyzed in AD patients stratified according to differential progressive rate of cognitive decline during a 2-year follow-up. An increased representation of the PNP AA genotype was observed in AD patients with fast cognitive deterioration in comparison with that from patients with slow deterioration rate. Our findings suggest that the G51S PNP polymorphism is associated with a faster rate of cognitive decline in AD patients, highlighting the important role of purine metabolism in the progression of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Emanuela Tumini
- Department of Experimental Pathology, University of Bologna, Italy, Psychiatric Department Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chauhan NB, Siegel GJ. Antisense inhibition at the beta-secretase-site of beta-amyloid precursor protein reduces cerebral amyloid and acetyl cholinesterase activity in Tg2576. Neuroscience 2007; 146:143-51. [PMID: 17303345 PMCID: PMC1955231 DOI: 10.1016/j.neuroscience.2007.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/27/2006] [Accepted: 01/05/2007] [Indexed: 12/29/2022]
Abstract
Misprocessing of beta-amyloid precursor protein (APP) leading to the formation of elevated quantities of beta-amyloid peptide (Abeta), derived by a cleavage at the beta-secretase site (N-671/673aa) and by a cleavage at the gamma-secretase site (C-711/713aa) of APP, is considered a key event in the pathogenesis of Alzheimer disease (AD). Point mutations near the beta-secretase site in the human gene for APP, such as in the Swedish mutation-KM670/671NL, lead to a form of dominantly inherited AD. These mutations are known to promote beta-site cleavage and to increase levels of Abeta. Abeta has been shown previously to increase acetyl cholinesterase (AChE) activity in vitro. We wished to test whether translational blocking of APP-mRNA at the mutated beta-site by antisense (AS) oligodeoxynucleotides (ODNs) directed to the mutated site will reduce cerebral amyloid in the Swedish transgenic mouse model (Tg2576). Mice were injected i.c.v. with AS-ODNs directed at the mutated beta-site (AS-beta site) or with AS-ODNs directed at the normal gamma-site (AS-gamma site) of human APP-mRNA, and compared with procedural controls that received i.c.v. injections of sense ODNs at the beta-site (S-beta site), sense ODNs at the gamma-site (S-gamma site) or mismatched ODNs, and with untreated littermates (Lt) and untreated transgenic mice (Tgs). ODNs were injected into the 3rd ventricle once a week for 4 weeks. Brains were processed for enzyme-linked immunosorbent assay analysis of beta- and gamma-cleaved soluble Abeta40 (sAbeta40), beta- and gamma-cleaved soluble Abeta42 (sAbeta42) and alpha-cleaved soluble beta-amyloid precursor protein (sAPPalpha). The physiological relevance of AS ODNs was tested by evaluating the cerebral distribution of AChE before and after the treatment. AChE was found increased about fivefold in Tg cortex as compared with control brain. Results show that compared with untreated and procedural controls, AS-beta increased cerebral levels of sAPPalpha by 43% and reduced sAbeta40/42 by approximately 39%; while simultaneously reducing the cortical density of AChE by approximately fourfold in the treated Tg animals, almost to the level found in the control brain (all values P<0.0001, analysis of variance, unpaired two-tailed Student's t-test), while AS-gamma did not have any effect. These results indicate that AS directed to the mutated beta-site may be an effective approach to treat familial AD.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Department of Anesthesiology, University of Illinois at Chicago 60612, and Neurology Service (127), Edward Hines, Jr., VA Hospital, Hines, IL 60614, USA.
| | | |
Collapse
|
34
|
Chauhan NB. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer's transgenic model Tg2576. JOURNAL OF ETHNOPHARMACOLOGY 2006; 108:385-94. [PMID: 16842945 DOI: 10.1016/j.jep.2006.05.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 05/21/2006] [Accepted: 05/25/2006] [Indexed: 05/10/2023]
Abstract
Multiple components present in garlic and various garlic preparations are known to exert pleiotropic protective effects as demonstrated in various in vitro and in vivo model systems. However, garlic pleiotropy in relation to Alzheimer's pathophysiology has not been explored extensively. Current study investigated anti-amyloidogenic, anti-inflammatory and anti-tangle effects of dietary aged garlic extract (AGE) (2%) and compared with its prominent constituents, i.e. S-allyl-cysteine (SAC) (20 mg/kg) and di-allyl-disulfide (DADS) (20 mg/kg) in Alzheimer's Swedish double mutant mouse model (Tg2576). Possible cholesterol-dependent and cholesterol-independent mechanisms of actions of AGE, SAC and DADS in exerting anti-amyloidogenic, anti-inflammatory and anti-tangle effects are discussed. Finally, ameliorative effects of dietary interventions were found to be in the order of AGE>SAC>DADS. If validated pre-clinically, dietary intervention with herbal alternative such as AGE having pleiotropic useful properties and least adverse effects may provide greater therapeutic benefit over a single-ingredient synthetic pharmaceutical drug having serious side effects in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Neelima B Chauhan
- Department of Anesthesiology, University of Illinois at Chicago, USA.
| |
Collapse
|
35
|
Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J Neural Transm (Vienna) 2006; 113:1625-44. [PMID: 17039298 DOI: 10.1007/s00702-006-0579-2] [Citation(s) in RCA: 374] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/27/2006] [Indexed: 12/11/2022]
Abstract
Acetylcholine is widely distributed in the nervous system and has been implicated to play a critical role in cerebral cortical development, cortical activity, controlling cerebral blood flow and sleep-wake cycle as well as in modulating cognitive performances and learning and memory processes. Cholinergic neurons of the basal forebrain complex have been described to undergo moderate degenerative changes during aging, resulting in cholinergic hypofunction that has been related to the progressing memory deficits with aging. Basal forebrain cholinergic cell loss is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed, and has led to the formulation of the cholinergic hypotheses of geriatric memory dysfunction. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology and increase phosphorylation of tau protein the main component of neurofibrillar tangles in Alzheimer's disease. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, and tau pathology in Alzheimer's disease, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- R Schliebs
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
36
|
Masters CL, Cappai R, Barnham KJ, Villemagne VL. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. J Neurochem 2006; 97:1700-25. [PMID: 16805778 DOI: 10.1111/j.1471-4159.2006.03989.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer's disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer's disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer's disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.
Collapse
Affiliation(s)
- Colin L Masters
- Department of Pathology, The University of Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
37
|
Abstract
Alzheimer's disease is the most common cause of dementia. Research advances have enabled detailed understanding of the molecular pathogenesis of the hallmarks of the disease--ie, plaques, composed of amyloid beta (Abeta), and tangles, composed of hyperphosphorylated tau. However, as our knowledge increases so does our appreciation for the pathogenic complexity of the disorder. Familial Alzheimer's disease is a very rare autosomal dominant disease with early onset, caused by mutations in the amyloid precursor protein and presenilin genes, both linked to Abeta metabolism. By contrast with familial disease, sporadic Alzheimer's disease is very common with more than 15 million people affected worldwide. The cause of the sporadic form of the disease is unknown, probably because the disease is heterogeneous, caused by ageing in concert with a complex interaction of both genetic and environmental risk factors. This seminar reviews the key aspects of the disease, including epidemiology, genetics, pathogenesis, diagnosis, and treatment, as well as recent developments and controversies.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgren's University Hospital, Mölndal, Sweden.
| | | | | |
Collapse
|
38
|
van Balken I, Litvan I. Current and future treatments in progressive supranuclear palsy. Curr Treat Options Neurol 2006; 8:211-23. [PMID: 16569380 DOI: 10.1007/s11940-006-0012-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progressive supranuclear palsy (PSP) is an atypical parkinsonian disorder that, in spite of its growing recognition, is still underdiagnosed. For management, prognosis, and research, an accurate and early diagnosis is essential. PSP is a relentlessly progressive neurodegenerative disorder, clinically characterized by parkinsonism with prominent axial involvement and postural instability, bulbar symptoms, supranuclear ophthalmoplegia, and executive dysfunction. Abnormal neuronal and glial four-repeat tau aggregations affecting the basal ganglia and selective brainstem structures result in dysfunction of the five frontosubcortical circuits and brainstem functions. Primary therapeutic approaches are based on neurotransmitter replacement and palliative strategies. This article reviews the experience and challenges with neurotransmitter replacement and palliative strategies through an extensive literature search of studies published between 1965 and 2005. The role of and limited experience with alternative therapies, such as deep brain stimulation and pallidotomy, are also discussed. Advances in the development of biological therapies for PSP and a better understanding of its etiopathogenesis will likely result from epidemiologic studies and developed four-repeat tau-transgenic animal models. The management of patients with this disorder poses a considerable challenge and includes symptomatic and palliative strategies, as well as education and support, to improve the quality of life for patients and their caregivers.
Collapse
Affiliation(s)
- Irene van Balken
- University of Louisville School of Medicine, Department of Neurology, A Building, Room 113, 500 South Preston, Louisville, KY 40202, USA
| | | |
Collapse
|
39
|
Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2006; 30:895-908. [PMID: 16187224 DOI: 10.1007/s11064-005-6962-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, beta-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer's disease. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology in Alzheimer's disease by affecting expression and processing of the beta-amyloid precursor protein (APP). Vice versa, low level of soluble beta-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of beta-amyloid plaques in Alzheimer's disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
40
|
Haskó G, Pacher P, Vizi ES, Illes P. Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 2005; 26:511-6. [PMID: 16125796 PMCID: PMC2228262 DOI: 10.1016/j.tips.2005.08.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 07/14/2005] [Accepted: 08/11/2005] [Indexed: 12/13/2022]
Abstract
The brain immune system, which consists mainly of astrocytes, microglia and infiltrating immune cells, is quiescent normally, but it is activated in response to pathophysiological events such as ischemia, trauma, inflammation and infection. Adenosine is an endogenous purine nucleoside that is generated at sites that are subjected to these "stressful" conditions. Adenosine interacts with specific G-protein-coupled receptors on astrocytes, microglia and infiltrating immune cells to regulate the function of the immune system in the brain. Although many of the effects of adenosine on immune-competent cells in the brain protect neuronal integrity, adenosine might also aggravate neuronal injury by promoting inflammatory processes. A more complete understanding of adenosine receptor function in the brain immune system should help develop novel therapeutic ways to treat brain disorders that are associated with a dysfunctional immune response.
Collapse
Affiliation(s)
- György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|