1
|
O’Hare L, Tarasi L, Asher JM, Hibbard PB, Romei V. Excitation-Inhibition Imbalance in Migraine: From Neurotransmitters to Brain Oscillations. Int J Mol Sci 2023; 24:10093. [PMID: 37373244 PMCID: PMC10299141 DOI: 10.3390/ijms241210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine is among the most common and debilitating neurological disorders typically affecting people of working age. It is characterised by a unilateral, pulsating headache often associated with severe pain. Despite the intensive research, there is still little understanding of the pathophysiology of migraine. At the electrophysiological level, altered oscillatory parameters have been reported within the alpha and gamma bands. At the molecular level, altered glutamate and GABA concentrations have been reported. However, there has been little cross-talk between these lines of research. Thus, the relationship between oscillatory activity and neurotransmitter concentrations remains to be empirically traced. Importantly, how these indices link back to altered sensory processing has to be clearly established as yet. Accordingly, pharmacologic treatments have been mostly symptom-based, and yet sometimes proving ineffective in resolving pain or related issues. This review provides an integrative theoretical framework of excitation-inhibition imbalance for the understanding of current evidence and to address outstanding questions concerning the pathophysiology of migraine. We propose the use of computational modelling for the rigorous formulation of testable hypotheses on mechanisms of homeostatic imbalance and for the development of mechanism-based pharmacological treatments and neurostimulation interventions.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Luca Tarasi
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum—Università di Bologna, Campus di Cesena, Via Rasi e Spinelli, 176, 47521 Cesena, Italy;
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, 28015 Madrid, Spain
| |
Collapse
|
2
|
Bromovalerylurea modulates GABA A receptor-mediated inhibitory neurotransmission while inducing sleep. Biochem Biophys Res Commun 2023; 638:176-183. [PMID: 36462491 DOI: 10.1016/j.bbrc.2022.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Bromovalerylurea (BU), an acyl urea derivative, was originally developed as a hypnotic/sedative. We recently reported that BU at a dose of 50 mg/kg ameliorates sepsis, Parkinson's disease, and traumatic brain injury in Wistar rat models through its anti-inflammatory actions on microglia and macrophages. However, since BU was developed more than 100 years ago, its hypnotic mechanism and characteristics are poorly understood. Herein, we conducted an electroencephalogram (EEG) study and found that BU, when administered at a dose of more than 125 mg/kg but not at a dose of 50 mg/kg in Wistar rats, significantly increased non-rapid eye movement (NREM) sleep duration and dose-dependently decreased rapid eye movement (REM) sleep duration. This characteristic of sleep induced by BU is similar to the effect of compounds such as barbiturate, benzodiazepine, and z-drugs, all of which require γ-aminobutyric acid A receptors (GABAAR) for hypnotic/sedative activity. To investigate whether BU could potentiate GABAAergic neurotransmission, we conducted a whole-cell patch-clamp recording from pyramidal neurons in rat cortical slices to detect spontaneous GABAAR-mediated inhibitory postsynaptic currents (IPSCs). We found that BU dose-dependently prolonged IPSCs. Importantly, the prolonged IPSCs were not attenuated by flumazenil, a benzodiazepine receptor antagonist, suggesting that modulation of IPSCs by BU is mediated by different mechanisms from that of benzodiazepine. Taken together, these data elucidate the basic characteristics of the hypnotic effects of BU and suggest that the enhancement of GABAAR-mediated Cl- flux may be a possible mechanism that contributes to its hypnotic/sedative activity.
Collapse
|
3
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
5
|
Inhibitory effect of anti-seizure medications on ionotropic glutamate receptors: special focus on AMPA receptor subunits. Epilepsy Res 2020; 167:106452. [DOI: 10.1016/j.eplepsyres.2020.106452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/31/2020] [Accepted: 08/25/2020] [Indexed: 01/11/2023]
|
6
|
Snigirov S, Sylantyev S. GABA A receptors activate fish feeding behaviour via two distinct functional pathways. ACTA ACUST UNITED AC 2018; 221:jeb.170514. [PMID: 29191862 DOI: 10.1242/jeb.170514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
Benzodiazepines, acting through ionotropic receptors of γ-aminobutyric acid (GABAA receptors, GABAR), have been shown to modify feeding behaviour and increase appetite in humans and non-human subjects. However, the cellular and molecular mechanisms that underlie connected short-term behavioural fluctuations are still unclear. In the present study, we used Carassius gibelio (Prussian carp) as a model organism to research the impact of scantily explored benzodiazepine phenazepam (PNZ) on feeding behaviour and the related molecular mechanisms of PNZ action at single-cell and single-receptor levels. We found that the feeding activity of C. gibelio is under control of GABARs via two distinct mechanisms: orthosteric (triggered by GABA binding site) and allosteric (triggered by benzodiazepine binding site). PNZ displayed clear stimulatory effects on both mechanisms in a GABA-dependent manner. In addition, orthosteric and allosteric effects were found to be partially competitive, which leads to complex behavioural repercussions of conjoint effects of GABAR ligands.
Collapse
Affiliation(s)
- Sergey Snigirov
- Biological Department, Odessa National Mechnikov University, 2 Shampanskiy Lane, Odessa 65058, Ukraine
| | - Sergiy Sylantyev
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK .,Department for Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square House, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
7
|
Chemla S, Chavane F. Effects of GABAA kinetics on cortical population activity: computational studies and physiological confirmations. J Neurophysiol 2016; 115:2867-79. [PMID: 26912588 DOI: 10.1152/jn.00352.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye (VSD) imaging produces an unprecedented real-time and high-resolution mesoscopic signal to measure the cortical population activity. We have previously shown that the neuronal compartments contributions to the signal are dynamic and stimulus-dependent (Chemla S, Chavane F. Neuroimage 53: 420-438, 2010). Moreover, the VSD signal can also be strongly affected by the network state, such as in anesthetized vs. awake preparations. Here, we investigated the impact of the network state, through GABAA receptors modulation, on the VSD signal using a computational approach. We therefore systematically measured the effect of the GABAA-mediated inhibitory postsynaptic potentials (IPSPs) decay time constant (τG) on our modeled VSD response to an input stimulus of increasing strength. Our simulations suggest that τG strongly modulates the dynamics of the VSD signal, affecting the amplitude, input response function, and the transient balance of excitation and inhibition. We confirmed these predictions experimentally on awake and anesthetized monkeys, comparing VSD responses to drifting gratings stimuli of various contrasts. Lastly, one in vitro study has suggested that GABAA receptors may also be directly affected by the VSDs themselves (Mennerick S, Chisari M, Shu H, Taylor A, Vasek M, Eisenman L, Zorumski C. J Neurosci 30: 2871-2879, 2010). Our modeling approach suggests that the type of modulation described in this study would actually have a negligible influence on the population response. This study highlights that functional results acquired with different techniques and network states must be compared with caution. Biophysical models are proposed here as an adequate tool to delineate the domain of VSD data interpretation.
Collapse
Affiliation(s)
- Sandrine Chemla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada; and
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Carrasco A, Brown TA, Lomber SG. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns. PLoS One 2014; 9:e114550. [PMID: 25494365 PMCID: PMC4262427 DOI: 10.1371/journal.pone.0114550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns) that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus). Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones), complex (noise burst and frequency modulated sweeps), and ecologically relevant (con-specific vocalizations) acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency), irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity) and temporal (duration) acoustic variations.
Collapse
Affiliation(s)
- Andres Carrasco
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Trecia A. Brown
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
[Methohexital for analgosedation of ventilated intensive care patients : prospective nonrandomized single center observational study on incidence of delirium]. Anaesthesist 2014; 63:488-95. [PMID: 24820355 DOI: 10.1007/s00101-014-2317-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Delirium is defined by the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision (DSM-IV-TR) as a potentially reversible disturbance of consciousness and a change of cognition caused by a medical condition, drug intoxication, or medication side effect. Delirium affects up to 80 % of intensive care unit (ICU) patients and is associated with increased morbidity and mortality. One risk factor for development of delirium in ventilated intensive care unit patients is sedation. The German S3 guidelines on "Analgesie, Sedierung und Delirmanagement in der Intensivmedizin" (analgesia, sedation and delirium management in intensive care medicine) of the DGAI (German Society for Anesthesiology and Intensive Care Medicine) and the DIVI (German Interdisciplinary Association for Intensive Care and Emergency Medicine) recommend midazolam and propofol for sedation, although both drugs are associated with a high incidence of delirium. AIM Within the framework of this study the question arose whether the barbiturate methohexital could be associated with a lower incidence of delirium in comparison to midazolam or propofol in analgosedated and ventilated ICU patients. MATERIAL AND METHODS This was a prospective nonrandomized observational cohort study in a mixed medical surgical intensive care unit. Patients ventilated within 72 h after admittance were consecutively allocated to either propofol/remifentanil versus methohexital/remifentanil (expected ventilation duration ≤ 7 days) or midazolam/fentanyl versus methohexital/fentanyl (expected ventilation duration > 7 days) by the attending senior consultant anesthetist at the time of admission and/or intubation. Primary endpoint was delirium at any time during the ICU stay. Delirium was checked every 8 h by ICU nurses using the intensive care delirium screening checklist (ICDSC), with delirium defined as ICDSC ≥ 4 points. Before evaluation of the ICDSC the Richmond agitation sedation scale (RASS) score and the visual analogue scale for pain (VAS target ≤ 4) were measured. To assure reliable evaluation of the ICDSC, the RASS score of the patient at the time of evaluation had to be ≥ - 2. Assuming an incidence of delirium in the midazolam group of 70 % and in the methohexital group of 35 %, 16 patients were needed each in the midazolam/fentanyl and the methohexital/fentanyl cohorts (p = 0.05, β = 0.1). Assuming an incidence of delirium in the propofol group of 50 % and in the methohexital group again of 35 %, 94 patients were needed in the propofol/remifentanil and methohexital/remifentanil groups, respectively (p = 0.05, β = 0.1). RESULTS A total of 222 patients were evaluated, 34 in the methohexital vs. midazolam group and 188 in the methohexital vs. propofol group. Out of 16 patients sedated with midazolam, 15 developed delirium (94 %) in contrast to only 5 out of 18 patients sedated with methohexital (28 %). Thus compared to midazolam the sedation with methohexital reduced the incidence of delirium by 66 % (p < 0.001) corresponding to a number needed to treat (NNT) of 1.5. Out of 94 patients in the propofol/remifentanil group, 64 developed delirium (68 %) in contrast to only 23 out of 94 in the methohexital/remifentanil group (24 %). Thus compared to propofol the sedation with methohexital reduced the incidence of delirium by 44 % (p < 0.001), corresponding to an NNT of 2.5. CONCLUSION Sedation with methohexital compared to midazolam or propofol reduced the incidence of delirium by more than 50 % in ventilated ICU patients.
Collapse
|
10
|
Ortega AOL, Dos Santos MTBR, Mendes FM, Ciamponi AL. Association between anticonvulsant drugs and teeth-grinding in children and adolescents with cerebral palsy. J Oral Rehabil 2014; 41:653-8. [PMID: 24824732 DOI: 10.1111/joor.12185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
The relation between teeth-grinding and the use of drugs acting on the central nervous system of cerebral palsy (CP) patients has not yet been described. The aim of this research was to evaluate the presence or absence of teeth-grinding (sleep and/or awake periods) in normal and in CP children and adolescents, as well as the association of teeth-grinding and use of anticonvulsant drugs. The sample consisted of 207 children and adolescents, divided into three groups: G1, individuals with CP who did not take anticonvulsant drugs; G2, individuals with CP administered medications on a regular basis; and CG, normal individuals. Logistic regression analyses were performed to evaluate the association of teeth-grinding with some variables. No significant statistical differences were observed regarding the presence or absence of teeth-grinding when G1 and G2 were compared. However, compared with the CG, a statistically significant difference was determined, with the CG showing fewer children presenting teeth-grinding (P < 0·001). Among those children/adolescents prescribed drug therapy, the barbiturate group showed a greater frequency of teeth-grinding. CP children and adolescents show a greater and significant presence of grinding of the teeth compared with normal individuals. Subjects taking barbiturate drugs showed greater presence of teeth-grinding, than those who were taking medications from the other groups of anticonvulsant drugs.
Collapse
Affiliation(s)
- A O L Ortega
- Department of Pediatric Dentistry, School of Dentistry of University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Gonzalez J, Morales IS, Villarreal DM, Derrick BE. Low-frequency stimulation induces long-term depression and slow onset long-term potentiation at perforant path-dentate gyrus synapses in vivo. J Neurophysiol 2013; 111:1259-73. [PMID: 24335215 DOI: 10.1152/jn.00941.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of homosynaptic long-term depression (LTD) is thought to mediate a crucial role in sustaining memory function. Our in vivo investigations of LTD expression at lateral (LPP) and medial perforant path (MPP) synapses in the dentate gyrus (DG) corroborate prior demonstrations that PP-DG LTD is difficult to induce in intact animals. In freely moving animals, LTD expression occurred inconsistently among LPP-DG and MPP-DG responses. Interestingly, following acute electrode implantation in anesthetized rats, low-frequency stimulation (LFS; 900 pulses, 1 Hz) promotes slow-onset LTP at both MPP-DG and LPP-DG synapses that utilize distinct induction mechanisms. Systemic administration of the N-methyl-d-aspartate (NMDA) receptor antagonist (+/-)-cyclopiperidine-6-piperiperenzine (CPP; 10 mg/kg) 90 min before LFS selectively blocked MPP-DG but not LPP-DG slow onset LTP, suggesting MPP-DG synapses express a NMDA receptor-dependent slow onset LTP whereas LPP-DG slow onset LTP induction is NMDA receptor independent. In experiments where paired-pulse LFS (900 paired pulses, 200-ms paired-pulse interval) was used to induce LTD, paired-pulse LFS of the LPP resulted in rapid onset LTP of DG responses, whereas paired-pulse LFS of the MPP induced slow onset LTP of DG responses. Although LTD observations were very rare following acute electrode implantation in anesthetized rats, LPP-DG LTD was demonstrated in some anesthetized rats with previously implanted electrodes. Together, our data indicate in vivo PP-DG LTD expression is an inconsistent phenomenon that is primarily observed in recovered animals, suggesting perturbation of the dentate through surgery-related tissue trauma influences both LTD incidence and LTP induction at PP-DG synapses in vivo.
Collapse
Affiliation(s)
- Jossina Gonzalez
- Department of Biology, Neurosciences Research Institute, University of Texas, San Antonio, Texas
| | | | | | | |
Collapse
|
12
|
Carrasco A, Lomber SG. Influence of inter-field communication on neuronal response synchrony across auditory cortex. Hear Res 2013; 304:57-69. [DOI: 10.1016/j.heares.2013.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
13
|
Löscher W, Rogawski MA. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia 2013. [PMID: 23205959 DOI: 10.1111/epi.12025] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The barbiturate phenobarbital has been in use in the treatment of epilepsy for 100 years. It has long been recognized that barbiturates act by prolonging and potentiating the action of γ-aminobutyric acid (GABA) on GABA(A) receptors and at higher concentrations directly activating the receptors. A large body of data supports the concept that GABA(A) receptors are the primary central nervous system target for barbiturates, including the finding that transgenic mice with a point mutation in the β3 GABA(A) -receptor subunit exhibit diminished sensitivity to the sedative and immobilizing actions of the anesthetic barbiturate pentobarbital. Although phenobarbital is only modestly less potent as a GABA(A) -receptor modulator than pentobarbital, phenobarbital is minimally sedating at effective anticonvulsant doses. Possible explanations for the reduced sedative effect of phenobarbital include more regionally restricted action; partial agonist activity; reduced propensity to directly activate GABA(A) receptors (possibly including extrasynaptic receptors containing δ subunits); and reduced activity at other ion channel targets, including voltage-gated calcium channels. In recent years, substantial progress has been made in defining the structural features of GABA(A) receptors responsible for gating and allosteric modulation by drugs. Although the precise sites of action of barbiturates have not yet been defined, the second and third transmembrane domains of the β subunit appear to be critical; binding may involve a pocket formed by β-subunit methionine 286 as well as α-subunit methionine 236. In addition to effects on GABA(A) receptors, barbiturates block AMPA/kainate receptors, and they inhibit glutamate release through an effect on P/Q-type high-voltage activated calcium channels. The combination of these various actions likely accounts for their diverse clinical activities. Despite the remarkable progress of the last century, there is still much to learn about the actions of barbiturates that can be applied to the discovery of new, more therapeutically useful agents.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
14
|
Andres-Mach M, Zolkowska D, Barcicka-Klosowska B, Haratym-Maj A, Florek-Luszczki M, Luszczki JJ. Effect of ACEA--a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:301-9. [PMID: 22789660 DOI: 10.1016/j.pnpbp.2012.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
Abstract
Endogenous cannabinoid ligands and cannabinoid CB1 receptor agonists have been shown to exert anticonvulsant effects in various experimental models of epilepsy. The purpose of this study was to determine the effects of arachidonyl-2'-chloroethylamide (ACEA-a highly selective cannabinoid CB1 receptor agonist) on the protective action of clonazepam, ethosuximide, phenobarbital, and valproate against pentylenetetrazole (PTZ)-induced clonic seizures in mice. To ascertain any pharmacokinetic contribution of ACEA to the observed interactions between tested drugs, free (non-protein bound) plasma and total brain concentrations of the antiepileptic drugs were estimated. Additionally, acute adverse-effect profiles of the combination of ACEA and different classical antiepileptic drugs (clonazepam, ethosuximide, phenobarbital and valproate) with respect to motor performance, long-term memory and skeletal muscular strength were measured. Results indicated that ACEA (10mg/kg, i.p.) co-administered with phenylmethylsulfonyl fluoride (PMSF-a substance protecting ACEA against degradation by the fatty-acid hydrolase; 30mg/kg, i.p.) significantly potentiated the anticonvulsant activity of ethosuximide, phenobarbital and valproate in the mouse PTZ-induced clonic seizure model by reducing their median effective doses (ED(50) values) from 122.8mg/kg to 71.7mg/kg (P<0.01; for ethosuximide), from 13.77mg/kg to 5.26mg/kg (P<0.05; for phenobarbital), and from 142.7mg/kg to 87.3mg/kg (P<0.05; for valproate), respectively. In contrast, ACEA (10mg/kg, i.p.) in combination with PMSF (30mg/kg, i.p.) had no impact on the protective action of clonazepam against PTZ-induced seizures in mice. However, ACEA (10mg/kg)+PMSF (30mg/kg) considerably increased free plasma and total brain concentrations of ethosuximide and valproate in mice suggesting a pharmacokinetic nature of interaction between drugs. In contrast, free plasma and total brain concentrations of clonazepam and phenobarbital remained unchanged after ACEA+PMSF administration and thus, indicating pharmacodynamic interactions. Moreover, none of the examined combinations of ACEA (10mg/kg, i.p.)+PMSF (30mg/kg, i.p.) with clonazepam, ethosuximide, phenobarbital, and valproate (at their ED(50) values from the PTZ-induced seizure test) affected motor coordination in the chimney test, long-term memory in the passive avoidance task, and muscular strength in the grip-strength test in mice, indicating no possible acute adverse effects in animals. In conclusion, pharmacodynamic enhancement of the anticonvulsant potency of phenobarbital by ACEA+PMSF is worthy of recommendation for further clinical settings. Pharmacokinetic interactions of ACEA+PMSF with ethosuximide and valproate seem to be responsible for a significant suppression of PTZ-induced seizures in mice. The combination of ACEA+PMSF with clonazepam seems to be neutral from a preclinical viewpoint.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, PL 20-950 Lublin, Poland
| | | | | | | | | | | |
Collapse
|
15
|
Chu CP, Bing YH, Liu H, Qiu DL. Roles of molecular layer interneurons in sensory information processing in mouse cerebellar cortex Crus II in vivo. PLoS One 2012; 7:e37031. [PMID: 22623975 PMCID: PMC3356402 DOI: 10.1371/journal.pone.0037031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/11/2012] [Indexed: 11/26/2022] Open
Abstract
Background Cerebellar cortical molecular layer interneurons (MLIs) play essential roles in sensory information processing by the cerebellar cortex. However, recent experimental and modeling results are questioning traditional roles for molecular layer inhibition in the cerebellum. Methods and Main Results Synaptic responses of MLIs and Purkinje cells (PCs), evoked by air-puff stimulation of the ipsilateral whisker pad were recorded from cerebellar cortex Crus II in urethane-anesthetized ICR mice by in vivo whole-cell patch-clamp recording techniques. Under current-clamp (I = 0), air-puff stimuli were found to primarily produce inhibition in PCs. In MLIs, this stimulus evoked spike firing regardless of whether they made basket-type synaptic connections or not. However, MLIs not making basket-type synaptic connections had higher rates of background activity and also generated spontaneous spike-lets. Under voltage-clamp conditions, excitatory postsynaptic currents (EPSCs) were recorded in MLIs, although the predominant response of recorded PCs was an inhibitory postsynaptic potential (IPSP). The latencies of EPSCs were similar for all MLIs, but the time course and amplitude of EPSCs varied with depth in the molecular layer. The highest amplitude, shortest duration EPSCs were recorded from MLIs deep in the molecular layer, which also made basket-type synaptic connections. Comparing MLI to PC responses, time to peak of PC IPSP was significantly slower than MLI recorded EPSCs. Blocking GABAA receptors uncovered larger EPSCs in PCs whose time to peak, half-width and 10–90% rising time were also significantly slower than in MLIs. Biocytin labeling indicated that the MLIs (but not PCs) are dye-coupled. Conclusions These findings indicate that tactile face stimulation evokes rapid excitation in MLIs and inhibition occurring at later latencies in PCs in mouse cerebellar cortex Crus II. These results support previous suggestions that the lack of parallel fiber driven PC activity is due to the effect of MLI inhibition.
Collapse
Affiliation(s)
- Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China
- Function Experiment Center, College of Basic Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Yan-Hua Bing
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Heng Liu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, Yanji, Jilin Province, China
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
- * E-mail:
| |
Collapse
|
16
|
Synthesis and antimicrobial activity of coumarin pyrazole pyrimidine 2,4,6(1H,3H,5H)triones and thioxopyrimidine4,6(1H,5H)diones. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0078-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Liu S, Chen JF. Strategies for therapeutic hypometabothermia. JOURNAL OF EXPERIMENTAL STROKE & TRANSLATIONAL MEDICINE 2012; 5:31-42. [PMID: 24179563 PMCID: PMC3811165 DOI: 10.6030/1939-067x-5.1.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal therapy that may cause more systemic as well as regional problems other than providing protection. These problems are commonly seen in hypothermia and barbiturate coma. The main innovative concept of this review is to propose thermogenically optimal and synergistic reduction of core temperature and metabolic rate in therapeutic hypometabothermia using novel and clinically practical approaches. When metabolism and body temperature are reduced in a systematically synergistic manner, the outcome will be maximal protection and safe recovery, which happen in natural process, such as in hibernation, daily torpor and estivation.
Collapse
Affiliation(s)
- Shimin Liu
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, USA
| |
Collapse
|
18
|
Substantia nigra pars reticulata is crucially involved in barbiturate and ethanol withdrawal in mice. Behav Brain Res 2010; 218:152-7. [PMID: 20974184 DOI: 10.1016/j.bbr.2010.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 11/21/2022]
Abstract
Sedative-hypnotic CNS depressant drugs are widely prescribed to treat a variety of disorders, and are abused for their sedative and euphoric effects. Physiological dependence and associated withdrawal episodes are thought to constitute a motivational force that sustains their use/abuse and may contribute to relapse in dependent individuals. Although no animal model duplicates depressant dependence, models for specific factors, like withdrawal, are useful for identifying potential neural determinants of liability in humans. Recent analyses implicate the caudolateral substantia nigra pars reticulata (clSNr) in withdrawal following acute and repeated ethanol exposures in mice, but did not assess its impact on withdrawal from other sedative-hypnotics or whether intrinsic neurons or fibers of passage are involved. Here, we demonstrate that bilateral chemical (ibotenic acid) lesions of the clSNr attenuate barbiturate (pentobarbital) and ethanol withdrawal. Chemical lesions did not affect convulsions in response to pentylenetetrazole, which blocks GABA(A) receptor-mediated transmission. Our results demonstrate that the clSNr nucleus itself rather than fibers of passage is crucial to its effects on barbiturate and ethanol withdrawal. These findings support suggest that clSNr could be one of the shared neural substrates mediating withdrawal from sedative-hypnotic drugs.
Collapse
|
19
|
Sensory stimulus evokes inhibition rather than excitation in cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2010; 487:182-6. [PMID: 20965231 DOI: 10.1016/j.neulet.2010.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/28/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022]
Abstract
Cerebellar Purkinje cells (PC) response precisely to tactile stimulus via granule cells, however, the interaction between sensory evoked synaptic input and the resulting pattern of output spikes in cerebellar cortex is unclear. In this study, we used electrophysiological recording and pharmacological methods to investigate the cerebellar PC in response to natural stimulus on ipsilateral whisker pad in urethane-anesthetized mice. We found that air-puff stimulus on ipsilateral whisker pad evoked neither complex spikes nor simple spike firing, but indeed evoked a strong GABA(A) receptor-mediated inhibition in PCs in cerebellar cortex folium Crus II. Field potential recordings from both molecular layer and PC layer showed that air-puff stimulus evoked a sequence of parallel fiber volley followed by a GABA(A) receptor-mediated inhibition, which completely blocked by AMPA receptor antagonist, NBQX. Cell-attached recordings showed that air-puff stimulus evoked a pause of simple spike firing, GABA(A) receptor antagonist abolished the pause, revealed the tactile stimulus-evoked spike firing in PCs. These results indicated that natural stimulus of whisker pad neither evoked complex spikes, nor fired simple spikes, but induced inhibition in PCs, suggesting that the interneuron network are rapid activated and involved in controlling the spread of sensory information processing in mouse cerebellar cortex folium Crus II.
Collapse
|
20
|
Luszczki JJ, Antkiewicz-Michaluk L, Raszewski G, Czuczwar SJ. Interactions of 1-methyl-1,2,3,4-tetrahydroisoquinoline with lamotrigine, oxcarbazepine, pregabalin, and topiramate in the mouse maximal electroshock-induced seizure model: a type I isobolographic analysis. Epilepsy Res 2010; 89:207-19. [PMID: 20117917 DOI: 10.1016/j.eplepsyres.2010.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 11/20/2022]
Abstract
The aim of this study was to characterize the anticonvulsant effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MeTHIQ--an endogenous parkinsonism-preventing substance) in combination with four second-generation antiepileptic drugs (AEDs: lamotrigine [LTG], oxcarbazepine [OXC], pregabalin [PGB], and topiramate [TPM]) in the mouse maximal electroshock (MES)-induced seizure model by using the type I isobolographic analysis for parallel and non-parallel dose-response relationship curves (DRRCs). Potential adverse-effect profiles of interactions of MeTHIQ with LTG, OXC, PGB and TPM at the fixed-ratio of 1:1 from the MES test with respect to motor performance, long-term memory and skeletal muscular strength were measured along with total brain concentrations of MeTHIQ and TPM. In the mouse MES model, MeTHIQ administered singly had its DRRC parallel to those for OXC and TPM, and simultaneously, non-parallel to those for LTG and PGB. With type I isobolography for parallel DRRCs, the combination of MeTHIQ with TPM at three fixed-ratios of 1:3, 1:1 and 3:1 exerted supra-additive (synergistic) interaction, whereas the combination of MeTHIQ with OXC at the fixed-ratios of 1:3, 1:1 and 3:1 produced additive interaction. Similarly, the type I isobolography for non-parallel DRRCs revealed that the combination of MeTHIQ with LTG and PGB at the fixed-ratio of 1:1 produced additive interaction. For all combinations, neither motor coordination, long-term memory nor muscular strength were affected. Total brain concentrations of MeTHIQ and TPM revealed no significant changes in their concentrations when the drugs were combined at the fixed-ratios of 1:3, 1:1 and 3:1. In conclusion, the synergistic interaction of MeTHIQ with TPM at the fixed-ratios of 1:3, 1:1 and 3:1 against MES-induced seizures was pharmacodynamic in nature and thus, it is worthy of consideration in further clinical settings. The combinations of MeTHIQ with LTG, OXC and PGB were neutral in the mouse MES model.
Collapse
Affiliation(s)
- Jarogniew J Luszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland.
| | | | | | | |
Collapse
|
21
|
Effect of arachidonyl-2'-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the protective action of the various antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:18-25. [PMID: 19751793 DOI: 10.1016/j.pnpbp.2009.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 11/23/2022]
Abstract
The aim of this study was to determine the influence of arachidonyl-2'-chloroethylamide (ACEA - a highly selective cannabinoid type 1 [CB1] receptor agonist) on the protective action and acute adverse effects of carbamazepine, lamotrigine, oxcarbazepine, phenobarbital, phenytoin, and topiramate in the maximal electroshock seizure model and chimney test in mice. Tonic hind limb extension (seizure activity) was evoked in adult male albino Swiss mice by a current (sine-wave, 25 mA, 500 V, 50 Hz, 0.2s stimulus duration) delivered via auricular electrodes. Acute adverse-effect profiles of the studied antiepileptic drugs with respect to motor coordination was assessed in the chimney test. Additionally, long-term memory and skeletal muscular strength were measured along with free plasma (non-protein bound) and total brain antiepileptic drug concentrations. To inhibit the rapid metabolic degradation of ACEA by the fatty-acid amide hydrolase, phenylmethylsulfonyl fluoride (PMSF) was used at a constant ineffective dose of 30 mg/kg. Results indicate that ACEA (2.5 mg/kg, i.p.) co-administered with PMSF (30 mg/kg, i.p.), significantly enhanced the anticonvulsant activity of phenobarbital, but not that of carbamazepine, lamotrigine, oxcarbazepine, phenytoin, or topiramate in the maximal electroshock seizure test in mice. Moreover, ACEA (2.5 mg/kg) with PMSF (30 mg/kg) had no significant impact on the acute adverse effects of all examined antiepileptic drugs in the chimney test in mice. The protective index values (as quotients of the respective TD(50) and ED(50) values denoted from the chimney and maximal electroshock seizure tests, respectively) for the combinations of ACEA (2.5 mg/kg) and PMSF (30 mg/kg) with carbamazepine, oxcarbazepine, phenobarbital, and topiramate were greater than those denoted for the antiepileptic drugs administered alone. Only, the protective index values for the combination of ACEA (2.5 mg/kg) and PMSF (30 mg/kg) with lamotrigine and phenytoin were lower than those determined for the antiepileptic drugs administered alone. Pharmacokinetic experiments revealed that ACEA (2.5 mg/kg) and PMSF (30 mg/kg) affected neither free plasma (non-protein bound) nor total brain concentrations of phenobarbital in mice. Moreover, ACEA and PMSF in combination with carbamazepine, lamotrigine, oxcarbazepine, phenobarbital, phenytoin, and topiramate did not alter long-term memory or skeletal muscular strength in experimental animals. In conclusion, the enhanced anticonvulsant action of phenobarbital by ACEA and PMSF, lack of pharmacokinetic interaction and no acute adverse effects between the examined compounds, make the combination of ACEA and PMSF with phenobarbital of pivotal importance for further experimental and clinical studies. The combinations of ACEA and PMSF with carbamazepine, lamotrigine, oxcarbazepine, phenytoin, and topiramate are neutral from a preclinical viewpoint.
Collapse
|
22
|
Buckingham SD, Higashino Y, Sattelle DB. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone. INVERTEBRATE NEUROSCIENCE 2009; 9:85-9. [PMID: 19847463 DOI: 10.1007/s10158-009-0091-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/18/2009] [Indexed: 02/05/2023]
Abstract
The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.
Collapse
Affiliation(s)
- Steven D Buckingham
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
23
|
Mathers DA, McCarthy SM, Cooke JE, Ghavanini AA, Puil E. Effects of the beta-amino acid antagonist TAG on thalamocortical inhibition. Neuropharmacology 2009; 56:1097-105. [PMID: 19332081 DOI: 10.1016/j.neuropharm.2009.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 01/12/2009] [Accepted: 03/18/2009] [Indexed: 12/31/2022]
Abstract
Chemical transmission at inhibitory synapses in thalamus may involve receptor activation by beta-amino acids and glycine, as well as GABA. Given their hypothesized roles, we investigated effects of the putative beta-amino acid antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide (TAG) on synaptic inhibition in dorsal thalamus. We performed whole-cell recordings in 200-250 microm sections and immunocytochemical (ICC) studies in ventrobasal thalamus of rat brain (P12-P14). Stimulation of medial lemniscus evoked inhibitory postsynaptic currents (IPSCs) which were purely glycinergic or GABA(A)ergic, or most commonly mixed glycinergic and GABA(A)ergic responses, based on abolition by strychnine, bicuculline, or combined antagonism. TAG antagonized mixed IPSCs (IC(50) approximately 70 microM) in a manner distinguishable from classical glycine and GABA(A) receptor antagonists. TAG (250 microM) reduced the amplitude of glycinergic components which had a decay time constant of approximately 9 ms or approximately 230 ms by 45-50%, and a GABA(A)ergic component which had a decay time constant of approximately 40 ms by approximately 60%. As in the glycinergic component, TAG reduced the amplitude of infrequently occurring, pure glycinergic IPSCs. Surprisingly, TAG had no effect on pure GABA(A)ergic IPSCs, with a decay time constant of approximately 20 ms that correlated to kinetics of GABA-activated channels. ICC studies showed co-localization of alpha(1/2) glycine and alpha(4) GABA(A) receptors at inhibitory synapses. Activation of alpha(4) receptors by beta-amino acids may contribute to the GABA(A)ergic component of mixed IPSCs. The short and long-duration glycinergic IPSCs had decay time constants that correlated to the burst durations of single channels opened by beta-amino acids and glycine. Overall, the effects of TAG implicate beta-amino acid involvement in GABA(A)ergic and glycinergic transmission.
Collapse
Affiliation(s)
- David A Mathers
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
24
|
Gingrich KJ, Burkat PM, Roberts WA. Pentobarbital produces activation and block of {alpha}1{beta}2{gamma}2S GABAA receptors in rapidly perfused whole cells and membrane patches: divergent results can be explained by pharmacokinetics. ACTA ACUST UNITED AC 2009; 133:171-88. [PMID: 19171770 PMCID: PMC2638204 DOI: 10.1085/jgp.200810081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Millimolar concentrations of the barbiturate pentobarbital (PB) activate γ-aminobutyric acid (GABA) type A receptors (GABARs) and cause blockade reported by a paradoxical current increase or “tail” upon washout. To explore the mechanism of blockade, we investigated PB-triggered currents of recombinant α1β2γ2S GABARs in whole cells and outside-out membrane patches using rapid perfusion. Whole cell currents showed characteristic bell-shaped concentration dependence where high concentrations triggered tail currents with peak amplitudes similar to those during PB application. Tail current time courses could not be described by multi-exponential functions at high concentrations (≥3,000 μM). Deactivation time course decayed over seconds and was slowed by increasing PB concentration and application time. In contrast, macropatch tail currents manifested eightfold greater relative amplitude, were described by multi-exponential functions, and had millisecond rise times; deactivation occurred over fractions of seconds and was insensitive to PB concentration and application time. A parsimonious gating model was constructed that accounts for macropatch results (“patch” model). Lipophilic drug molecules migrate slowly through cells due to avid partitioning into lipophilic subcellular compartments. Inclusion of such a pharmacokinetic compartment into the patch model introduced a slow kinetic component in the extracellular exchange time course, thereby providing recapitulation of divergent whole cell results. GABA co-application potentiated PB blockade. Overall, the results indicate that block is produced by PB concentrations sixfold lower than for activation involving at least three inhibitory PB binding sites, suggest a role of blocked channels in GABA-triggered activity at therapeutic PB concentrations, and raise an important technical question regarding the effective rate of exchange during rapid perfusion of whole cells with PB.
Collapse
Affiliation(s)
- Kevin J Gingrich
- Department of Anesthesiology, New York University Langone Medical Center, New York, NY 10016, USA.
| | | | | |
Collapse
|
25
|
Rajasekaran K, Sun C, Bertram EH. Altered pharmacology and GABA-A receptor subunit expression in dorsal midline thalamic neurons in limbic epilepsy. Neurobiol Dis 2008; 33:119-32. [PMID: 18992345 DOI: 10.1016/j.nbd.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 08/18/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022] Open
Abstract
The mediodorsal (MD) and paraventricular (PV) thalamic nuclei play a significant role in limbic epilepsy, and previous reports have shown changes in GABA-A receptor (GABAAR) mediated synaptic function. In this study, we examined changes in the pharmacology of GABAergic drugs and the expression of the GABAAR subunits in the MD and PV neurons in epilepsy. We observed nucleus specific changes in the sensitivity of sIPSCs to zolpidem and phenobarbital in MD and PV neurons from epileptic animals. In contrast, the magnitude of change in electrically evoked response (eIPSC) to zolpidem and phenobarbital were uniformly diminished in both MD and PV neurons in epilepsy. Immunohistochemical studies revealed that in epilepsy, there was a reduction in GAD65 expression and NeuN positive neurons in the MD neurons. Also, there was a decrease in immunoreactivity of the alpha1 and beta2/3 subunit of GABAARs, but not the gamma2 of the GABAAR in both MD and PV in epilepsy. These findings demonstrate significant alterations in the pharmacology of GABA and GABAARs in a key region for seizure generation, which may have implications for the physiology and pharmacology of limbic epilepsy.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Neurology, University of Virginia, Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
26
|
Takamura H, Ichisaka S, Watanabe K, Toigawa M, Hata Y. Effects of anesthesia on immunohistochemical detection of phosphorylated extracellular signal-regulated kinase in cerebral cortex. J Neurosci Methods 2008; 170:300-4. [DOI: 10.1016/j.jneumeth.2008.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/20/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
|