1
|
Liang Z, Liu J, Chen S, Zhao X, Chen G, Xie Y, Wang D, Xing F, Mao Y, Zhang W, Wang Z, Yuan J. Postoperative quality of recovery comparison between ciprofol and propofol in total intravenous anesthesia for elderly patients undergoing laparoscopic major abdominal surgery: A randomized, controlled, double-blind, non-inferiority trial. J Clin Anesth 2024; 99:111660. [PMID: 39426369 DOI: 10.1016/j.jclinane.2024.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
STUDY OBJECTIVES We conducted a non-inferiority study to assess the postoperative quality of recovery (QoR) in elderly patients receiving ciprofol or propofol total intravenous anesthersia(TIVA)after elective laparoscopic major abdominal surgery, with QoR-15 scores as the main measure. DESIGN A prospective, double-blind, randomized non-inferiority trial was conducted in the theater, post-anesthesia care unit (PACU), and the ward. PARTICIPANTS 144 elderly patients (age ≥ 65 years) were randomly assigned to either the ciprofol group or the propofol group. INTERVENTIONS The ciprofol group received continuous infusion of ciprofol with remifentanil, and the propofol group received infusion of propofol with remifentanil. OUTCOME MEASURES The primary outcome was the QoR-15 on the first postoperative day (POD1), assessed in both intention-to-treat and per-protocol populations, with the mean difference between groups compared to a non-inferiority threshold of -8. Additional assessments included QoR-15 scores on POD2, 3, and 5 for both analysis sets. Other evaluated perioperative value factors included hemodynamic parameters and injection discomfort in the intention-to-treat analysis. A linear mixed model was utilized to examine the impact of group-time interactions on hemodynamic data and QoR-15. MAIN RESULTS The QoR-15 scores on POD1 in the ciprofol group were non-inferior to those in the propofol group both in intention-to-treat set (mean [95 %CI], 95.9[93.7-98.2] vs. 95.6 [93.3-97.8]; mean difference [95 % CI], 0.4 [-2.8-3.5]; P<0.001 for noninferiority) and per-protocol set (mean [95 %CI], 96.7 [94.4-99.0] vs. 95.7 [93.4-98.0]; mean difference [95 % CI], 1.0 [-2.2-4.3]; P<0.001 for noninferiority). Comparable outcomes were noted on postoperative days 2, 3, and 5 following the procedure in both analysis sets. Additionally: compared with propofol group, the occurrence of injection pain was lower (2.8 % vs. 27.8 %, P < 0.001); the hypotension was less frequent (33.3 % vs. 54.2 %, P = 0.012); the bradycardia was more common (38.9 % vs. 23.6 %, P = 0.048). CONCLUSIONS Ciprofol is not inferior to propofol in QoR. Ciprofol can be suitably administered to elderly patients undergoing elective laparoscopic major abdominal surgery.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Jing Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuhan Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Xiaona Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Gezi Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanle Xie
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Dongmei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, China.
| |
Collapse
|
2
|
Yuan J, Liang Z, Geoffrey MB, Xie Y, Chen S, Liu J, Xia Y, Li H, Zhao Y, Mao Y, Xing N, Yang J, Wang Z, Xing F. Exploring the Median Effective Dose of Ciprofol for Anesthesia Induction in Elderly Patients: Impact of Frailty on ED 50. Drug Des Devel Ther 2024; 18:1025-1034. [PMID: 38585256 PMCID: PMC10999214 DOI: 10.2147/dddt.s453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Explore the median effective dose of ciprofol for inducing loss of consciousness in elderly patients and investigate how frailty influences the ED50 of ciprofol in elderly patients. Patients and Methods A total of 26 non-frail patients and 28 frail patients aged 65-78 years, with BMI ranging from 15 to 28 kg/m2, and classified as ASA grade II or III were selected. Patients were divided into two groups according to frailty: non-frail patients (CFS<4), frail patients (CFS≥4). With an initial dose of 0.3 mg/kg for elderly non-frail patients and 0.25 mg/kg for elderly frail patients, using the up-and-down Dixon method, and the next patient's dose was dependent on the previous patient's response. Demographic information, heart rate (HR), oxygen saturation (SpO2), mean blood pressure (MBP), and bispectral index (BIS) were recorded every 30 seconds, starting from the initiation of drug administration and continuing up to 3 minutes post-administration. Additionally, the total ciprofol dosage during induction, occurrences of hypotension, bradycardia, respiratory depression, and injection pain were recorded. Results The calculated ED50 (95% confidence interval [CI]) and ED95 (95% CI) values for ciprofol-induced loss of consciousness were as follows: 0.267 mg/kg (95% CI 0.250-0.284) and 0.301 mg/kg (95% CI 0.284-0.397) for elderly non-frail patients; and 0.263 mg/kg (95% CI 0.244-0.281) and 0.302 mg/kg (95% CI 0.283-0.412) for elderly frail patients. Importantly, no patients reported intravenous injection pain, required treatment for hypotension, or experienced significant bradycardia. Conclusion Frailty among elderly patients does not exert a notable impact on the median effective dose of ciprofol for anesthesia induction. Our findings suggest that anesthesiologists may forego the necessity of dosage adjustments when administering ciprofol for anesthesia induction in elderly frail patients.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Zenghui Liang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Muhoza Bertrand Geoffrey
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yanle Xie
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Shuhan Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Jing Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Yuzhong Xia
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yanling Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
3
|
Gan TJ, Bertoch T, Habib AS, Yan P, Zhou R, Lai YL, Liu X, Essandoh M, Daley WL, Gelb AW. Comparison of the Efficacy of HSK3486 and Propofol for Induction of General Anesthesia in Adults: A Multicenter, Randomized, Double-blind, Controlled, Phase 3 Noninferiority Trial. Anesthesiology 2024; 140:690-700. [PMID: 38150544 DOI: 10.1097/aln.0000000000004886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
BACKGROUND Propofol is an intravenous anesthetic associated with hypotension, respiratory depression, and injection-site pain. HSK3486 injectable emulsion (ciprofol) is a 2,6-disubstituted phenol derivative with fast onset and quick, stable recovery. Previous studies support HSK3486 as an effective, safe anesthetic with substantially less injection-site pain than propofol. The primary objective of this study was to investigate the noninferiority of HSK3486 compared with propofol in successful general anesthesia induction. METHODS Two hundred fifty-five participants were enrolled in HSK3486-304, a multicenter, randomized (2:1), double-blind, propofol-controlled, phase 3 study evaluating HSK3486 for general anesthesia induction in adults undergoing elective surgery with tracheal intubation. The primary endpoint was successful anesthesia induction, defined as 1 or less on the Modified Observer's Assessment of Alertness/Sedation scale. Key secondary endpoints were proportion of participants with injection-site pain on the Numerical Rating Scale of 1 or greater and a composite endpoint, including the proportion of participants successfully induced while maintaining the desired anesthetic depth and without substantial cardiac and respiratory events. Safety endpoints included adverse events, abnormal vital signs, and injection-site pain. RESULTS Two hundred fifty-one participants (HSK3486, n = 168; propofol, n = 83) were included in the analyses. General anesthesia was successfully induced in 97.0% versus 97.6% of participants with HSK3486 and propofol, respectively. The difference in success rate was -0.57% (95% CI, -5.4 to 4.2%); the noninferiority boundary of -8% was not crossed. Thirty participants (18.0%) had injection-site pain with HSK3486 versus 64 (77.1%) with propofol (P < 0.0001). Eighty-one participants (48.2%) with HSK3486 versus 42 (50.6%) with propofol (P = 0.8780) satisfied the composite endpoint. When injection-site pain was excluded, the incidence of treatment-emergent adverse events related to study drug was 17.9% for HSK3486 and 14.5% for propofol. CONCLUSIONS The study met its primary objective and endpoint, demonstrating noninferiority of HSK3486 compared with propofol in successful anesthetic induction. Substantially less injection-site pain was associated with HSK3486 than with propofol. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Tong J Gan
- Anesthesiology, Critical Care and Pain Medicine Division, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ashraf S Habib
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Pangke Yan
- Haisco Pharmaceutical Group Co., Ltd., Shannan, China
| | - Rong Zhou
- Haisco Pharmaceutical Group Co., Ltd., Shannan, China
| | - Yu-Ling Lai
- Haisco-USA Pharmaceuticals, Inc., Bridgewater, New Jersey
| | - Xiao Liu
- Haisco Pharmaceutical Group Co., Ltd., Shannan, China
| | - Michael Essandoh
- Department of Anesthesiology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Adrian W Gelb
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California
| |
Collapse
|
4
|
Zhang J, Liu R, Bi R, Li X, Xu M, Li L, Su Y, Yan W. Comparison of ciprofol-alfentanil and propofol-alfentanil sedation during bidirectional endoscopy: A prospective, double-blind, randomised, controlled trial. Dig Liver Dis 2024; 56:663-671. [PMID: 37813808 DOI: 10.1016/j.dld.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Although propofol is widely used for gastrointestinal endoscopic sedation, cardiopulmonary adverse events remain common. Ciprofol is a new intravenous anaesthetic agent demonstrating respiratory and hemodynamic stability. AIMS This study aimed to clarify the benefits of ciprofol combined with alfentanil in bidirectional endoscopy (esophagogastroduodenoscopy followed by colonoscopy) to reduce adverse events and improve post-endoscopic recovery. METHODS A total of 185 patients scheduled to undergo bidirectional endoscopy were randomly divided into two groups: ciprofol combined with alfentanil or propofol combined with alfentanil. All patients received 7 µg/kg alfentanil intravenously before the study drugs were administered. The propofol group received a bolus of 1.2 mg/kg (0.12 ml/kg) propofol intravenously, whereas the ciprofol group received a bolus of 0.3 mg/kg (0.12 ml/kg) ciprofol intravenously. The primary outcome was the proportion of patients with cardiopulmonary adverse events (i.e., any one of the airway obstruction, apnoea, hypotension, hypertension, bradycardia, tachycardia or arrhythmias). RESULTS Compared with propofol, ciprofol reduced cardiopulmonary adverse events by 43.51 % (34.4% vs. 60.9 %, P <0.001), mitigated respiratory adverse events by 54.74 % (17.2% vs. 38.0 %, P = 0.002) overall and by 59.05 % (12.9% vs. 31.5 %, P = 0.002) during the induction period. CONCLUSIONS Ciprofol can significantly decrease respiratory depression events and provides a better sedative efficacy than propofol with higher recovery quality and satisfaction.
Collapse
Affiliation(s)
- Jiqiang Zhang
- Department of Anaesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruijuan Liu
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China; Ningxia Medical University School of Clinical Medicine, Yinchuan, China
| | - Ruirui Bi
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China
| | - Xia Li
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China
| | - Mengjun Xu
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China
| | - Lijuan Li
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China; First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yuxi Su
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China
| | - Wenjun Yan
- Department of Anaesthesiology, Gansu Provincial Hospital, No. 204 Dong-gang West Road, Lanzhou, Gansu 730030, China.
| |
Collapse
|
5
|
Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C. The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System. Curr Neuropharmacol 2024; 22:217-240. [PMID: 37563812 PMCID: PMC10788885 DOI: 10.2174/1570159x21666230810110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 02/28/2023] [Indexed: 08/12/2023] Open
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
Collapse
Affiliation(s)
- Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Andrews PL, Williams RS, Sanger GJ. Anti-emetic effects of thalidomide: Evidence, mechanism of action, and future directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100138. [PMID: 36568268 PMCID: PMC9780081 DOI: 10.1016/j.crphar.2022.100138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The rationale for using thalidomide (THD) as a treatment for nausea and vomiting during pregnancy in the late 1950s appears to have been based on its sedative or hypnotic properties. In contrast to contemporaneous studies on the anti-emetic activity of phenothiazines, we were unable to identify publications reporting preclinical or clinical evaluation of THD as an anti-emetic. Our survey of the literature revealed a clinical study in 1965 showing THD reduced vomiting in cancer chemotherapy which was substantiated by similar studies from 2000, particularly showing efficacy in the delayed phase of chemotherapy-induced nausea and vomiting. To identify the mechanism(s) potentially involved in thalidomide's anti-emetic activity we reviewed its pharmacology in the light of nausea and vomiting mechanisms and their pharmacology with a particular emphasis on chemotherapy and pregnancy. The process identified the following potential mechanisms: reduced secretion of Growth Differentiation Factor 15, suppression of inflammation/prostaglandin production, downregulation of cytotoxic drug induced upregulation of iNOS, and modulation of BK (KCa1.1) channels and GABAA/glutamate transmission at critical points in the emetic pathways (nucleus tractus solitarius, area postrema). We propose ways to investigate these hypothesized mechanisms and discuss the associated challenges (e.g., objective quantification of nausea) in addition to some of the more general aspects of developing novel drugs to treat nausea and vomiting.
Collapse
Affiliation(s)
- Paul L.R. Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| | - Robin S.B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Gareth J. Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
7
|
Li X, Yang D, Li Q, Wang H, Wang M, Yan P, Wu N, Li F, Ma S, Ding Y, Liu J, Wang H. Safety, Pharmacokinetics, and Pharmacodynamics of a Single Bolus of the γ-aminobutyric Acid (GABA) Receptor Potentiator HSK3486 in Healthy Chinese Elderly and Non-elderly. Front Pharmacol 2021; 12:735700. [PMID: 34512361 PMCID: PMC8430033 DOI: 10.3389/fphar.2021.735700] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
Background: The present clinical trial investigated the potential influences of dosage and age on the pharmacokinetic properties and safety profile of HSK3486, and whether any adjustment in dosing regimen is necessary in elderly patients. Methods: Twenty-four elderly participants (65–73 years) were apportioned to three equal cohorts to receive a single IV bolus of 0.2, 0.3, and 0.4 mg/kg HSK3486, respectively. An additional control group comprised eight non-elderly participants (21–44 years), who each received a single IV bolus dose of 0.4 mg/kg. Safety was assessed throughout the study, and the clinical effects were assessed based on modified observer’s assessment of alertness/sedation and bispectral index (BIS) monitor. Pharmacokinetic parameters were calculated. Results: The rates of drug-related adverse reactions among the elderly groups were a little higher than that of the non-elderly, and were slightly higher in the elderly receiving 0.4 mg/kg compared with the elderly given lower doses. The pharmacokinetic characteristics of 0.4 mg/kg HSK3486 in the elderly and non-elderly were comparable. The time to recovery was similar in elderly 0.3 mg/kg, elderly 0.4 mg/kg and non-elderly 0.4 mg/kg groups. In the elderly 0.2 mg/kg group, the time to loss of consciousness was a little longer, and the time to recovery was shorter, relative to the other three groups. Conclusions: Administration of 0.3 mg/kg to the elderly and 0.4 mg/kg to the non-elderly were similarly efficacious. A dose of HSK3486 of 0.3 mg/kg may be chosen for clinical use in elderly patients.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Deming Yang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Qianqian Li
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Hong Wang
- Jilin Medical Products Administration, Jilin, China
| | - Meng Wang
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Pangke Yan
- Haisco Pharmaceutical Group, Chengdu, China
| | - Nan Wu
- Haisco Pharmaceutical Group, Chengdu, China
| | | | - Shiping Ma
- Haisco Pharmaceutical Group, Chengdu, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Trial Unit, First Hospital, Jilin University, Jilin, China
| | - Hushan Wang
- Department of Anesthesiology, First Hospital, Jilin University, Jilin, China
| |
Collapse
|
8
|
Zhang Y, Gui H, Duan Z, Yu T, Zhang J, Liang X, Liu C. Dopamine D1 Receptor in the Nucleus Accumbens Modulates the Emergence from Propofol Anesthesia in Rat. Neurochem Res 2021; 46:1435-1446. [PMID: 33683630 DOI: 10.1007/s11064-021-03284-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in β-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Gui
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zikun Duan
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Liu PF, Wang Y, Zhang R, Xu L, Li JB, Mu D. Propofol modulates inhibitory inputs in paraventricular thalamic nucleus of mice. Neurosci Lett 2021; 756:135950. [PMID: 33979698 DOI: 10.1016/j.neulet.2021.135950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Abstract
The mechanisms of general anaesthetics such as propofol have drawn substantial attention. The effects of propofol on inhibitory postsynaptic currents are not exactly the same in different brain nuclei. Recent studies revealed that the paraventricular thalamic nucleus (PVT) is a critical nucleus modulating wakefulness. However, the effects of propofol on PVT neurons and the mechanisms underlying such effects remain unknown. Here, we performed the whole-cell recording of the PVT neurons in acute brain slices and bath application of propofol. We found that propofol hyperpolarized the membrane potentials of the PVT neurons and suppressed the action potentials induced by step-current injection. Propofol did not affect the spontaneous inhibitory postsynaptic currents (sIPSCs) amplitude or frequency, but prolonged the sIPSCs half-width. Besides, propofol increased miniature inhibitory synaptic currents (mIPSCs) frequency and half-width. Furthermore, propofol could induce GABAA receptors-mediated tonic inhibitory currents dose-dependently. Thus, our results demonstrate that propofol hyperpolarizes PVT neurons by modulating inhibitory currents via GABAA receptors in mice.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Bao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Hadjipavlou G, Warnaby CE, Fitzgerald J, Sleigh J. Contributions of synaptic and astrocyte physiology to the anaesthetised encephalogram revealed using a computational model. Br J Anaesth 2021; 126:985-995. [PMID: 33773753 DOI: 10.1016/j.bja.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND General anaesthesia is known to enhance inhibitory synaptic transmission to produce characteristic effects on the EEG and reduction in brain metabolism secondary to reduced neuronal activity. Evidence suggests that anaesthesia might have a direct effect on synaptic metabolic processes, and this relates to anaesthesia sensitivity. We explored elements of synaptic transmission looking for possible contributions to the anaesthetised EEG and how it may modulate anaesthesia sensitivity. METHODS We developed a Hodgkin-Huxley-type neural network computer simulation capable of mimicking anaesthetic prolongation of gamma-aminobutyric acid (GABA)ergic inhibitory postsynaptic potentials (IPSPs), and capable of altering postsynaptic ion homeostasis and neurotransmitter recycling. We examined their interactions on simulated electrocorticography (sECoG), and compared these with published anaesthesia EEG spectra. RESULTS The sECoG spectra from the model were comparable with published normal awake EEG spectra. Prolongation of IPSP duration in the model caused inhibition of high frequencies and saturation of low frequencies with a peak in keeping with current evidence. IPSP prolongation alone was unable to reproduce alpha rhythms or the generalised increase in EEG power found with anaesthesia. Adding inhibition of postsynaptic ion homeostasis to IPSP prolongation helped retain alpha rhythms, increased sECoG power, and antagonised the slow-wave saturation peak in a dose-dependent fashion that appeared dependent on the postsynaptic membrane potential, providing a plausible mechanism for how metabolic changes can modulate anaesthesia sensitivity. CONCLUSIONS Our model suggests how metabolic processes can modulate anaesthesia and produce non-receptor dependent drug sensitivity.
Collapse
Affiliation(s)
- George Hadjipavlou
- Nuffield Department of Anaesthesia, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Catherine E Warnaby
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James Fitzgerald
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jamie Sleigh
- Department of Anaesthesia, Waikato Clinical Campus, University of Auckland, Hamilton, New Zealand
| |
Collapse
|
11
|
Zhang XY, Zhang YD, Cui BR, Jin R, Chu CP, Jin XH, Qiu DL. Propofol facilitates climbing fiber-Purkinje cell synaptic transmission via NMDA receptor in vitro in mice. Eur J Pharmacol 2020; 887:173474. [PMID: 32783960 DOI: 10.1016/j.ejphar.2020.173474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022]
Abstract
Propofol is generally used for the induction and maintenance of anesthesia in clinical procedures via activation of γ -aminobutyric acid A (GABAA) receptors. When administered at the clinical dose, propofol use is associated with movement disorders, including dystonia and ataxia, suggesting that propofol administration impacts the function of cerebellar neuronal circuitry. In this study, we investigated the effect of propofol on climbing fiber (CF)-Purkinje cell (PC) synaptic transmission in mouse cerebellar slices in the absence of GABAergic inhibition using a whole-cell recording technique and pharmacological methods. Our results showed that bath application of propofol enhanced CF-PC synaptic transmission, which was demonstrated by an increased amplitude and area under the curve (AUC) of the excitatory postsynaptic currents (EPSCs) accompanied by a decrease in the paired-pulse ratio (PPR). The propofol-induced increase in the amplitude of P1 was concentration-dependent with a half effective concentration (EC50) of 20.9 μM. The propofol-induced increases in the amplitude and AUC of CF-PC EPSCs were abolished by an N-Methyl-D-aspartate (NMDA) receptor blocker. Furthermore, the application of NMDA enhanced CF-PC EPSCs and overwhelmed the effect of propofol on CF-PC EPSCs. Moreover, intracellular blockade of NMDA receptors attenuated the propofol-induced enhancement of CF-PC synaptic transmission but strengthened the propofol-induced change in the PPR. These results indicate that propofol enhances CF-PC synaptic transmission by activation of NMDA receptors in the mouse cerebellar cortex, suggesting that propofol administration might be involved in propofol-induced dysfunction of the cerebellum via NMDA receptors.
Collapse
Affiliation(s)
- Xin-Yuan Zhang
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Yi-Dan Zhang
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Bai-Ri Cui
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Ri Jin
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Xian-Hua Jin
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China.
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
12
|
Hausenloy DJ, Bøtker HE, Ferdinandy P, Heusch G, Ng GA, Redington A, Garcia-Dorado D. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 2020; 115:1167-1177. [PMID: 30796814 DOI: 10.1093/cvr/cvz053] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often complicates this condition, are among the leading causes of death and disability worldwide. To reduce myocardial infarct (MI) size and prevent heart failure, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). In this regard, targeting cardiac innervation may provide a novel therapeutic strategy for cardioprotection. A number of cardiac neural pathways mediate the beneficial effects of cardioprotective strategies such as ischaemic preconditioning and remote ischaemic conditioning, and nerve stimulation may therefore provide a novel therapeutic strategy for cardioprotection. In this article, we provide an overview of cardiac innervation and its impact on acute myocardial IRI, the role of extrinsic and intrinsic cardiac neural pathways in cardioprotection, and highlight peripheral and central nerve stimulation as a cardioprotective strategy with therapeutic potential for reducing MI size and preventing HF following AMI. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Andrew Redington
- Cincinnati Children's Hospital Medical Center, Heart Institute, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Garcia-Dorado
- Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Universitat Autónoma de Barcelona, Spain.,Instituto CIBER de Enfermedades Cardiovasculares (CIBERCV): Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Germann AL, Pierce SR, Senneff TC, Burbridge AB, Steinbach JH, Akk G. Steady-state activation and modulation of the synaptic-type α1β2γ2L GABA A receptor by combinations of physiological and clinical ligands. Physiol Rep 2019; 7:e14230. [PMID: 31549483 PMCID: PMC6757177 DOI: 10.14814/phy2.14230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022] Open
Abstract
The synaptic α1β2γ2 GABAA receptor is activated phasically by presynaptically released GABA. The receptor is considered to be inactive between synaptic events when exposed to ambient GABA because of its low resting affinity to the transmitter. We tested the hypothesis that a combination of physiological and/or clinical positive allosteric modulators of the GABAA receptor with ambient GABA generates measurable steady-state activity. Recombinant α1β2γ2L GABAA receptors were expressed in Xenopus oocytes and activated by combinations of low concentrations of orthosteric (GABA, taurine) and allosteric (the steroid allopregnanolone, the anesthetic propofol) agonists, in the absence and presence of the inhibitory steroid pregnenolone sulfate. Steady-state activity was analyzed using the three-state cyclic Resting-Active-Desensitized model. We estimate that the steady-state open probability of the synaptic α1β2γ2L GABAA receptor in the presence of ambient GABA (1 μmol/L), taurine (10 μmol/L), and physiological levels of allopregnanolone (0.01 μmol/L) and pregnenolone sulfate (0.1 μmol/L) is 0.008. Coapplication of a clinical concentration of propofol (1 μmol/L) increases the steady-state open probability to 0.03. Comparison of total charge transfer for phasic and tonic activity indicates that steady-state activity can contribute strongly (~20 to >99%) to integrated activity from the synaptic GABAA receptor.
Collapse
Affiliation(s)
- Allison L. Germann
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Spencer R. Pierce
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Thomas C. Senneff
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Ariel B. Burbridge
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
| | - Joe Henry Steinbach
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
- Taylor Family Institute for Innovative Psychiatric ResearchWashington University School of MedicineSt. LouisMissouri
| | - Gustav Akk
- Department of AnesthesiologyWashington University School of MedicineSt. LouisMissouri
- Taylor Family Institute for Innovative Psychiatric ResearchWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
14
|
Cortico-Thalamic Circuit Model for Bottom-Up and Top-Down Mechanisms in General Anesthesia Involving the Reticular Activating System. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.95498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Reddy DS, Chuang SH, Hunn D, Crepeau AZ, Maganti R. Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Res 2018; 147:32-41. [PMID: 30212766 PMCID: PMC6192845 DOI: 10.1016/j.eplepsyres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
Sleep plays an intricate role in epilepsy and can affect the frequency and occurrence of seizures. With nearly 35% of U.S. adults failing to obtain the recommended 7 h of sleep every night, understanding the complex relationship between sleep and epilepsy is of utmost relevance. Sleep deprivation is a common trigger of seizures in many persons with epilepsy and sleep patterns play a role in the occurrence of seizures. Some patients have their first seizure or repeated seizures after an "all-nighter" at college or after a long period of chronic sleep deprivation. The strength of the relationship between sleep and seizures varies between patients, but improving sleep and optimizing seizure control can have significant positive effects on the quality of life for all these patients. Research has shown that the changes in the brain's electrical and hormonal activity occurring during normal sleep-wake cycles can be linked to both sleep and seizure patterns. Many questions remain to be answered about sleep and epilepsy. How can sleep deprivation trigger an epileptic seizure? How do circadian and hormonal changes influence sleep pattern and seizure occurrence? Can hormones or sleeping pills help with sleep in epilepsy? In this article we discuss these and many other questions on sleep in epilepsy, with an emphasis on sleep architecture, hormone changes, mechanistic factors, and possible prevention strategies.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA.
| | - Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Dayton Hunn
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Amy Z Crepeau
- Department of Neurology, Mayo Clinic Hospital, Phoenix, AZ 85054, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
16
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Khozhai LI. Formation of GABA-Aα1 and GABA-B1 receptor-mediated inhibitory network in the ventrolateral part of the solitary tract nucleus during the early postnatal period under normal conditions and prenatal serotonin deficiency. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567816060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
The existing clinical studies on remote ischemic preconditioning in patients undergoing cardiovascular surgery are critically reviewed, with a focus on infarct size reduction and clinical outcome as end points. Confounders, notably the use of propofol anesthesia are identified. The need for better designed trials with a more targeted approach is emphasized.
Collapse
Affiliation(s)
- Gerd Heusch
- 1 Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| |
Collapse
|
19
|
Kaneko K, Koyanagi Y, Oi Y, Kobayashi M. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex. Neuroscience 2016; 339:548-560. [DOI: 10.1016/j.neuroscience.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 11/15/2022]
|
20
|
McDougall SJ, Guo H, Andresen MC. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J Physiol 2016; 595:901-917. [PMID: 27616729 DOI: 10.1113/jp272898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Haoyao Guo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Woll KA, Murlidaran S, Pinch BJ, Hénin J, Wang X, Salari R, Covarrubias M, Dailey WP, Brannigan G, Garcia BA, Eckenhoff RG. A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes. J Biol Chem 2016; 291:20473-86. [PMID: 27462076 PMCID: PMC5034043 DOI: 10.1074/jbc.m116.736975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity.
Collapse
Affiliation(s)
- Kellie A Woll
- From the Departments of Anesthesiology and Critical Care and Pharmacology and
| | | | - Benika J Pinch
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Jérôme Hénin
- the Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS UMR 8251 and Université Paris Diderot, 5013 Paris, France, and
| | - Xiaoshi Wang
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Reza Salari
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Manuel Covarrubias
- the Department of Neuroscience and Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - William P Dailey
- the Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Grace Brannigan
- the Center for Computational and Integrative Biology and Department of Physics, Rutgers University, Camden, New Jersey 08102
| | - Benjamin A Garcia
- the Epigenetics Program, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
22
|
Fu B, Wang Y, Yang H, Yu T. Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices. Neurochem Res 2016; 41:3181-3191. [PMID: 27561291 DOI: 10.1007/s11064-016-2042-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency. Furthermore, etomidate not only prolonged the decay time of miniature inhibitory postsynaptic currents (mIPSCs) but also increased the amplitude. On the other hand, etomidate significantly decreased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (sEPSCs), without altering the amplitude or decay time in the absence of bicuculline. When GABAA receptors were blocked using bicuculline, the effects of etomidate on sEPSCs were mostly eliminated. These results suggest that etomidate enhances GABAergic transmission mainly through postsynaptic mechanism in thalamocortical neuronal network. Etomidate attenuates glutamatergic transmission predominantly through presynaptic action and requires presynaptic GABAA receptors involvement.
Collapse
Affiliation(s)
- Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Hao Yang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Dalian road 149, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
23
|
Mastitskaya S, Basalay M, Hosford PS, Ramage AG, Gourine A, Gourine AV. Identifying the Source of a Humoral Factor of Remote (Pre)Conditioning Cardioprotection. PLoS One 2016; 11:e0150108. [PMID: 26918777 PMCID: PMC4769182 DOI: 10.1371/journal.pone.0150108] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/09/2016] [Indexed: 01/23/2023] Open
Abstract
Signalling pathways underlying the phenomenon of remote ischaemic preconditioning (RPc) cardioprotection are not completely understood. The existing evidence agrees that intact sensory innervation of the remote tissue/organ is required for the release into the systemic circulation of preconditioning factor(s) capable of protecting a transplanted or isolated heart. However, the source and molecular identities of these factors remain unknown. Since the efficacy of RPc cardioprotection is critically dependent upon vagal activity and muscarinic mechanisms, we hypothesized that the humoral RPc factor is produced by the internal organ(s), which receive rich parasympathetic innervation. In a rat model of myocardial ischaemia/reperfusion injury we determined the efficacy of limb RPc in establishing cardioprotection after denervation of various visceral organs by sectioning celiac, hepatic, anterior and posterior gastric branches of the vagus nerve. Electrical stimulation was applied to individually sectioned branches to determine whether enhanced vagal input to a particular target area is sufficient to establish cardioprotection. It was found that RPc cardioprotection is abolished in conditions of either total subdiaphragmatic vagotomy, gastric vagotomy or sectioning of the posterior gastric branch. The efficacy of RPc cardioprotection was preserved when hepatic, celiac or anterior gastric vagal branches were cut. In the absence of remote ischaemia/reperfusion, electrical stimulation of the posterior gastric branch reduced infarct size, mimicking the effect of RPc. These data suggest that the circulating factor (or factors) of RPc are produced and released into the systemic circulation by the visceral organ(s) innervated by the posterior gastric branch of the vagus nerve.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London (UCL), London, United Kingdom
| | - Marina Basalay
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London (UCL), London, United Kingdom
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London (UCL), London, United Kingdom
| | - Andrew G. Ramage
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London (UCL), London, United Kingdom
| | - Andrey Gourine
- Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (AVG); (AG)
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London (UCL), London, United Kingdom
- * E-mail: (AVG); (AG)
| |
Collapse
|
24
|
Propofol facilitates excitatory inputs of cerebellar Purkinje cells by depressing molecular layer interneuron activity during sensory information processing in vivo in mice. Neuroreport 2015; 26:921-7. [DOI: 10.1097/wnr.0000000000000449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Norberg Å, Koch P, Kanes SJ, Björnsson MA, Barassin S, Ahlén K, Kalman S. A Bolus and Bolus Followed by Infusion Study of AZD3043, an Investigational Intravenous Drug for Sedation and Anesthesia. Anesth Analg 2015; 121:894-903. [DOI: 10.1213/ane.0000000000000804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014; 8:232. [PMID: 25540612 PMCID: PMC4261904 DOI: 10.3389/fnsys.2014.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
The role of extra-synaptic receptors in the regulation of excitation and inhibition in the brain has attracted increasing attention. Because activity in the extra-synaptic receptors plays a role in regulating the level of excitation and inhibition in the brain, they may be important in determining the level of consciousness. This paper reviews briefly the literature on extra-synaptic GABA and NMDA receptors and their affinity to anesthetic drugs. We propose a neural population model that illustrates how the effect of the anesthetic drug propofol on GABAergic extra-synaptic receptors results in changes in neural population activity and the electroencephalogram (EEG). Our results show that increased tonic inhibition in inhibitory cortical neurons cause a dramatic increase in the power of both δ− and α− bands. Conversely, the effects of increased tonic inhibition in cortical excitatory neurons and thalamic relay neurons have the opposite effect and decrease the power in these bands. The increased δ-activity is in accord with observed data for deepening propofol anesthesia; but is absolutely dependent on the inclusion of extrasynaptic (tonic) GABA action in the model.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Axel Hutt
- INRIA CR Nancy - Grand Est, Team Neurosys Villers-les-Nancy, France
| | - Jamie Sleigh
- Department of Anaesthesiology, Waikato Clinical School, University of Auckland Hamilton, New Zealand
| |
Collapse
|
27
|
Eckle VS, Rudolph U, Antkowiak B, Grasshoff C. Propofol modulates phasic and tonic GABAergic currents in spinal ventral horn interneurones. Br J Anaesth 2014; 114:491-8. [PMID: 25150989 DOI: 10.1093/bja/aeu269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Surgical interventions like skin incisions trigger withdrawal reflexes which require motor neurones and local circuit interneurones in the spinal ventral horn. This region plays a key role in mediating immobilizing properties of the GABAergic anaesthetic propofol. However, it is unclear how propofol modulates GABA(A) receptors in the spinal ventral horn and whether tonic or phasic inhibition is involved. METHODS Organotypic spinal cord tissue slices were prepared from mice. Whole-cell recordings were performed for quantifying effects of propofol on GABA(A) receptor-mediated phasic transmission and tonic conductance. RESULTS Propofol increased GABAergic phasic transmission by a prolongation of the decay time constant in a concentration-dependent manner. The amount of the charge transferred per inhibitory post-synaptic current, described by the area under the curve, was significantly augmented by 1 µM propofol (P<0.01). A GABA(A) receptor-mediated tonic current was not induced by 1 µM propofol but at a concentration of 5 µM (P<0.05). CONCLUSIONS Propofol depresses ventral horn interneurones predominantly by phasic rather than by tonic GABA(A) receptor-mediated inhibition. However, the present results suggest that the involvement of a tonic inhibition might contribute to the efficacy of propofol to depress nociceptive reflexes at high concentrations of the anaesthetic.
Collapse
Affiliation(s)
- V S Eckle
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - U Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - B Antkowiak
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - C Grasshoff
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
28
|
Hutt A, Buhry L. Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. J Comput Neurosci 2014; 37:417-37. [PMID: 24976146 PMCID: PMC4224752 DOI: 10.1007/s10827-014-0512-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Anaesthetic agents are known to affect extra-synaptic GABAergic receptors, which induce tonic inhibitory currents. Since these receptors are very sensitive to small concentrations of agents, they are supposed to play an important role in the underlying neural mechanism of general anaesthesia. Moreover anaesthetic agents modulate the encephalographic activity (EEG) of subjects and hence show an effect on neural populations. To understand better the tonic inhibition effect in single neurons on neural populations and hence how it affects the EEG, the work considers single neurons and neural populations in a steady-state and studies numerically and analytically the modulation of their firing rate and nonlinear gain with respect to different levels of tonic inhibition. We consider populations of both type-I (Leaky Integrate-and-Fire model) and type-II (Morris-Lecar model) neurons. To bridge the single neuron description to the population description analytically, a recently proposed statistical approach is employed which allows to derive new analytical expressions for the population firing rate for type-I neurons. In addition, the work shows the derivation of a novel transfer function for type-I neurons as considered in neural mass models and studies briefly the interaction of synaptic and extra-synaptic inhibition. We reveal a strong subtractive and divisive effect of tonic inhibition in type-I neurons, i.e. a shift of the firing rate to higher excitation levels accompanied by a change of the nonlinear gain. Tonic inhibition shortens the excitation window of type-II neurons and their populations while maintaining the nonlinear gain. The gained results are interpreted in the context of recent experimental findings under propofol-induced anaesthesia.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA Grand Est - Nancy, Team NEUROSYS, 615 rue du Jardin Botanique, 54602 Villers-les-Nancy, France
| | - Laure Buhry
- INRIA Grand Est - Nancy, Team NEUROSYS, 615 rue du Jardin Botanique, 54602 Villers-les-Nancy, France
| |
Collapse
|
29
|
Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIα in young rats. Neurosci Lett 2014; 560:62-6. [DOI: 10.1016/j.neulet.2013.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/05/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
|
30
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
31
|
Wakita M, Kotani N, Nonaka K, Shin MC, Akaike N. Effects of propofol on GABAergic and glutamatergic transmission in isolated hippocampal single nerve-synapse preparations. Eur J Pharmacol 2013; 718:63-73. [DOI: 10.1016/j.ejphar.2013.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023]
|
32
|
McDougall SJ, Andresen MC. Low-fidelity GABA transmission within a dense excitatory network of the solitary tract nucleus. J Physiol 2012; 590:5677-89. [PMID: 22946100 DOI: 10.1113/jphysiol.2012.241976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Visceral primary afferents enter the CNS at the caudal solitary tract nucleus (NTS), and activate central pathways key to autonomic and homeostatic regulation. Excitatory transmission from primary solitary tract (ST)-afferents consists of multiple contacts originating from single axons that offer a remarkably high probability of glutamate release and high safety factor for ST afferent excitation. ST afferent activation sometimes triggers polysynaptic GABAergic circuits, which feedback onto second-order NTS neurons. Although inhibitory transmission is observed at second-order neurons, much less is known about the organization and mechanisms regulating GABA transmission. Here, we used a focal pipette to deliver minimal stimulus shocks near second-order NTS neurons in rat brainstem slices and directly activated single GABAergic axons. Most minimal focal shocks activated low jitter EPSCs from single axons with characteristics resembling ST afferents. Much less commonly (9% of sites), minimal focal shocks activated monosynaptic IPSCs at fixed latency (low jitter) that often failed (30%) and had no frequency-dependent facilitation or depression. These GABA release characteristics contrasted markedly to the unfailing, large amplitudes for glutamate released during ST-EPCSs recorded from the same neurons. Surprisingly, unitary GABAergic IPSCs were only weakly calcium dependent. In some neurons, strong focal shocks evoked compound IPSCs indicating convergent summation of multiple inhibitory axons. Our studies demonstrate that second-order NTS neurons receive GABAergic transmission from a diffuse network of inhibitory axons that rely on an intrinsically less reliable and substantially weaker release apparatus than ST excitation. Effective inhibition depends on co-activation of convergent inputs to blunt excitatory drive.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR, USA.
| | | |
Collapse
|
33
|
Jin Z, Choi MJ, Park CS, Park YS, Jin YH. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons. Brain Res 2012; 1432:1-6. [DOI: 10.1016/j.brainres.2011.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/12/2011] [Accepted: 11/04/2011] [Indexed: 12/01/2022]
|
34
|
Herman MA, Gillis RA, Vicini S, Dretchen KL, Sahibzada N. Tonic GABAA receptor conductance in medial subnucleus of the tractus solitarius neurons is inhibited by activation of μ-opioid receptors. J Neurophysiol 2011; 107:1022-31. [PMID: 22114164 DOI: 10.1152/jn.00853.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory previously reported that gastric activity is controlled by a robust GABA(A) receptor-mediated inhibition in the medial nucleus of the tractus solitarius (mNTS) (Herman et al. 2009), and that μ-opioid receptor activation inhibits gastric tone by suppression of this GABA signaling (Herman et al. 2010). These data raised two questions: 1) whether any of this inhibition was due to tonic GABA(A) receptor-mediated conductance in the mNTS; and 2) whether μ-opioid receptor activation suppressed both tonic and phasic GABA signaling. In whole cell recordings from rat mNTS neurons, application of three GABA(A) receptor antagonists (gabazine, bicuculline, and picrotoxin) produced a persistent reduction in holding current and decrease in population variance or root mean square (RMS) noise, suggesting a blockade of tonic GABA signaling. Application of gabazine at a lower concentration abolished phasic currents, but had no effect on tonic currents or RMS noise. Application of the δ-subunit preferring agonist gaboxadol (THIP) produced a dose-dependent persistent increase in holding current and RMS noise. Pretreatment with tetrodotoxin prevented the action of gabazine, but had no effect on the THIP-induced current. Membrane excitability was unaffected by the selective blockade of phasic inhibition, but was increased by blockade of both phasic and tonic currents. In contrast, activation of tonic currents decreased membrane excitability. Application of the μ-opioid receptor agonist DAMGO produced a persistent reduction in holding current that was not observed following pretreatment with a GABA(A) receptor antagonist and was not evident in mice lacking the δ-subunit. These data suggest that mNTS neurons possess a robust tonic inhibition that is mediated by GABA(A) receptors containing the δ-subunit, that determines membrane excitability, and that is partially regulated by μ-opioid receptors.
Collapse
Affiliation(s)
- Melissa A Herman
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
35
|
Hutt A. The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia. Cogn Neurodyn 2011; 6:227-37. [PMID: 23730354 DOI: 10.1007/s11571-011-9182-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/16/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022] Open
Abstract
Tonic inhibition has been found experimentally in single neurons and affects the activity of neural populations. This kind of inhibition is supposed to set the background or resting level of neural activity and plays a role in the brains arousal system, e.g. during general anaesthesia. The work shows how to involve tonic inhibition in population rate-coding models by deriving a novel transfer function. The analytical and numerical study of the novel transfer function reveals the impact of tonic inhibition on the population firing rate. Finally, a first application to a recent neural field model for general anaesthesia discusses the origin of the loss of consciousness during anaesthesia.
Collapse
Affiliation(s)
- Axel Hutt
- INRIA CR Nancy, Grand Est, CS20101, 54603 Villers-ls-Nancy Cedex, France
| |
Collapse
|
36
|
Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron. J Anesth 2011; 25:727-33. [DOI: 10.1007/s00540-011-1186-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
37
|
Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus. Neuroscience 2010; 174:1-9. [PMID: 21129447 DOI: 10.1016/j.neuroscience.2010.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/22/2022]
Abstract
Synaptic terminals often contain metabotropic receptors that act as autoreceptors to control neurotransmitter release. Less appreciated is the heterosynaptic crossover of glutamate receptors to control GABA release and vice versa GABA receptors which control glutamate release. In the brainstem, activation of solitary tract (ST) afferents releases glutamate onto second-order neurons within the solitary tract nucleus (NTS). Multiple metabotropic receptors are expressed in NTS for glutamate (mGluRs) and for GABA (GABA(B)). The present report identifies mGluR regulation of glutamate release at second and higher order sensory neurons in NTS slices. We found strong inhibition of glutamate release to group II and III mGluR activation on mechanically isolated NTS neurons. However, the same mGluR-selective antagonists paradoxically decreased glutamate release (miniature, mEPSCs) at identified second-order NTS neurons. Unaltered amplitudes were consistent with selective presynaptic mGluR actions. GABA(B) blockade in slices resolved the paradoxical differences and revealed a group II/III mGluR negative feedback of mEPSC frequency similar to isolated neurons. Thus, the balance of glutamate control is tipped by mGluR receptors on GABA terminals resulting in predominating heterosynaptic GABA(B) inhibition of glutamate release. Regulation by mGluR or GABA(B) was not consistently evident in excitatory postsynaptic currents (EPSCs) in higher-order NTS neurons demonstrating metabotropic receptor distinctions in processing at different NTS pathway stages. These cellular localizations may figure importantly in understanding interventions such as brain-penetrant compounds or microinjections. We conclude that afferent glutamate release in NTS produces a coordinate presynaptic activation of co-localized mGluR and GABA(B) feedback on cranial afferent terminals to regulate glutamate release.
Collapse
|
38
|
Dufour A, Tell F, Baude A. Perinatal development of inhibitory synapses in the nucleus tractus solitarii of the rat. Eur J Neurosci 2010; 32:538-49. [PMID: 20718854 DOI: 10.1111/j.1460-9568.2010.07309.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nucleus tractus solitarii (NTS) plays a key role in the central control of the autonomic nervous system. In adult rats, both GABA and glycine are used as inhibitory neurotransmitter in the NTS. Using a quantitative morphological approach, we have investigated the perinatal development of inhibitory synapses in the NTS. The density of both inhibitory axon terminals and synapses increased from embryonic day 20 until the end of the second postnatal week (postnatal day 14). Before birth, only GABAergic axon terminals developed and their number increased during the first postnatal week. Mixed GABA/glycine axon terminals appeared at birth and their number increased during the first postnatal week. This suggests the development of a mixed GABA/glycine inhibition in parallel to pure GABA inhibition. However, whereas GABAergic axon terminals were distributed throughout the NTS, mixed GABA/glycine axon terminals were strictly located in the lateral part of the NTS. Established at birth, this specific topography remained in the adult rat. From birth, GABA(A) receptors, glycine receptors and gephyrin were clustered in inhibitory synapses throughout the NTS, revealing a neurotransmitter-receptor mismatch within the medial part of the NTS. Together these results suggest that NTS inhibitory networks develop and mature until postnatal day 14. Developmental changes in NTS synaptic inhibition may play an important role in shaping neural network activity during a time of maturation of autonomic functions. The first two postnatal weeks could represent a critical period where the impact of the environment influences the physiological phenotypes of adult rats.
Collapse
Affiliation(s)
- Amandine Dufour
- Centre National de Recherche Scientifique, CRN2M, Unité Mixte de Recherche 6231, Université Paul Cézanne, Université de Méditerranée, IFR Jean Roche, Faculté de Médecine, CS80011, Boulevard Pierre Dramard, 13344, Marseille Cx15, France
| | | | | |
Collapse
|
39
|
Abstract
GABAA receptors mediate the majority of the fast inhibition in the mature brain and play an important role in the pathogenesis of many neurological and psychiatric disorders. The αβδ GABAA receptor localizes extra- or perisynaptically and mediates GABAergic tonic inhibition. Compared with synaptically localized αβγ receptors, αβδ receptors are more sensitive to GABA, display relatively slower desensitization and exhibit lower efficacy to GABA agonism. Interestingly, αβδ receptors can be positively modulated by a variety of structurally different compounds, even at saturating GABA concentrations. This review focuses on allosteric modulation of recombinant αβδ receptor currents and αβδ receptor-mediated tonic currents by anesthetics and ethanol. The possible mechanisms for the positive modulation of αβδ receptors by these compounds will also be discussed.
Collapse
|
40
|
Retrograde release of endocannabinoids inhibits presynaptic GABA release to second-order baroreceptive neurons in NTS. Auton Neurosci 2010; 158:44-50. [PMID: 20580326 DOI: 10.1016/j.autneu.2010.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 12/31/2022]
Abstract
In prior studies, we found that activation of cannabinoid-1 receptors in the nucleus tractus solitarii (NTS) prolonged baroreflex-induced sympathoinhibition in rats. In many regions of the central nervous system, activation of cannabinoid-1 receptors presynaptically inhibits γ-aminobutyric acid (GABA) release, disinhibiting postsynaptic neurons. To determine if cannabinoid-1 receptor-mediated presynaptic inhibition of GABA release occurs in the NTS, we recorded miniature inhibitory postsynaptic currents in anatomically identified second-order baroreceptive NTS neurons in the presence of ionotropic glutamate receptor antagonists and tetrodotoxin. The cannabinoid-1 receptor agonists, WIN 55212-2 (0.3-30 μM) and methanandamide (3 μM) decreased the frequency of miniature inhibitory postsynaptic currents in a concentration-dependent manner, an effect that was blocked by the cannabinoid-1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251, 5 μM). Importantly, depolarization of second-order baroreceptive neurons decreased the frequency of miniature inhibitory postsynaptic currents; an effect which was blocked by the cannabinoid-1 receptor antagonist. The data indicate that depolarization of second-order baroreceptive NTS neurons induces endocannabinoid release from the neurons, leading to activation of presynaptic cannabinoid-1 receptors, inhibition of GABA release and subsequent enhanced baroreflex signaling in the NTS. The data suggest that endocannabinoid signaling in the NTS regulates short-term synaptic plasticity and provide a mechanism for endocannabinoid modulation of central baroreflex control.
Collapse
|
41
|
Dufour A, Tell F, Kessler JP, Baude A. Mixed GABA-glycine synapses delineate a specific topography in the nucleus tractus solitarii of adult rat. J Physiol 2010; 588:1097-115. [PMID: 20156844 DOI: 10.1113/jphysiol.2009.184838] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using combined morphological and electrophysiological approaches, we have determined the composition of inhibitory synapses of the nucleus tractus solitarii (NTS), a brainstem structure that is a gateway for many visceral sensory afferent fibres. Immunohistochemical experiments demonstrate that, in adult rat, GABA axon terminals are present throughout the NTS while mixed GABA-glycine axon terminals are strictly located to the lateral part of the NTS within subnuclei surrounding the tractus solitarius. Purely glycine axon terminals are rare in the lateral part of the NTS and hardly detected in its medial part. Electrophysiological experiments confirm the predominance of GABA inhibition throughout the NTS and demonstrate the existence of a dual inhibition involving the co-release of GABA and glycine restricted to the lateral part of NTS. Since GABA(A) and glycine receptors are co-expressed postsynaptically in virtually all the inhibitory axon terminals throughout the NTS, it suggests that the inhibition phenotype relies on the characteristics of the axon terminals. Our results also demonstrate that glycine is mostly associated with GABA within axon terminals and raise the possibility of a dynamic regulation of GABA/glycine release at the presynaptic level. Our data provide new information for understanding the mechanisms involved in the processing of visceral information by the central nervous system in adult animals.
Collapse
Affiliation(s)
- Amandine Dufour
- Centre National de la Recherche Scientifique, CNR2M, Unité Mixte de Recherche 6231, Université Paul Cézanne, Université de la Méditerranée, IFR Jean Roche, Faculté de Médecine, CS80011, Bd Pierre Dramard, 13344, Marseille Cx15, France
| | | | | | | |
Collapse
|
42
|
Effect of propofol on the levels of neurotransmitters in normal human brain: A magnetic resonance spectroscopy study. Neurosci Lett 2009; 467:247-51. [DOI: 10.1016/j.neulet.2009.10.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/15/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022]
|
43
|
Jin YH, Zhang Z, Mendelowitz D, Andresen MC. Presynaptic actions of propofol enhance inhibitory synaptic transmission in isolated solitary tract nucleus neurons. Brain Res 2009; 1286:75-83. [PMID: 19559683 DOI: 10.1016/j.brainres.2009.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
General anesthetics variably enhance inhibitory synaptic transmission that relies on (-aminobutyric acid (GABA) and GABAA receptor function with distinct differences across brain regions. Activation of "extra-synaptic" GABAA receptors produces a tonic current considered the most sensitive target for general anesthetics, particularly in forebrain neurons. To evaluate the contribution of poor drug access to neurons in slices, we tested the intravenous anesthetic propofol in mechanically isolated neurons from the solitary tract nucleus (NTS). Setting chloride concentrations to ECl=-29 mV made GABA currents inward at holding potentials of -60 mV. Propofol triggered pronounced but slowly-developing tonic currents that reversed with 5 min washing. Effective concentrations in isolated cells were lower than in slices and propofol enhanced phasic IPSCs more potently than tonic currents (1 microM increased phasic decay-time constant vs. >3 microM tonic currents). Propofol increased IPSC frequency (>3 microM), a presynaptic action. Bicuculline blocked all propofol actions. Gabazine blocked only phasic IPSCs. IPSCs persisted in TTX and/or cadmium but these agents prevented propofol-induced increases in IPSC frequency. Furosemide (>1 mM) reversibly blocked propofol-evoked IPSC frequency changes without altering waveforms. We conclude that presynaptic actions of propofol depend on a depolarizing chloride gradient across presynaptic inhibitory terminals. Our results in isolated neurons indicate that propofol pharmacokinetics intrinsically trigger the tonic currents slowly and the time course is not related to slow permeation or delivery. Unlike forebrain, phasic NTS GABAA receptors are more sensitive to propofol than tonic receptors but that presynaptic GABAA receptor mechanisms regulate GABA release.
Collapse
Affiliation(s)
- Young-Ho Jin
- Department of Physiology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Tonic GABAergic inhibition of sympathetic preganglionic neurons: a novel substrate for sympathetic control. J Neurosci 2009; 28:12445-52. [PMID: 19020037 DOI: 10.1523/jneurosci.2951-08.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sympathetic tone is primarily defined by the level of activity of the sympathetic preganglionic neurons. We report a novel inhibitory influence on sympathetic activity, that of tonic GABAergic inhibition which could have a profound global effect on sympathetic outflow. Recording from identified SPNs in the intermediolateral cell column (IML) of rat spinal cord slices, application of the GABA receptor antagonist bicuculline, but not gabazine, elicited a change in voltage that lasted for the duration of application. This response was mediated by a direct effect on SPNs since it persisted in tetrodotoxin and low Ca(2+)/high Mg(2+) and the amplitude of responses were related to Cl(-) concentration in patch solutions. Such tonic inhibitory responses were not observed in interneurons, the other neuronal type in the IML, although ongoing IPSPs were antagonized in these neurons. The effects of bicuculline were enhanced by diazepam but not zolpidem or the GABA modulators THIP and THDOC suggesting a role for alpha5 subunits. PCR using primers for the alpha5 and delta subunits indicated the presence of alpha5, but not delta subunits in the IML. Firing rates of SPNs were enhanced by bicuculline and decreased by diazepam indicating that this tonic inhibition has a profound effect on the excitability of SPNs. These data indicate a novel influence for controlling the activity of SPNs regardless of their function.
Collapse
|
45
|
Abstract
The midbrain periaqueductal gray (PAG) organizes basic survival behavior, which includes respiration. How the PAG controls respiration is not known. We studied the PAG control of respiration by injecting D,L-homocysteic acid in the PAG in unanesthetized precollicularly decerebrated cats. Injections in different parts of the PAG caused different respiratory effects. Stimulation in the dorsomedial PAG induced slow and deep breathing and dyspnea. Stimulation in the dorsolateral PAG resulted in active breathing and tachypnea consistent with the respiratory changes during fright and flight. Stimulation in the medial part of lateral PAG caused inspiratory apneusis. Stimulation in lateral parts of the lateral and ventrolateral PAG produced respiratory changes associated with vocalization (mews, alternating mews and hisses, or hisses). D,L-homocysteic acid injections in the caudal ventrolateral PAG induced irregular breathing. These results demonstrate that the PAG exerts a strong influence on respiration, suggesting that it serves as the behavioral modulator of breathing.
Collapse
|
46
|
Zecharia AY, Nelson LE, Gent TC, Schumacher M, Jurd R, Rudolph U, Brickley SG, Maze M, Franks NP. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 2009; 29:2177-87. [PMID: 19228970 PMCID: PMC6666350 DOI: 10.1523/jneurosci.4997-08.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/03/2008] [Accepted: 01/08/2009] [Indexed: 11/21/2022] Open
Abstract
The GABA(A) receptor has been identified as the single most important target for the intravenous anesthetic propofol. How effects at this receptor are then translated into a loss of consciousness, however, remains a mystery. One possibility is that anesthetics act on natural sleep pathways. Here, we test this hypothesis by exploring the anesthetic sensitivities of GABAergic synaptic currents in three specific brain nuclei that are known to be involved in sleep. Using whole-cell electrophysiology, we have recorded GABAergic IPSCs from the tuberomammillary nucleus (TMN), the perifornical area (Pef), and the locus ceruleus (LC) in brain slices from both wild-type mice and mice that carry a specific mutation in the GABA(A) receptor beta(3) subunit (N265M), which greatly reduces their sensitivity to propofol, but not to the neurosteroid alphaxalone. We find that this in vivo pattern of anesthetic sensitivity is mirrored in the hypothalamic TMN and Pef nuclei, consistent with their role as direct anesthetic targets. In contrast, anesthetic sensitivity in the LC was unaffected by the beta(3)N265M mutation, ruling out this nucleus as a major target for propofol. In support of the hypothesis that orexinergic neurons in the Pef are involved in propofol anesthesia, we further show that these neurons are selectively inhibited by GABAergic drugs in vivo during anesthesia, and that a modulation in the activity of Pef neurons alone can affect loss of righting reflex. Overall, our results support the idea that GABAergic anesthetics such as propofol exert their effects, at least in part, by modulating hypothalamic sleep pathways.
Collapse
Affiliation(s)
| | - Laura E. Nelson
- Biophysics Section, Blackett Laboratory
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, United Kingdom, and
| | | | | | - Rachel Jurd
- Institute of Pharmacology and Toxicology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Uwe Rudolph
- Institute of Pharmacology and Toxicology, University of Zürich, CH-8057 Zürich, Switzerland
| | | | - Mervyn Maze
- Biophysics Section, Blackett Laboratory
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, United Kingdom, and
| | - Nicholas P. Franks
- Biophysics Section, Blackett Laboratory
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London SW7 2AZ, United Kingdom, and
| |
Collapse
|
47
|
Wang X. Propofol and isoflurane enhancement of tonic gamma-aminobutyric acid type a current in cardiac vagal neurons in the nucleus ambiguus. Anesth Analg 2009; 108:142-8. [PMID: 19095842 DOI: 10.1213/ane.0b013e31818d8b79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND General anesthesia with propofol and isoflurane induces alterations of the cardiovascular system, including hypotension and changes in heart rate. The preganglionic cardiac vagal neurons (CVNs) are one of the major central components controlling heart rate and autonomic regulation. In this study, we examined whether propofol and isoflurane act on phasic or tonic gamma-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition in CVNs. METHODS CVNs were identified in vitro by retrograde fluorescent labeling. Phasic and tonic GABA currents in CVNs were examined using the whole cell patch-clamp technique. RESULTS Propofol (10 microM) increased the membrane holding currents by 63 +/- 13% and prolonged the decay time of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) from 42.3 +/- 2.8 ms in control to 61.8 +/- 4.5 ms. Isoflurane, at concentrations of 100, 300, and 500 microM, decreased GABAergic mIPSCs frequency by 26.0 +/- 16%, 64.6 +/- 10.4%, and 70.5 +/- 9.8%, prolonged the decay time of GABAergic mIPSCs from 47.9 +/- 7.3 to 64.5 +/- 8.1 ms, 70.3 +/- 10.4 ms, and 66.8 +/- 8.1 ms, and increased the membrane holding currents by 32.8 +/- 12.8%, 42.7 +/- 10%, and 39.9 +/- 3%, respectively. The GABAergic antagonist gabazine (25 microM) blocked GABAergic mIPSCs, but failed to alter the enhanced holding potential induced by propofol and isoflurane. In contrast, the channel blocker of GABA(A) receptors, picrotoxin (100 microM), reversed the propofol and isoflurane-evoked increase in membrane holding current. CONCLUSION The results demonstrate that the general anesthetics propofol and isoflurane enhance both phasic and tonic GABA(A) receptor-mediated inhibition of CVNs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
48
|
Alici HA, Ekinci D, Beydemir Ş. Intravenous anesthetics inhibit human paraoxonase-1 (PON1) activity in vitro and in vivo. Clin Biochem 2008; 41:1384-90. [DOI: 10.1016/j.clinbiochem.2008.06.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 11/16/2022]
|
49
|
Paired assessment of volatile anesthetic concentrations with synaptic actions recorded in vitro. PLoS One 2008; 3:e3372. [PMID: 18841202 PMCID: PMC2556393 DOI: 10.1371/journal.pone.0003372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/17/2008] [Indexed: 11/19/2022] Open
Abstract
The volatile anesthetic isoflurane poses a number of experimental challenges in the laboratory. Due to its rapid evaporation, the open conditions of most in vitro electrophysiological recording systems make the determination of actual isoflurane concentrations a challenge. Since the absolute anesthetic concentration in solution is directly related to efficacy, concentration measurements are important to allow comparisons between laboratory and clinical studies. In this study we quantify the sources of isoflurane loss during experimentation and describe a method for the measurement of isoflurane concentrations using gas chromatography and mass spectrometry simultaneous to in vitro electrophysiological measurements. Serial samples of perfused bath solution allowed correlation of isoflurane concentrations with ongoing biological effects. Saturated physiological solutions contained 13.4±0.2 mM isoflurane and were diluted to desired “nominal” concentrations for experiments. The perfusion system established stable isoflurane concentrations within the bath by 2 minutes. However, bath isoflurane concentrations varied substantially and unpredictably between experiments. The magnitudes of such discrepancies in isoflurane concentrations spanned clinically important levels. Our studies suggest that, despite countermeasures, solution handling significantly impacted the isoflurane content in the tissue bath. The magnitude of these discrepancies appears to necessitate systematic direct measurement of bath isoflurane concentrations during most in vitro conditions.
Collapse
|
50
|
Bailey TW, Appleyard SM, Jin YH, Andresen MC. Organization and properties of GABAergic neurons in solitary tract nucleus (NTS). J Neurophysiol 2008; 99:1712-22. [PMID: 18272881 DOI: 10.1152/jn.00038.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS). GABAergic neurons are scattered throughout the NTS, but their relation to solitary tract (ST) afferent pathways is imprecisely known. We hypothesized that most GABAergic NTS neurons would be connected only indirectly to the ST. We identified GABAergic neurons in brain stem horizontal slices using transgenic mice in which enhanced green fluorescent protein (EGFP) expression was linked to glutamic acid decarboxylase expression (GAD(+)). Finely graded electrical shocks to ST recruit ST-synchronized synaptic events with all-or-none thresholds and individual waveforms did not change with greater suprathreshold intensities--evidence consistent with initiation by single afferent axons. Most (approximately 70%) GAD(+) neurons received ST-evoked excitatory postsynaptic currents (EPSCs) that had minimally variant latencies (jitter, SD of latency <200 micros) and waveforms consistent with single, direct ST connections (i.e., monosynaptic). Increasing stimulus intensity evoked additional ST-synchronized synaptic responses with jitters >200 micros including inhibitory postsynaptic currents (IPSCs), indicating indirect connections (polysynaptic). Shocks of suprathreshold intensity delivered adjacent (50-300 microm) to the ST failed to excite non-ST inputs to second-order neurons, suggesting a paucity of axons passing near to ST that connected to these neurons. Despite expectations, we found similar ST synaptic patterns in GAD(+) and unlabeled neurons. Generally, ST information that arrived indirectly had small amplitudes (EPSCs and IPSCs) and frequency-dependent failures that reached >50% for IPSCs to bursts of stimuli. This ST afferent pathway organization is strongly use-dependent--a property that may tune signal propagation within and beyond NTS.
Collapse
Affiliation(s)
- Timothy W Bailey
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|