1
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
2
|
Fang Y, Shi H, Ren R, Huang L, Okada T, Lenahan C, Gamdzyk M, Travis ZD, Lu Q, Tang L, Huang Y, Zhou K, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide Attenuates Brain Edema by Protecting Blood-Brain Barrier and Glymphatic System After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2020; 17:1954-1972. [PMID: 32918234 PMCID: PMC7851266 DOI: 10.1007/s13311-020-00925-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Brain edema is a vital contributor to early brain injury after subarachnoid hemorrhage (SAH), which is responsible for prolonged hospitalization and poor outcomes. Pharmacological therapeutic targets on edema formation have been the focus of research for decades. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to participate in neural development and brain injury. Here, we used PACAP knockout CRISPR to demonstrate that endogenous PACAP plays an endogenous neuroprotective role against brain edema formation after SAH in rats. The exogenous PACAP treatment provided both short- and long-term neurological benefits by preserving the function of the blood-brain barrier and glymphatic system after SAH. Pretreatment of inhibitors of PACAP receptors showed that the PACAP-involved anti-edema effect and neuroprotection after SAH was facilitated by the selective PACAP receptor (PAC1). Further administration of adenylyl cyclase (AC) inhibitor and sulfonylurea receptor 1 (SUR1) CRISPR activator suggested that the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) axis participated in PACAP signaling after SAH, which inhibited the expression of edema-related proteins, SUR1 and aquaporin-4 (AQP4), through SUR1 phosphorylation. Thus, PACAP may serve as a potential clinical treatment to alleviate brain edema in patients with SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Takeshi Okada
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
| | - Marcin Gamdzyk
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Zachary D Travis
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Qin Lu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lihui Tang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Yi Huang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Keren Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Zhejiang, 310009, Hangzhou, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, Risley Hall, Room 219, Loma Linda, California, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
3
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
4
|
Milenkovic VM, Stanton EH, Nothdurfter C, Rupprecht R, Wetzel CH. The Role of Chemokines in the Pathophysiology of Major Depressive Disorder. Int J Mol Sci 2019; 20:E2283. [PMID: 31075818 PMCID: PMC6539240 DOI: 10.3390/ijms20092283] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Evan H Stanton
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
5
|
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an ubiquitous peptide involved, among others, in neurodevelopment, neuromodulation, neuroprotection, neurogenic inflammation and nociception. Presence of PACAP and its specific receptor, PAC1, in the trigeminocervical complex, changes of PACAP levels in migraine patients and the migraine-inducing effect of PACAP injection strongly support the involvement of PACAP/PAC1 receptor in migraine pathogenesis. While antagonizing PAC1 receptor is a promising therapeutic target in migraine, the diverse array of PACAP's functions, including protection in ischemic events, requires that the cost-benefit of such an intervention is well investigated by taking all the beneficial effects of PACAP into account. In the present review we summarize the protective effects of PACAP in ischemia, especially in neuronal ischemic injuries, and discuss possible points to consider when developing strategies in migraine therapy interfering with the PACAP/PAC1 receptor system.
Collapse
|
6
|
Waschek JA, Cohen JR, Chi GC, Proszynski TJ, Niewiadomski P. PACAP Promotes Matrix-Driven Adhesion of Cultured Adult Murine Neural Progenitors. ASN Neuro 2017; 9:1759091417708720. [PMID: 28523979 PMCID: PMC5439654 DOI: 10.1177/1759091417708720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New neurons are born throughout the life of mammals in germinal zones of the brain known as neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. These niches contain a subpopulation of cells known as adult neural progenitor cells (aNPCs), which self-renew and give rise to new neurons and glia. aNPCs are regulated by many factors present in the niche, including the extracellular matrix (ECM). We show that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) affects subventricular zone-derived aNPCs by increasing their surface adhesion. Gene array and reconstitution assays indicate that this effect can be attributed to the regulation of ECM components and ECM-modifying enzymes in aNPCs by PACAP. Our work suggests that PACAP regulates a bidirectional interaction between the aNPCs and their niche: PACAP modifies ECM production and remodeling, in turn the ECM regulates progenitor cell adherence. We speculate that PACAP may in this manner help restrict adult neural progenitors to the stem cell niche in vivo, with potential significance for aNPC function in physiological and pathological states.
Collapse
Affiliation(s)
- James A Waschek
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph R Cohen
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gloria C Chi
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tomasz J Proszynski
- 2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Niewiadomski
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,3 Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Huang J, Waters K, Machaalani R. Hypoxia and nicotine effects on Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 (PAC1) in the developing piglet brainstem. Neurotoxicology 2017; 62:30-38. [DOI: 10.1016/j.neuro.2017.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022]
|
8
|
Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress. Neural Plast 2016; 2016:7258201. [PMID: 27239349 PMCID: PMC4863104 DOI: 10.1155/2016/7258201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.
Collapse
|
9
|
Ślusarczyk J, Trojan E, Chwastek J, Głombik K, Basta-Kaim A. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders. Curr Neuropharmacol 2016; 14:705-20. [PMID: 26893168 PMCID: PMC5050392 DOI: 10.2174/1570159x14666160219131357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 12 Smętna St. 31-343 Kraków, Poland.
| |
Collapse
|
10
|
Nemeth A, Szabadfi K, Fulop B, Reglodi D, Kiss P, Farkas J, Szalontai B, Gabriel R, Hashimoto H, Tamas A. Examination of calcium-binding protein expression in the inner ear of wild-type, heterozygous and homozygous pituitary adenylate cyclase-activating polypeptide (PACAP)-knockout mice in kanamycin-induced ototoxicity. Neurotox Res 2013; 25:57-67. [PMID: 24155155 DOI: 10.1007/s12640-013-9428-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with diverse biological effects. It also occurs and exerts protective effects in sensory organs; however, little is known about its effects in the auditory system. Recently, we have shown that PACAP protects cochlear cells against oxidative-stress-induced apoptosis and homozygous PACAP-deficient animals show stronger expression of Ca(2+)-binding proteins in the hair cells of the inner ear, but there are no data about the consequences of the lack of endogenous PACAP in different ototoxic insults such as aminoglycoside-induced toxicity. In this study, we examined the effect of kanamycin treatment on Ca(2+)-binding protein expression in hair cells of wild-type, heterozygous and homozygous PACAP-deficient mice. We treated 5-day-old mice with kanamycin, and 2 days later, we examined the Ca(2+)-binding protein expression of the hair cells with immunohistochemistry. We found stronger expression of Ca(2+)-binding proteins in the hair cells of control heterozygous and homozygous PACAP-deficient mice compared with wild-type animals. Kanamycin induced a significant increase in Ca(2+)-binding protein expression in wild-type and heterozygous PACAP-deficient mice, but the baseline higher expression in homozygous PACAP-deficient mice did not show further changes after the treatment. Elevated endolymphatic Ca(2+) is deleterious for the cochlear function, against which the high concentration of Ca(2+)-buffers in hair cells may protect. Meanwhile, the increased immunoreactivity of Ca(2+)-binding proteins in the absence of PACAP provide further evidence for the important protective role of PACAP in ototoxicity, but further investigations are necessary to examine the exact role of endogenous PACAP in ototoxic insults.
Collapse
Affiliation(s)
- A Nemeth
- Department of Oto-rhino-laryngology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miura A, Kambe Y, Inoue K, Tatsukawa H, Kurihara T, Griffin M, Kojima S, Miyata A. Pituitary adenylate cyclase-activating polypeptide type 1 receptor (PAC1) gene is suppressed by transglutaminase 2 activation. J Biol Chem 2013; 288:32720-32730. [PMID: 24045949 DOI: 10.1074/jbc.m113.452706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress.
Collapse
Affiliation(s)
- Ayako Miura
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Yuki Kambe
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Kazuhiko Inoue
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Hideki Tatsukawa
- the Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Takashi Kurihara
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan
| | - Martin Griffin
- the School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Soichi Kojima
- the Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Atsuro Miyata
- From the Department of Pharmacology, Graduate School of Medical and Dental Sciences, University of Kagoshima, Kagoshima 890-8544, Japan,.
| |
Collapse
|
12
|
Schultheiß C, Abe P, Hoffmann F, Mueller W, Kreuder AE, Schütz D, Haege S, Redecker C, Keiner S, Kannan S, Claasen JH, Pfrieger FW, Stumm R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus 2013; 23:1345-58. [PMID: 23929505 DOI: 10.1002/hipo.22180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
Neurogenesis in the adult dentate gyrus (DG) generates new granule neurons that differentiate in the inner one-third of the granule cell layer (GCL). The migrating precursors of these neurons arise from neural stem cells (NSCs) in the subgranular zone (SGZ). Although it is established that pathological conditions, including epilepsy and stroke, cause dispersion of granule neuron precursors, little is known about the factors that regulate their normal placement. Based on the high expression of the chemokine CXCL12 in the adult GCL and its role in guiding neuronal migration in development, we addressed the function of the CXCL12 receptor CXCR4 in adult neurogenesis. Using transgenic reporter mice, we detected Cxcr4-GFP expression in NSCs, neuronal-committed progenitors, and immature neurons of adult and aged mice. Analyses of hippocampal NSC cultures and hippocampal tissue by immunoblot and immunohistochemistry provided evidence for CXCL12-promoted phosphorylation/activation of CXCR4 receptors in NSCs in vivo and in vitro. Cxcr4 deletion in NSCs of the postnatal or mature DG using Cre technology reduced neurogenesis. Fifty days after Cxcr4 ablation in the mature DG, the SGZ showed a severe reduction of Sox2-positive neural stem/early progenitor cells, NeuroD-positive neuronal-committed progenitors, and DCX-positive immature neurons. Many immature neurons were ectopically placed in the hilus and inner molecular layer, and some developed an aberrant dendritic morphology. Only few misplaced cells survived permanently as ectopic neurons. Thus, CXCR4 signaling maintains the NSC pool in the DG and specifies the inner one-third of the GCL as differentiation area for immature granule neurons.
Collapse
Affiliation(s)
- Clara Schultheiß
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
14
|
PACAP is an Endogenous Protective Factor—Insights from PACAP-Deficient Mice. J Mol Neurosci 2012; 48:482-92. [DOI: 10.1007/s12031-012-9762-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
|
15
|
Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, Gabriel R, Hashimoto H, Baba A, Shintani N, Helyes Z, Reglodi D. Comparative Examination of Inner Ear in Wild Type and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)-Deficient Mice. Neurotox Res 2011; 21:435-44. [DOI: 10.1007/s12640-011-9298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/17/2011] [Accepted: 12/06/2011] [Indexed: 12/30/2022]
|
16
|
Regulation of the stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp cells. J Endod 2010; 36:1499-503. [PMID: 20728717 DOI: 10.1016/j.joen.2010.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although the presence of the stromal cell-derived factor (SDF)-1alpha-CXCR4 axis has been reported in dental pulp tissue, little has been known about the underlying regulation of this axis in dental pulp stem cells (DPSCs). The purpose of this study was to investigate whether inflammation or hypoxia can regulate this axis in cultured human dental pulp cells (DPCs). METHODS Primary cultures of DPCs were stimulated by various concentrations of lipopolysaccharide (LPS) for 48 hours, and the production of SDF-1alpha or CXCR4 was assessed through the enzyme-linked immunosorbent assay and Western blotting, respectively. Additionally, DPCs were incubated in a hypoxic condition (1% O(2)) for 24 hours, and the cell proliferation ability was detected by methylthiazol tetrazolum assay. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) was used to observe messenger RNA level changes of hypoxia inducible factor-1alpha(HIF-alpha), SDF-1alpha, and CXCR4. The effects of hypoxia on cell migration ability were further confirmed by transmigration assay. RESULTS All concentrations of LPS inhibited SDF-1alpha production except that 1 microg/mL LPS increased the expression of CXCR4. Hypoxia promoted the proliferation of DPCs in a 24-hour culture period. Quantitative RT-PCR showed that messenger RNA levels of HIF-alpha and CXCR4 increased, whereas SDF-1alpha decreased in hypoxic DPCs. Transmigration assay indicated that hypoxia increased the migration ability of DPCs. CONCLUSIONS These results suggested that inflammation and hypoxia might play an important role in regulating the SDF-1alpha-CXCR4 axis, which further recruits DPSCs to participate in reparative dentinogenesis.
Collapse
|
17
|
Majetschak M. Extracellular ubiquitin: immune modulator and endogenous opponent of damage-associated molecular pattern molecules. J Leukoc Biol 2010; 89:205-19. [PMID: 20689098 DOI: 10.1189/jlb.0510316] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin is a post-translational protein modifier and plays essential roles in all aspects of biology. Although the discovery of ubiquitin introduced this highly conserved protein as a molecule with extracellular actions, the identification of ubiquitin as the ATP-dependent proteolysis factor 1 has focused subsequent research on its important intracellular functions. Little attention has since been paid to its role outside of the cell. During recent years, multiple observations suggest that extracellular ubiquitin can modulate immune responses and that exogenous ubiquitin has therapeutic potential to attenuate exuberant inflammation and organ injury. These observations have not been integrated into a comprehensive assessment of its possible role as an endogenous immune modulator. This review recapitulates the current knowledge about extracellular ubiquitin and discusses an emerging facet of its role in biology during infectious and noninfectious inflammation. The synopsis of these data along with the recent identification of ubiquitin as a CXCR4 agonist suggest that extracellular ubiquitin may have pleiotropic roles in the immune system and functions as an endogenous opponent of DAMPs. Functions of extracellular ubiquitin could constitute an evolutionary conserved control mechanism aimed to balance the immune response and prevent exuberant inflammation. Further characterization of its mechanism of action and cellular signaling pathways is expected to provide novel insights into the regulation of the innate immune response and opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Matthias Majetschak
- Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| |
Collapse
|
18
|
Marchionni I, Takács VT, Nunzi MG, Mugnaini E, Miller RJ, Maccaferri G. Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol 2010; 588:2859-78. [PMID: 20547684 DOI: 10.1113/jphysiol.2010.190868] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The CXC chemokine receptor 4 (CXCR4) for the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 alpha (CXCL12/SDF-1 alpha) is highly expressed in the postnatal CA1 stratum lacunosum-moleculare. However, both the network events triggered by SDF-1 alpha in this microcircuit and the cellular targets of this chemokine remain virtually unexplored. Here, we have studied SDF-1 alpha-mediated neuromodulation of the stratum lacunosum-moleculare by directly comparing the properties of CXCR4-expressing Cajal-Retzius cells vs. CXCR4-non-expressing interneurons, and by recording the electrophysiological effects caused by application of SDF-1 alpha on either cell type. We demonstrate that SDF-1 alpha dramatically reduces spontaneous firing in Cajal-Retzius cells via hyerpolarization, and that cessation of firing is prevented by the CXCR4-specific antagonist AMD3100. In contrast, no effects on the excitability of interneurons of the same layer were observed following exposure to the chemokine. We also provide evidence that, despite the expression of functional glutamate receptors, Cajal-Retzius cells are integrated in the synaptic network of the stratum lacunosum-moleculare via excitatory GABAergic input. Furthermore, we show that the axons of Cajal-Retzius cells target specifically the stratum lacunosum-moleculare and the dentate gyrus, but lack postsynaptic specializations opposite to their axonal varicosities. These results, taken together with our observation that SDF-1 alpha reduces evoked field responses at the entorhinal cortex-CA1 synapse, suggest that Cajal-Retzius cells produce a diffuse output that may impact information processing of stratum lacunosum-moleculare. We propose that pathological alterations of local levels of SDF-1 alpha or CXCR4 expression may affect the functions of an important hippocampal microcircuit.
Collapse
Affiliation(s)
- Ivan Marchionni
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|