1
|
Ferraiolo M, Hermans E. The complex molecular pharmacology of the dopamine D 2 receptor: Implications for pramipexole, ropinirole, and rotigotine. Pharmacol Ther 2023; 245:108392. [PMID: 36958527 DOI: 10.1016/j.pharmthera.2023.108392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
With L-DOPA, dopamine agonists such as pramipexole, ropinirole and rotigotine constitute key therapeutic options for the management of motor symptoms of Parkinson's disease. These compounds exert their beneficial effect on motor behaviours by activating dopamine D2-class receptors and thereby compensating for the declining dopaminergic transmission in the dorsal striatum. Despite a strong similarity in their mechanism of action, these three dopamine agonists present distinct clinical profiles, putatively underpinned by differences in their pharmacological properties. In this context, this review aims at contributing to close the gap between clinical observations and data from molecular neuropharmacology by exploring the properties of pramipexole, ropinirole and rotigotine from both the clinical and molecular perspectives. Indeed, this review first summarizes and compares the clinical features of these three dopamine agonists, and then explores their binding profiles at the different dopamine receptor subtypes. Moreover, the signalling profiles of pramipexole, ropinirole and rotigotine at the D2 receptor are recapitulated, with a focus on biased signalling and the potential therapeutic implications. Overall, this review aims at providing a unifying framework of interpretation for both clinicians and fundamental pharmacologists interested in a deep understanding of the pharmacological properties of pramipexole, ropinirole and rotigotine.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
2
|
Moreno E, Casajuana-Martin N, Coyle M, Campos BC, Galaj E, Del Torrent CL, Seyedian A, Rea W, Cai NS, Bonifazi A, Florán B, Xi ZX, Guitart X, Casadó V, Newman AH, Bishop C, Pardo L, Ferré S. Pharmacological targeting of G protein-coupled receptor heteromers. Pharmacol Res 2022; 185:106476. [PMID: 36182040 PMCID: PMC9645299 DOI: 10.1016/j.phrs.2022.106476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Collapse
Affiliation(s)
- Estefanía Moreno
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA
| | - Baruc Campos Campos
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Ewa Galaj
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Claudia Llinas Del Torrent
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Benjamín Florán
- Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Zheng-Xiong Xi
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chagraoui A, Di Giovanni G, De Deurwaerdère P. Neurobiological and Pharmacological Perspectives of D3 Receptors in Parkinson’s Disease. Biomolecules 2022; 12:biom12020243. [PMID: 35204744 PMCID: PMC8961531 DOI: 10.3390/biom12020243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The discovery of the D3 receptor (D3R) subtypes of dopamine (DA) has generated an understandable increase in interest in the field of neurological diseases, especially Parkinson’s disease (PD). Indeed, although DA replacement therapy with l-DOPA has provided an effective treatment for patients with PD, it is responsible for invalidating abnormal involuntary movements, known as L-DOPA-induced dyskinesia, which constitutes a serious limitation of the use of this therapy. Of particular interest is the finding that chronic l-DOPA treatment can trigger the expression of D1R–D3R heteromeric interactions in the dorsal striatum. The D3R is expressed in various tissues of the central nervous system, including the striatum. Compelling research has focused on striatal D3Rs in the context of PD and motor side effects, including dyskinesia, occurring with DA replacement therapy. Therefore, this review will briefly describe the basal ganglia (BG) and the DA transmission within these brain regions, before going into more detail with regard to the role of D3Rs in PD and their participation in the current treatments. Numerous studies have also highlighted specific interactions between D1Rs and D3Rs that could promote dyskinesia. Finally, this review will also address the possibility that D3Rs located outside of the BG may mediate some of the effects of DA replacement therapy.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Différenciation et Communication Neuroendocrine, Endocrine et Germinale Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), University of Rouen, INSERM 1239, 76000 Rouen, France
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-83-69
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta;
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche (UMR) 5287, Centre National de la Recherche Scientifique (CNRS), CEDEX, 33000 Bordeaux, France;
| |
Collapse
|
4
|
Alberts T, Antipova V, Holzmann C, Hawlitschka A, Schmitt O, Kurth J, Stenzel J, Lindner T, Krause BJ, Wree A, Witt M. Olfactory Bulb D 2/D 3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2022; 14:94. [PMID: 35202123 PMCID: PMC8879205 DOI: 10.3390/toxins14020094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Olfactory deficits occur as early non-motor symptoms of idiopathic Parkinson's disease (PD) in humans. The first central relay of the olfactory pathway, the olfactory bulb (OB), depends, among other things, on an intact, functional crosstalk between dopaminergic interneurons and dopamine receptors (D2/D3R). In rats, hemiparkinsonism (hemi-PD) can be induced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB), disrupting dopaminergic neurons of the substantia nigra pars compacta (SNpc). In a previous study, we showed that subsequent injection of botulinum neurotoxin-A (BoNT-A) into the striatum can reverse most of the pathological motor symptoms and normalize the D2/D3R availability. To determine whether this rat model is suitable to explain olfactory deficits that occur in humans with PD, we examined the availability of D2/D3R by longitudinal [18F]fallypride-PET/CT, the density of tyrosine hydroxylase immunoreactivity in the OB, olfactory performance by an orienting odor identification test adapted for rats, and a connectome analysis. PET/CT and immunohistochemical data remained largely unchanged after 6-OHDA lesion in experimental animals, suggesting that outcomes of the 6-OHDA hemi-PD rat model do not completely explain olfactory deficits in humans. However, after subsequent ipsilateral BoNT-A injection into the striatum, a significant 8.5% increase of the D2/D3R availability in the ipsilateral OB and concomitant improvement of olfactory performance were detectable. Based on tract-tracing meta-analysis, we speculate that this may be due to indirect connections between the striatum and the OB.
Collapse
Affiliation(s)
- Teresa Alberts
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Veronica Antipova
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Carsten Holzmann
- Department of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | | | - Oliver Schmitt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Bernd J Krause
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
- Department of Nuclear Medicine, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany
- Center of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany
| |
Collapse
|
5
|
Zheng C, Zhang F. New insights into pathogenesis of l-DOPA-induced dyskinesia. Neurotoxicology 2021; 86:104-113. [PMID: 34331976 DOI: 10.1016/j.neuro.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive and self-propelling neurodegenerative disorder, which is characterized by motor symptoms, such as rigidity, tremor, slowness of movement and problems with gait. These symptoms become worse over time. To date, Dopamine (DA) replacement therapy with 3, 4-dihydroxy-l-phenylalanine (L-DOPA) is still the most effective pharmacotherapy for motor symptoms of PD. Unfortunately, motor fluctuations consisting of wearing-off effect actions and dyskinesia tend to occur in a few years of starting l-DOPA. Currently, l-DOPA-induced dyskinesia (LID) is troublesome and the pathogenesis of LID requires further investigation. Importantly, a new intervention for LID is imminent. Thus, this review mainly summarized the clinical features, risk factors and pathogenesis of LID to provide updatefor the development of therapeutic targets and new approaches for the treatment of LID.
Collapse
Affiliation(s)
- Changqing Zheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
6
|
Lee B, Taylor M, Griffin SA, McInnis T, Sumien N, Mach RH, Luedtke RR. Evaluation of Substituted N-Phenylpiperazine Analogs as D3 vs. D2 Dopamine Receptor Subtype Selective Ligands. Molecules 2021; 26:molecules26113182. [PMID: 34073405 PMCID: PMC8198181 DOI: 10.3390/molecules26113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
N-phenylpiperazine analogs can bind selectively to the D3 versus the D2 dopamine receptor subtype despite the fact that these two D2-like dopamine receptor subtypes exhibit substantial amino acid sequence homology. The binding for a number of these receptor subtype selective compounds was found to be consistent with their ability to bind at the D3 dopamine receptor subtype in a bitopic manner. In this study, a series of the 3-thiophenephenyl and 4-thiazolylphenyl fluoride substituted N-phenylpiperazine analogs were evaluated. Compound 6a was found to bind at the human D3 receptor with nanomolar affinity with substantial D3 vs. D2 binding selectivity (approximately 500-fold). Compound 6a was also tested for activity in two in-vivo assays: (1) a hallucinogenic-dependent head twitch response inhibition assay using DBA/2J mice and (2) an L-dopa-dependent abnormal involuntary movement (AIM) inhibition assay using unilateral 6-hydroxydopamine lesioned (hemiparkinsonian) rats. Compound 6a was found to be active in both assays. This compound could lead to a better understanding of how a bitopic D3 dopamine receptor selective ligand might lead to the development of pharmacotherapeutics for the treatment of levodopa-induced dyskinesia (LID) in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Boeun Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Michelle Taylor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Suzy A. Griffin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Tamara McInnis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.L.); (R.H.M.)
| | - Robert R. Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center-Fort Worth, Fort Worth, TX 76107, USA; (M.T.); (S.A.G.); (T.M.); (N.S.)
- Correspondence:
| |
Collapse
|
7
|
Lanza K, Bishop C. Dopamine D3 Receptor Plasticity in Parkinson's Disease and L-DOPA-Induced Dyskinesia. Biomedicines 2021; 9:biomedicines9030314. [PMID: 33808538 PMCID: PMC8003204 DOI: 10.3390/biomedicines9030314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Parkinson’s Disease (PD) is characterized by primary and secondary plasticity that occurs in response to progressive degeneration and long-term L-DOPA treatment. Some of this plasticity contributes to the detrimental side effects associated with chronic L-DOPA treatment, namely L-DOPA-induced dyskinesia (LID). The dopamine D3 receptor (D3R) has emerged as a promising target in LID management as it is upregulated in LID. This upregulation occurs primarily in the D1-receptor-bearing (D1R) cells of the striatum, which have been repeatedly implicated in LID manifestation. D3R undergoes dynamic changes both in PD and in LID, making it difficult to delineate D3R’s specific contributions, but recent genetic and pharmacologic tools have helped to clarify its role in LID. The following review will discuss these changes, recent advances to better clarify D3R in both PD and LID and potential steps for translating these findings.
Collapse
Affiliation(s)
- Kathryn Lanza
- Department of Physiology, Northwestern University, Chicago, IL 60201, USA;
| | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
- Correspondence:
| |
Collapse
|
8
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
9
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Severity of Dyskinesia and D3R Signaling Changes Induced by L-DOPA Treatment of Hemiparkinsonian Rats Are Features Inherent to the Treated Subjects. Biomolecules 2019; 9:biom9090431. [PMID: 31480516 PMCID: PMC6770442 DOI: 10.3390/biom9090431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Extensive damage to nigrostriatal dopaminergic neurons leads to Parkinson’s disease (PD). To date, the most effective treatment has been administration of levodopa (L-DOPA) to increase dopaminergic tone. This treatment leads to responses that vary widely among patients, from predominantly beneficial effects to the induction of disabling, abnormal movements (L-DOPA induced dyskinesia (LID)). Similarly, experimental studies have shown animals with widely different degrees of LID severity. In this study, unilateral injections of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB) produced more than 90% depletion of dopamine in both the striatum and the substantia nigra reticulata (SNr) of rats. Population analysis showed that dopamine depletion levels were clustered in a single population. In contrast, analysis of abnormal involuntary movements (AIMs) induced by L-DOPA treatment of 6-OHDA-lesioned animals yielded two populations: one with mild LID, and the other with severe LID, which are also related to different therapeutic responses. We examined whether the severity of LID correlated with changes in dopamine 3 receptor (D3R) signaling because of the following: (a) D3R expression and the induction of LID are strongly correlated; and (b) dopaminergic denervation induces a qualitative change in D3R signaling in the SNr. We found that the effects of D3R activation on cAMP accumulation and depolarization-induced [3H]-gamma-aminobutyric acid ([3H]-GABA) release were switched. L-DOPA treatment normalized the denervation-induced changes in animals with mild LID. The D3R activation caused depression of both dopamine 1 receptor (D1R)-induced increases in cAMP production and depolarization-induced [3H]-GABA release, which were reversed to their pre-denervation state. In animals with severe LID, none of the denervation-induced changes were reversed. The finding that in the absence of identifiable differences in 6-OHDA and L-DOPA treatment, two populations of animals with different D3R signaling and LIDs severity implies that mechanisms intrinsic to the treated subject determine the segregation.
Collapse
|
11
|
Cortés A, Moreno E, Rodríguez-Ruiz M, Canela EI, Casadó V. Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 2016; 11:641-64. [PMID: 27135354 DOI: 10.1080/17460441.2016.1185413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. AREAS COVERED This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. EXPERT OPINION The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Collapse
Affiliation(s)
- Antoni Cortés
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Estefanía Moreno
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Mar Rodríguez-Ruiz
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Enric I Canela
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| | - Vicent Casadó
- a Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain.,b Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
12
|
Nebel N, Maschauer S, Hocke C, Hübner H, Gmeiner P, Prante O. Optimization and synthesis of an (18) F-labeled dopamine D3 receptor ligand using [(18) F]fluorophenylazocarboxylic tert-butylester. J Labelled Comp Radiopharm 2015; 59:48-53. [PMID: 26707848 DOI: 10.1002/jlcr.3361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
Abstract
There is still no efficient fluorine-18-labeled dopamine D3 subtype selective receptor ligand for studies with positron emission tomography. We aim at improving the D3 selectivity and hydrophilicity of a candidate ligand by changing the substitution pattern to a 2,3-dichlorophenylpiperazine and hydroxylation of the butyl chain. The compound [(18) F]3 exhibited D3 affinity of Ki = 3.6 nM, increased subtype selectivity (Ki (D2 /D3 ) = 60), and low affinity to 5-HT1A and α1 receptors (Ki (5-HT1A /D3 ) = 34; Ki (α1 /D3 ) = 100). The two-step radiosynthesis was optimized for analog [(18) F]4 by reducing the necessary concentration of the precursor amine (57 mM), which reacted with [(18) F]fluorophenylazocarboxylic tert-butylester under basic conditions. The optimization of the base (Cs 2 CO3 , 23 mM) and the adjustment of reaction temperature led to the radiochemical yield of 63% after 5 min at 35°C. The optimized reaction conditions were transferred on to the synthesis of [(18) F]3 with an overall non-decay corrected yield of 8-12% in a specific activity of 32-102 GBq/µmol after a total synthesis time of 30-35 min. This provides a D 3 radioligand candidate with improved attributes concerning selectivity and radiosynthesis for further preclinical studies.
Collapse
Affiliation(s)
- Natascha Nebel
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Carsten Hocke
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schuhstrasse 19, D-91052, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schuhstrasse 19, D-91052, Erlangen, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054, Erlangen, Germany
| |
Collapse
|
13
|
Furman CA, Roof RA, Moritz AE, Miller BN, Doyle TB, Free RB, Banala AK, Paul NM, Kumar V, Sibley CD, Newman AH, Sibley DR. Investigation of the binding and functional properties of extended length D3 dopamine receptor-selective antagonists. Eur Neuropsychopharmacol 2015; 25:1448-61. [PMID: 25583363 PMCID: PMC4449328 DOI: 10.1016/j.euroneuro.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/05/2014] [Accepted: 11/20/2014] [Indexed: 01/11/2023]
Abstract
The D3 dopamine receptor represents an important target in drug addiction in that reducing receptor activity may attenuate the self-administration of drugs and/or disrupt drug or cue-induced relapse. Medicinal chemistry efforts have led to the development of D3 preferring antagonists and partial agonists that are >100-fold selective vs. the closely related D2 receptor, as best exemplified by extended-length 4-phenylpiperazine derivatives. Based on the D3 receptor crystal structure, these molecules are known to dock to two sites on the receptor where the 4-phenylpiperazine moiety binds to the orthosteric site and an extended aryl amide moiety docks to a secondary binding pocket. The bivalent nature of the receptor binding of these compounds is believed to contribute to their D3 selectivity. In this study, we examined if such compounds might also be "bitopic" such that their aryl amide moieties act as allosteric modulators to further enhance the affinities of the full-length molecules for the receptor. First, we deconstructed several extended-length D3-selective ligands into fragments, termed "synthons", representing either orthosteric or secondary aryl amide pharmacophores and investigated their effects on D3 receptor binding and function. The orthosteric synthons were found to inhibit radioligand binding and to antagonize dopamine activation of the D3 receptor, albeit with lower affinities than the full-length compounds. Notably, the aryl amide-based synthons had no effect on the affinities or potencies of the orthosteric synthons, nor did they have any effect on receptor activation by dopamine. Additionally, pharmacological investigation of the full-length D3-selective antagonists revealed that these compounds interacted with the D3 receptor in a purely competitive manner. Our data further support that the 4-phenylpiperazine D3-selective antagonists are bivalent and that their enhanced affinity for the D3 receptor is due to binding at both the orthosteric site as well as a secondary binding pocket. Importantly, however, their interactions at the secondary site do not allosterically modulate their binding to the orthosteric site.
Collapse
Affiliation(s)
- Cheryse A Furman
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Roof
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brittney N Miller
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Trevor B Doyle
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - R Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashwini K Banala
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Noel M Paul
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Vivek Kumar
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Christopher D Sibley
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Drake JD, Kibuuka LN, Dimitrov KD, Pollack AE. Abnormal involuntary movement (AIM) expression following D2 dopamine agonist challenge is determined by the nature of prior dopamine receptor stimulation (priming) in 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav 2013; 105:26-33. [PMID: 23369985 DOI: 10.1016/j.pbb.2013.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 01/04/2023]
Abstract
Rats with unilateral 6-hydroxydopamine (6-OHDA) lesions show sensitization (priming) of rotational behavior upon repeated treatment with dopamine agonists. To relate these observations to dyskinesias exhibited by Parkinson's Disease patients, we assessed abnormal involuntary movements (AIMs) in 6-OHDA rats, which were primed with three injections of either the following: water, D1/D2 agonist apomorphine (Apo) (0.5mg/kg), D1 agonist SKF38393 (SKF) (10mg/kg) or D2 agonist quinpirole (Quin) (1 or 2.5mg/kg). The rats were challenged one week later with Quin (0.25mg/kg). Axial, limb, orolingual, locomotor, and grooming AIMs were scored (0-4) every 5min. Priming with water did not produce AIMs. Priming with Quin (1mg/kg) produced axial and locomotor AIMs, while priming with Apo, SKF or Quin (2.5mg/kg) produced axial, locomotor, limb, and grooming AIMs. The disparity in AIM profiles between Quin (1mg/kg) and (2.5mg/kg) was not the result of D1 receptor stimulation since there was little striatal Fos expression following the third priming injection with Quin (1 or 2.5mg/kg) compared to following SKF, which led to robust striatal Fos expression. Challenge with Quin (0.25mg/kg) essentially reproduced the categories of AIMs exhibited during priming, with no AIMs in water-primed 6-OHDA rats, mild, non-significant, axial and locomotor AIMs in Quin (1 and 2.5mg/kg)-primed 6-OHDA rats, and axial, limb, locomotor, and grooming AIMs in Apo- and SKF-primed 6-OHDA rats. These data suggest that the types of AIMs expressed following challenge with Quin depend on the dopamine receptor subtype and dose of dopamine agonist used during priming.
Collapse
Affiliation(s)
- Jonathan D Drake
- Department of Biology, University of Massachusetts-Boston, United States.
| | | | | | | |
Collapse
|
15
|
Paquette MA, Martinez AA, Macheda T, Meshul CK, Johnson SW, Berger SP, Giuffrida A. Anti-dyskinetic mechanisms of amantadine and dextromethorphan in the 6-OHDA rat model of Parkinson's disease: role of NMDA vs. 5-HT1A receptors. Eur J Neurosci 2012; 36:3224-34. [PMID: 22861201 DOI: 10.1111/j.1460-9568.2012.08243.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amantadine and dextromethorphan suppress levodopa (L-DOPA)-induced dyskinesia (LID) in patients with Parkinson's disease (PD) and abnormal involuntary movements (AIMs) in the unilateral 6-hydroxydopamine (6-OHDA) rat model. These effects have been attributed to N-methyl-d-aspartate (NMDA) antagonism. However, amantadine and dextromethorphan are also thought to block serotonin (5-HT) uptake and cause 5-HT overflow, leading to stimulation of 5-HT(1A) receptors, which has been shown to reduce LID. We undertook a study in 6-OHDA rats to determine whether the anti-dyskinetic effects of these two compounds are mediated by NMDA antagonism and/or 5-HT(1A) agonism. In addition, we assessed the sensorimotor effects of these drugs using the Vibrissae-Stimulated Forelimb Placement and Cylinder tests. Our data show that the AIM-suppressing effect of amantadine was not affected by the 5-HT(1A) antagonist WAY-100635, but was partially reversed by the NMDA agonist d-cycloserine. Conversely, the AIM-suppressing effect of dextromethorphan was prevented by WAY-100635 but not by d-cycloserine. Neither amantadine nor dextromethorphan affected the therapeutic effects of L-DOPA in sensorimotor tests. We conclude that the anti-dyskinetic effect of amantadine is partially dependent on NMDA antagonism, while dextromethorphan suppresses AIMs via indirect 5-HT(1A) agonism. Combined with previous work from our group, our results support the investigation of 5-HT(1A) agonists as pharmacotherapies for LID in PD patients.
Collapse
Affiliation(s)
- Melanie A Paquette
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Homayoun H, Goetz CG. Facing the unique challenges of dyskinesias in Parkinson’s disease. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dyskinesia is among the most challenging complications of levodopa and dopaminergic drug therapy in advanced Parkinson’s disease. This symptom has a negative impact on the quality of life of patients with Parkinson’s disease and is hard to manage. Current advances in our understanding of the diverse phenomenology and complicated pathophysiology of dyskinesia have led to a number of novel strategies aimed at better control of this complication. Further insight has been gained from focusing on the characteristics of the rating scale used for assessment of dyskinesia and from the inherent susceptibility of dyskinesia to placebo effect. Here, we will briefly review the phenomenology, pathophysiology and the treatment of dyskinesia in Parkinson’s disease.
Collapse
Affiliation(s)
- Houman Homayoun
- Rush University Medical Center, Chicago, IL 60612, USA; Suite 755, 1725 W. Harrison Street, Chicago, IL 60612, USA
| | - Christopher G Goetz
- Rush University Medical Center, Chicago, IL 60612, USA; Suite 755, 1725 W. Harrison Street, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Steece-Collier K, Rademacher DJ, Soderstrom K. Anatomy of Graft-induced Dyskinesias: Circuit Remodeling in the Parkinsonian Striatum. ACTA ACUST UNITED AC 2012; 2:15-30. [PMID: 22712056 DOI: 10.1016/j.baga.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The goal of researchers and clinicians interested in re-instituting cell based therapies for PD is to develop an effective and safe surgical approach to replace dopamine (DA) in individuals suffering from Parkinson's disease (PD). Worldwide clinical trials involving transplantation of embryonic DA neurons into individuals with PD have been discontinued because of the often devastating post-surgical side-effect known as graft-induced dyskinesia (GID). There have been many review articles published in recent years on this subject. There has been a tendency to promote single factors in the cause of GID. In this review, we contrast the pros and cons of multiple factors that have been suggested from clinical and/or preclinical observations, as well as novel factors not yet studied that may be involved with GID. It is our intention to provide a platform that might be instrumental in examining how individual factors that correlate with GID and/or striatal pathology might interact to give rise to dysfunctional circuit remodeling and aberrant motor output.
Collapse
Affiliation(s)
- Kathy Steece-Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI 49503
| | | | | |
Collapse
|