1
|
Karimi Tari P, Parsons CG, Collingridge GL, Rammes G. Memantine: Updating a rare success story in pro-cognitive therapeutics. Neuropharmacology 2024; 244:109737. [PMID: 37832633 DOI: 10.1016/j.neuropharm.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
The great potential for NMDA receptor modulators as druggable targets in neurodegenerative disorders has been met with limited success. Considered one of the rare exceptions, memantine has consistently demonstrated restorative and prophylactic properties in many AD models. In clinical trials memantine slows the decline in cognitive performance associated with AD. Here, we provide an overview of the basic properties including pharmacological targets, toxicology and cellular effects of memantine. Evidence demonstrating reductions in molecular, physiological and behavioural indices of AD-like impairments associated with memantine treatment are also discussed. This represents both an extension and homage to Dr. Chris Parson's considerable contributions to our fundamental understanding of a success story in the AD treatment landscape.
Collapse
Affiliation(s)
- Parisa Karimi Tari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Chris G Parsons
- Galimedix Therapeutics, Inc., 2704 Calvend Lane, Kensington, 20895, MD, USA
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine of the Technical University of Munich, School of Medicine, 22, 81675, Munich, Germany.
| |
Collapse
|
2
|
Li FR, Yu Y, Du YM, Kong L, Liu Y, Wang JH, Chen MH, Liu M, Zhang ZX, Li XT, Ju RJ. Borneol-Modified Schisandrin B Micelles Cross the Blood-Brain Barrier To Treat Alzheimer's Disease in Aged Mice. ACS Chem Neurosci 2024; 15:593-607. [PMID: 38214579 DOI: 10.1021/acschemneuro.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Feng-Rui Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yu-Meng Du
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| |
Collapse
|
3
|
Chen H, Li Y, Gao J, Cheng Q, Liu L, Cai R. Activation of Pgk1 Results in Reduced Protein Aggregation in Diverse Neurodegenerative Conditions. Mol Neurobiol 2023; 60:5090-5101. [PMID: 37249790 DOI: 10.1007/s12035-023-03389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
The prevention of protein condensates has emerged as a new drug target to treat diverse neurodegenerative disorders. We previously reported that terazosin (TZ), a prescribed antagonist of the α1 adrenergic receptor, is an activator of phosphoglycerate kinase 1 (Pgk1) and Hsp90. In this study, we aimed to determine whether TZ prevents the formation of diverse pathological condensates in cell cultures and animal disease models. In primary neuron culture, TZ treatment reduced both the protein density and abundance of fused in sarcoma (FUS)-P525L-GFP, a disease-associated mutant form of FUS. Regarding the mechanism, we found that increased intracellular ATP levels were critical for the reduction in protein aggregate density. In addition, Hsp90 activation by TZ enhanced Hsp90 interaction with ULK1, a master regulator of autophagy. Through in vivo studies, we examined neuron-specific overexpression of tau in Drosophila, mouse models of APP/PS1 Alzheimer's disease (AD), and a rat model of multiple system atrophy (MSA) via the viral expression of α-synuclein in the striatum. TZ prevented and reversed the formation of pathological protein condensates. Together, our results suggest that activation of Pgk1 in cytosol may dissolve pathological protein aggregates via increased ATP levels and degrade these proteins via autophagy; the FUS-P525L degradation pathway in nucleus is unclear.
Collapse
Affiliation(s)
- Hao Chen
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Yajie Li
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Qi Cheng
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China.
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
4
|
Companys-Alemany J, Turcu AL, Schneider M, Müller CE, Vázquez S, Griñán-Ferré C, Pallàs M. NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci 2022; 79:408. [PMID: 35810220 PMCID: PMC9271115 DOI: 10.1007/s00018-022-04438-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022]
Abstract
Overstimulation of N-methyl-d-aspartate receptors (NMDARs) is the leading cause of brain excitotoxicity and often contributes to neurodegenerative diseases such as Alzheimer’s Disease (AD), the most common form of dementia. This study aimed to evaluate a new NMDA receptor antagonist (UB-ALT-EV) and memantine in 6-month-old female 5XFAD mice that were exposed orally to a chronic low-dose treatment. Behavioral and cognitive tests confirmed better cognitive performance in both treated groups. Calcium-dependent protein calpain-1 reduction was found after UB-ALT-EV treatment but not after memantine. Changes in spectrin breakdown products (SBDP) and the p25/p35 ratio confirmed diminished calpain-1 activity. Amyloid β (Aβ) production and deposition was evaluated in 5XFAD mice and demonstrated a robust effect of NMDAR antagonists on reducing Aβ deposition and the number and size of Thioflavin-S positive plaques. Furthermore, glycogen synthase kinase 3β (GSK3β) active form and phosphorylated tau (AT8) levels were diminished after UB-ALT-EV treatment, revealing tau pathology improvement. Because calpain-1 is involved in autophagy activation, autophagic proteins were studied. Strikingly, results showed changes in the protein levels of unc-51-like kinase (ULK-1), beclin-1, microtubule-associated protein 1A/1B-light chain 3(LC3B-II)/LC3B-I ratio, and lysosomal-associated membrane protein 1 (LAMP-1) after NMDAR antagonist treatments, suggesting an accumulation of autophagolysosomes in 5XFAD mice, reversed by UB-ALT-EV. Likewise, treatment with UB-ALT-EV recovered a WT mice profile in apoptosis markers Bcl-2, Bax, and caspase-3. In conclusion, our results revealed the potential neuroprotective effect of UB-ALT-EV by attenuating NMDA-mediated apoptosis and reducing Aβ deposition and deposition jointly with the autophagy rescue to finally reduce cognitive alterations in a mice model of familial AD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Barabas AJ, Robbins LA, Gaskill BN. Home cage measures of Alzheimer's disease in the rTg4510 mouse model. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12795. [PMID: 35044727 PMCID: PMC9744509 DOI: 10.1111/gbb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease affects an array of activities in patients' daily lives but measures other than memory are rarely evaluated in animal models. Home cage behavior, however, may provide an opportunity to back translate a variety of measures seen in human disease progression to animal models, providing external and face validity. The aim of this study was to evaluate if home cage measures could indicate disease in the rTg4510 mouse model. We hypothesized that sleep, nesting, and smell discrimination would be altered in mutant mice. Thirty-two transgenic mice were used in a Latin square design of four genotypes x both sexes x two diets. Half the mice received a doxycycline diet to suppress tauopathy and evaluate tau severity on various measures. At 8-, 12-, and 16-weeks old, 24 h activity/sleep patterns, nest complexity, and odor discrimination were measured. After 16-weeks, tau concentration in the brain was quantified. Mutant mice had increased tau concentration in brain tissue, but it was reduced by the doxycycline diet. However, only nest complexity was different between mutant mice and controls. Overall, tauopathy in rTg4510 mice does seem to affect these commonly observed symptoms in human patients. However, while running this study, a report showed that the rTg4510 mutant phenotype is not caused by the mutation itself, but confounding factors from transgene insertion. Combined with report findings and our data, the rTg4510 model may not be an ideal model for all aspects of human Alzheimer's disease.
Collapse
Affiliation(s)
- Amanda J. Barabas
- Department of Animal SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | | |
Collapse
|
6
|
Wang T, Chen Y, Zou Y, Pang Y, He X, Chen Y, Liu Y, Feng W, Zhang Y, Li Q, Shi J, Ding F, Marshall C, Gao J, Xiao M. Locomotor Hyperactivity in the Early-Stage Alzheimer’s Disease-like Pathology of APP/PS1 Mice: Associated with Impaired Polarization of Astrocyte Aquaporin 4. Aging Dis 2022; 13:1504-1522. [PMID: 36186142 PMCID: PMC9466968 DOI: 10.14336/ad.2022.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Non-cognitive behavioral and psychological symptoms often occur in Alzheimer's disease (AD) patients and mouse models, although the exact neuropathological mechanism remains elusive. Here, we report hyperactivity with significant inter-individual variability in 4-month-old APP/PS1 mice. Pathological analysis revealed that intraneuronal accumulation of amyloid-β (Aβ), c-Fos expression in glutamatergic neurons and activation of astrocytes were more evident in the frontal motor cortex of hyperactive APP/PS1 mice, compared to those with normal activity. Moreover, the hyperactive phenotype was associated with mislocalization of perivascular aquaporin 4 (AQP4) and glymphatic transport impairment. Deletion of the AQP4 gene increased hyperactivity, intraneuronal Aβ load and glutamatergic neuron activation, but did not influence working memory or anxiety-like behaviors of 4-month-old APP/PS1 mice. Together, these results demonstrate that AQP4 mislocalization or deficiency leads to increased intraneuronal Aβ load and neuronal hyperactivity in the motor cortex, which in turn causes locomotor over-activity during the early pathophysiology of APP/PS1 mice. Therefore, improving AQP4 mediated glymphatic clearance may offer a new strategy for early intervention of hyperactivity in the prodromal phase of AD.
Collapse
Affiliation(s)
- Tianqi Wang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yan Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ying Zou
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yingting Pang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yali Chen
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yun Liu
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Weixi Feng
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yanli Zhang
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Li
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Charles Marshall
- College of Health Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY 41701, USA
| | - Junying Gao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ming Xiao
- Jiangsu Province Key Laboratory of Neurodegeneration, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
- Brain Institute, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Correspondence should be addressed to: Dr. Ming Xiao (E-mail: ) or Dr. Junying Gao (), Jiangsu Province Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiol Aging 2021; 108:58-71. [PMID: 34509856 DOI: 10.1016/j.neurobiolaging.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
Collapse
|
8
|
Li P, Xu J, Gu H, Peng H, Yin Y, Zhuang J. Memantine ameliorates cognitive deficit in AD mice via enhancement of entorhinal-CA1 projection. BMC Neurosci 2021; 22:41. [PMID: 34120588 PMCID: PMC8201811 DOI: 10.1186/s12868-021-00647-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Memantine, a low- to moderate-affinity uncompetitive N-methyl-D-aspartate receptor antagonist, has been shown to improve cognitive functions in animal models of Alzheimer's disease (AD). Here we treated APP/PS1 AD mice with a therapeutic dose of memantine (20 mg/kg/day) and examined its underlying mechanisms in ameliorating cognitive defects. METHODS Using behavioral, electrophysiological, optogenetic and morphology approaches to explore how memantine delay the pathogenesis of AD. RESULTS Memantine significantly improved the acquisition in Morris water maze (MWM) in APP/PS1 mice without affecting the speed of swimming. Furthermore, memantine enhanced EC to CA1 synaptic neurotransmission and promoted dendritic spine regeneration of EC neurons that projected to CA1. CONCLUSIONS Our study reveals the underlying mechanism of memantine in the treatment of AD mice.
Collapse
Affiliation(s)
- Peng Li
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Jin Xu
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Huanhuan Gu
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - Hua Peng
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China
| | - You Yin
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| | - Jianhua Zhuang
- Department of Neurology, Shanghai Changzheng Hospital, Navy Medical University, Shanghai, 200003, China.
| |
Collapse
|
9
|
Chronic Mild Unpredictable Stress and High-Fat Diet Given during Adolescence Impact Both Cognitive and Noncognitive Behaviors in Young Adult Mice. Brain Sci 2021; 11:brainsci11020260. [PMID: 33669543 PMCID: PMC7923206 DOI: 10.3390/brainsci11020260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022] Open
Abstract
Stress and diet are intricately linked, and they often interact in a negative fashion. Increases in stress can lead to poor food choices; adolescence is a period that is often accompanied by increased levels of stress. Stress and poor dietary choices can affect learning and memory; it is important to understand their combined effects when occurring during crucial developmental periods. Here, we present evidence that chronic mild unpredictable stress (CMUS) and high-fat diet (HFD) impact both cognitive and noncognitive behaviors when assessed after four weeks of manipulation in four-week old mice. CMUS mice had increased anxiety in the open field test (OFT) (p = 0.01) and spent more time in the open arms of the elevated zero maze (EZM) (p < 0.01). HFD administration was shown to interact with CMUS to impair spatial memory in the Morris Water Maze (MWM) (p < 0.05). Stress and diet also led to disturbances in non-cognitive behaviors: CMUS led to significantly more burrowing (p < 0.05) and HFD administration led to the poorer nest construction (p < 0.05). These findings allow for researchers to assess how modifying lifestyle factors (including diet and stress) during adolescence can serve as a potential strategy to improve cognition in young adulthood.
Collapse
|
10
|
Na H, Tian H, Zhang Z, Li Q, Yang JB, Mcparland L, Gan Q, Qiu WQ. Oral Amylin Treatment Reduces the Pathological Cascade of Alzheimer's Disease in a Mouse Model. Am J Alzheimers Dis Other Demen 2021; 36:15333175211012867. [PMID: 34137273 PMCID: PMC10623958 DOI: 10.1177/15333175211012867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Intraperitoneal injection of amylin or its analog reduces Alzheimer's disease (AD) pathology in the brains. However, self-injecting amylin analogs is difficult for patients due to cognitive deficits. This work aims to study the effects of amylin on the brain could be achieved by oral delivery as some study reported that amylin receptor may be present in the gastrointestinal tract. A 6-week course of oral amylin treatment reduced components of AD pathology, including the levels of amyloid-β, phosphorylated tau, and ionized calcium binding adaptor molecule 1. The treatment reduced active forms of cyclin-dependent kinase 5. Oral amylin treatment led to improvements in social deficit in AD mouse. Using immunofluorescence, we observed the amylin receptor complexed with the calcitonin receptor and receptor activity-modifying proteins in the enteric neurons. The study suggests the potential of the oral delivery of amylin analogs for the treatment of AD and other neurodegenerative diseases through enteric neurons.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Pharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qiang Li
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nursing School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jack B. Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Stazi M, Wirths O. Chronic Memantine Treatment Ameliorates Behavioral Deficits, Neuron Loss, and Impaired Neurogenesis in a Model of Alzheimer's Disease. Mol Neurobiol 2020; 58:204-216. [PMID: 32914393 PMCID: PMC7695672 DOI: 10.1007/s12035-020-02120-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Memantine, a non-competitive NMDA receptor antagonist possessing neuroprotective properties, belongs to the small group of drugs which have been approved for the treatment of Alzheimer's disease (AD). While several preclinical studies employing different transgenic AD mouse models have described beneficial effects with regard to rescued behavioral deficits or reduced amyloid plaque pathology, it is largely unknown whether memantine might have beneficial effects on neurodegeneration. In the current study, we assessed whether memantine treatment has an impact on hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. We demonstrate that a chronic oral memantine treatment for 4 months diminishes hippocampal CA1 neuron loss and rescues learning and memory performance in different behavioral paradigms, such as Morris water maze or a novel object recognition task. Cognitive benefits of chronic memantine treatment were accompanied by an amelioration of impaired adult hippocampal neurogenesis. Taken together, our results demonstrate that memantine successfully counteracts pathological alterations in a preclinical mouse model of AD.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
12
|
Kosel F, Pelley JMS, Franklin TB. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology. Neurosci Biobehav Rev 2020; 112:634-647. [PMID: 32070692 DOI: 10.1016/j.neubiorev.2020.02.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Transgenic mouse models have been used extensively to model the cognitive impairments arising from Alzheimer's disease (AD)-related pathology. However, less is known about the relationship between AD-related pathology and the behavioural and psychological symptoms of dementia (BPSD) commonly presented by patients. This review discusses the BPSD-like behaviours recapitulated by several mouse models of AD-related pathology, including the APP/PS1, Tg2576, 3xTg-AD, 5xFAD, and APP23 models. Current evidence suggests that social withdrawal and depressive-like behaviours increase with progressive neuropathology, and increased aggression and sleep-wake disturbances are present even at early stages; however, there is no clear evidence to support increased anxiety-like behaviours, agitation (hyperactivity), or general apathy. Overall, transgenic mouse models of AD-related pathology recapitulate some of the BPSD-like behaviours associated with AD, but these behaviours vary by model. This reflects the patient population, where AD patients typically exhibit one or more BPSD, but rarely all symptoms at once. As a result, we suggest that transgenic mouse models are an important tool to investigate the pathology underlying BPSD in human AD patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Jessica M S Pelley
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
13
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
14
|
Jürgenson M, Zharkovskaja T, Noortoots A, Morozova M, Beniashvili A, Zapolski M, Zharkovsky A. Effects of the drug combination memantine and melatonin on impaired memory and brain neuronal deficits in an amyloid-predominant mouse model of Alzheimer's disease. J Pharm Pharmacol 2019; 71:1695-1705. [DOI: 10.1111/jphp.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Alzheimer's disease (AD) is a neurodegenerative disorder with no cure. Limited treatment options available today do not offer solutions to slow or stop any of the suspected causes. The current medications used for the symptomatic treatment of AD include memantine and acetylcholine esterase inhibitors. Some studies suggest that melatonin could also be used in AD patients due to its sleep-improving properties.
Methods
In this study, we evaluated whether a combination of memantine with melatonin, administered for 32 days in drinking water, was more effective than either drug alone with respect to Aβ aggregates, neuroinflammation and cognition in the double transgenic APP/PS1 (5xFAD) mouse model of AD.
Key findings
In this study, chronic administration of memantine with melatonin improved episodic memory in the object recognition test and reduced the number of amyloid aggregates and reactive microgliosis in the brains of 5xFAD mice. Although administration of memantine or melatonin alone also reduced the number of amyloid aggregates and inflammation in brain, this study shows a clear benefit of the drug combination, which had a significantly stronger effect in this amyloid-dominant mouse model of AD.
Conclusion
Our data suggest considerable potential for the use of memantine with melatonin in patients with AD.
Collapse
Affiliation(s)
- Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Zharkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | - Max Zapolski
- Valentech Ltd, Skolkovo Innovation Centre, Moscow, Russia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Yuan C, Guo X, Zhou Q, Du F, Jiang W, Zhou X, Liu P, Chi T, Ji X, Gao J, Chen C, Lang H, Xu J, Liu D, Yang Y, Qiu S, Tang X, Chen G, Zou L. OAB-14, a bexarotene derivative, improves Alzheimer's disease-related pathologies and cognitive impairments by increasing β-amyloid clearance in APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis 2018; 1865:161-180. [PMID: 30389579 DOI: 10.1016/j.bbadis.2018.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex, though the clinical failures of anti-AD candidates targeting Aβ production (such as β- and γ-secretase inhibitors) make people suspect the Aβ hypothesis, in which the neurotoxicity of Aβ is undoubtedly involved. According to studies, >95% of AD patients with sporadic AD are primarily associated with abnormal Aβ clearance. Therefore, drugs that increase Aβ clearance are becoming new prospects for the treatment of AD. Here, the novel small molecule OAB-14, designed using bexarotene as the lead compound, significantly alleviated cognitive impairments in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice after administration for 15 days or 3 months. OAB-14 rapidly cleared 71% of Aβ by promoting microglia phagocytosis and increasing IDE and NEP expression. This compound also attenuated the downstream pathological events of Aβ accumulation, such as synaptic degeneration, neuronal loss, tau hyperphosphorylation and neuroinflammation in APP/PS1 mice. Moreover, OAB-14 had no significant effect on body weight or liver toxicity after acute and chronic treatment. OAB-14 was well tolerated and its maximum-tolerated dose in mice was >4.0 g/kg. Based on these findings, OAB-14 represents a promising new candidate for AD treatment.
Collapse
Affiliation(s)
- Chunling Yuan
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Department of Medicinal Chemistry, Pharmacy School, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiaoli Guo
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qifan Zhou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Fangyu Du
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Wei Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyu Zhou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tianyan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuefei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jinheng Gao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Chengwen Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hongli Lang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jia Xu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Yang
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shimeng Qiu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Libo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
16
|
Go J, Park TS, Han GH, Park HY, Ryu YK, Kim YH, Hwang JH, Choi DH, Noh JR, Hwang DY, Kim S, Oh WK, Lee CH, Kim KS. Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice. Int J Mol Med 2018; 42:1875-1884. [PMID: 30066827 PMCID: PMC6108885 DOI: 10.3892/ijmm.2018.3782] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
Piperlongumine (PL), a biologically active compound from the Piper species, has been shown to exert various pharmacological effects in a number of conditions, including tumours, diabetes, pain, psychiatric disorders and neurodegenerative disease. In this study, we evaluated the therapeutic effects of PL on hippocampal function and cognition decline in aged mice. PL (50 mg/kg/day) was intragastrically administrated to 23‑month‑old female C57BL/6J mice for 8 weeks. Novel object recognition and nest building behaviour tests were used to assess cognitive and social functions. Additionally, immunohistochemistry and western blot analysis were performed to examine the effects of PL on the hippocampus. We found that the oral administration of PL significantly improved novel object recognition and nest building behaviour in aged mice. Although neither the percentage area occupied by astrocytes and microglia nor the level of 4‑hydroxynonenal protein, a specific marker of lipid peroxidation, were altered by PL treatment, the phosphorylation levels of N‑methyl‑D‑aspartate receptor subtype 2B (NR2B), calmodulin‑dependent protein kinase II alpha (CaMKIIα) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were markedly increased in the hippocampus of aged mice following the administration of PL. We also found that PL treatment resulted in a CA3‑specific increase in the phosphorylation level of cyclic AMP response element binding protein, which is recognized as a potent marker of neuronal plasticity, learning and memory. Moreover, the number of doublecortin‑positive cells, a specific marker of neurogenesis, was significantly increased following PL treatment in the dentate gyrus of the hippocampus. On the whole, these data demonstrate that PL treatment may be a potential novel approach in the treatment of age‑related cognitive impairment and hippocampal changes.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463
| | - Tae-Shin Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Geun-Hee Han
- College of Pharmacy, Seoul National University, Seoul 08826
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141
- Department of Functional Genomics, University of Science and Technology, Daejeon 34113
| |
Collapse
|
17
|
Shi Y, Huang W, Wang Y, Zhang R, Hou L, Xu J, Qiu Z, Xie Q, Chen H, Zhang Y, Wang H. Bis(9)-(-)-Meptazinol, a novel dual-binding AChE inhibitor, rescues cognitive deficits and pathological changes in APP/PS1 transgenic mice. Transl Neurodegener 2018; 7:21. [PMID: 30237878 PMCID: PMC6142624 DOI: 10.1186/s40035-018-0126-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative brain disorder, which is the most common form of dementia. Intensive efforts have been made to find effective and safe treatment against AD. Acetylcholinesterase inhibitors (AChEIs) have been widely used for the treatment of mild to moderate AD. In this study, we investigated the effect of Bis(9)-(-)-Meptazinol (B9M), a novel potential dual-binding acetylcholinesterase (AChE) inhibitor, on learning and memory abilities, as well as the underlying mechanism in the APP/PS1 mouse model of AD. METHODS B9M (0.1 μg/kg, 0.3 μg/kg, and 1 μg/kg) was administered by subcutaneous injection into eight-month-old APP/PS1 transgenic mice for four weeks. Morris water maze, nest-building and novel object recognition were used to examine learning and memory ability. Aβ levels and Aβ plaque were evaluated by ELISA and immunochemistry. RESULTS Our results showed that chronic treatment with B9M significantly improved the cognitive function of APP/PS1 transgenic mice in the Morris water maze test, nest-building test and novel object recognition test. Moreover, B9M improved cognitive deficits in APP/PS1 mice by a mechanism that may be associated with its inhibition of the AChE activity, Aβ plaque burden, levels of Aβ and the consequent activation of astrocytes and microglia in the brain of APP/PS1 transgenic mice. Most of important, the most effective dose of B9M in the present study is 1 μg/kg, which is one thousand of the dosage of Donepezil acted as the control treatment. Furthermore, B9M reduced Aβ plaque burden better than Donepezil. CONCLUSION These results indicate that B9M appears to have potential as an effective AChE inhibitor for the treatment of AD with symptom-relieving and disease-modifying properties.
Collapse
Affiliation(s)
- Yuhuan Shi
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Yu Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
18
|
Hohlbaum K, Bert B, Dietze S, Palme R, Fink H, Thöne-Reineke C. Systematic Assessment of Well-Being in Mice for Procedures Using General Anesthesia. J Vis Exp 2018. [PMID: 29630060 DOI: 10.3791/57046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In keeping with the 3R Principle (Replacement, Reduction, Refinement) developed by Russel and Burch, scientific research should use alternatives to animal experimentation whenever possible. When there is no alternative to animal experimentation, the total number of laboratory animals used should be the minimum needed to obtain valuable data. Moreover, appropriate refinement measures should be applied to minimize pain, suffering, and distress accompanying the experimental procedure. The categories used to classify the degree of pain, suffering, and distress are non-recovery, mild, moderate, or severe (EU Directive 2010/63). To determine which categories apply in individual cases, it is crucial to use scientifically sound tools. The well-being-assessment protocol presented here is designed for procedures during which general anesthesia is used. The protocol focuses on home cage activity, the Mouse Grimace Scale, and luxury behaviors such as burrowing and nest building behavior as indicators of well-being. It also uses the free exploratory paradigm for trait anxiety-related behavior. Fecal corticosterone metabolites as indicators of acute stress are measured over the 24-h post-anesthetic period. The protocol provides scientifically solid information on the well-being of mice following general anesthesia. Due to its simplicity, the protocol can easily be adapted and integrated in a planned study. Although it does not provide a scale to classify distress in categories according to the EU Directive 2010/63, it can help researchers estimate the degree of severity of a procedure using scientifically sound data. It provides a way to improve the assessment of well-being in a scientific, animal-centered manner.
Collapse
Affiliation(s)
- Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin; Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin;
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin; German Federal Institute for Risk Assessment (BfR)
| | - Silke Dietze
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine
| | - Heidrun Fink
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin
| |
Collapse
|
19
|
Hoeijmakers L, Amelianchik A, Verhaag F, Kotah J, Lucassen PJ, Korosi A. Early-Life Stress Does Not Aggravate Spatial Memory or the Process of Hippocampal Neurogenesis in Adult and Middle-Aged APP/PS1 Mice. Front Aging Neurosci 2018; 10:61. [PMID: 29563870 PMCID: PMC5845884 DOI: 10.3389/fnagi.2018.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Life-time experiences are thought to influence the risk to develop the neurodegenerative disorder Alzheimer’s disease (AD). In particular, early-life stress (ES) may modulate the onset and progression of AD. There is recent evidence by our group and others that AD-related neuropathological progression and the associated neuroimmune responses are modulated by ES in the classic APPswe/PS1dE9 mouse model for AD. We here extend our previous study on ES mediated modulation of neuropathology and neuroinflammation and address in the same cohort of mice whether ES accelerates and/or aggravates AD-induced cognitive decline and alterations in the process of adult hippocampal neurogenesis (AHN), a form of brain plasticity. Chronic ES was induced by limiting bedding and nesting material during the first postnatal week and is known to induce cognitive deficits by 4 months in wild type (WT) mice. The onset of cognitive decline in APP/PS1 mice generally starts around 6 months of age. We here tested mice at ages 2–4 months to study acceleration and at ages 8–10 months for aggravation of the APP/PS1 phenotype. ES-exposed WT and APP/PS1 mice were able to perform the object recognition (ORT) and location tasks (OLT) at 2 months of age. Interestingly, at 3 months, ES induced impairments in the performance of the OLT in WT, but not in APP/PS1 mice. APP/PS1 mice exhibited alterations in hippocampal cell proliferation and differentiation, but ES exposure did not further change this. At 9 months, APP/PS1 mice exhibited impaired performance in the Morris Water Maze (MWM) task, as well as reductions in markers of the AHN process, which were not further modulated by ES exposure. In addition, we observed a so far unreported hyperactivity in ES-exposed mice at 8 months of age, which hampered assessment of cognitive functions in the ORT and OLT. In conclusion, while ES has been reported to modulate AD neuropathology and neuroinflammation before, it failed to accelerate or aggravate the decline in cognition or the process of AHN in APP/PS1 mice at ages 2–4 and 8–10 months. Future studies are needed to unravel how ES might affect the vulnerability to develop AD.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anna Amelianchik
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Fleur Verhaag
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Janssen Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - A Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer's model. Neuropharmacology 2017; 130:54-61. [PMID: 29191754 DOI: 10.1016/j.neuropharm.2017.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/09/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease remains without a disease-modifying therapy that improves symptoms after therapy withdrawal. Because no investigational agents have demonstrated disease-modifying effects clinically, we tested whether the Fyn inhibitor, saracatinib, provides persistent improvement in a transgenic model. Aged APPswe/PS1ΔE9 mice were treated with saracatinib or memantine for 4 weeks and spatial memory improved to control levels. After drug washout, there was sustained rescue of both memory function and synapse density by saracatinib, but a loss of benefit from memantine. These data demonstrate a disease-modifying persistent benefit for saracatinib in a preclinincal Alzheimer's model, and distinguish its action from that of memantine.
Collapse
Affiliation(s)
- Levi M Smith
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT 06510, USA; Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Greenberg GD, Phillips TJ, Crabbe JC. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity. Physiol Behav 2016; 165:257-66. [PMID: 27503811 PMCID: PMC5245172 DOI: 10.1016/j.physbeh.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
Abstract
Nest building has been used to assess thermoregulatory behavior and positive motivational states in mice. There are known genetic influences on ethanol withdrawal severity as well as individual/thermoregulatory nest building. Withdrawal Seizure-Prone (WSP-1, WSP-2) and Withdrawal Seizure-Resistant (WSR-1, WSR-2) mice were selectively bred for high vs low handling-induced convulsion (HIC) severity, respectively, during withdrawal from chronic ethanol vapor inhalation. They also differ in HIC severity during withdrawal from an acute, 4g/kg ethanol injection. In our initial study, withdrawal from an acute dose of ethanol dose-dependently impaired nest building over the initial 24h of withdrawal in genetically segregating Withdrawal Seizure Control (WSC) mice. In two further studies, acute ethanol withdrawal suppressed nest building for up to two days in WSP-1 females. Deficits in nest building from ethanol were limited to the initial 10h of withdrawal in WSR-1 females and to the initial 24h of withdrawal in WSP-1 and WSR-1 males. Effects of ethanol on nest building for up to two days were found in WSP-2 and WSR-2 mice of both sexes. Nest building deficits in female mice from the first replicate could not be explained by a general decrease in locomotor behavior. These results suggest that nest building is a novel behavioral phenotype for indexing the severity of acute ethanol withdrawal, and that genes contributing to this trait differ from those affecting acute withdrawal HIC severity.
Collapse
Affiliation(s)
- Gian D Greenberg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Portland Alcohol Research Center, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA.
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Portland Alcohol Research Center, Portland, OR, USA; Methamphetamine Abuse Research Center, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Portland Alcohol Research Center, Portland, OR, USA; Methamphetamine Abuse Research Center, Portland, OR, USA; VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
22
|
Translational Assays for Assessment of Cognition in Rodent Models of Alzheimer’s Disease and Dementia. J Mol Neurosci 2016; 60:371-382. [DOI: 10.1007/s12031-016-0837-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
|
23
|
Wu Z, Zhao L, Chen X, Cheng X, Zhang Y. Galantamine attenuates amyloid-β deposition and astrocyte activation in APP/PS1 transgenic mice. Exp Gerontol 2015; 72:244-50. [DOI: 10.1016/j.exger.2015.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022]
|
24
|
1,8-Naphthyridines IX. Potent anti-inflammatory and/or analgesic activity of a new group of substituted 5-amino[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, of some their Mannich base derivatives and of one novel substituted 5-amino-10-oxo-10H-pyrimido[1,2-a][1,8]naphthyridine-6-carboxamide derivative. Eur J Med Chem 2014; 86:394-405. [DOI: 10.1016/j.ejmech.2014.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/23/2014] [Accepted: 08/26/2014] [Indexed: 11/23/2022]
|
25
|
Glutamatergic transmission aberration: a major cause of behavioral deficits in a murine model of Down's syndrome. J Neurosci 2014; 34:5099-106. [PMID: 24719089 DOI: 10.1523/jneurosci.5338-13.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trisomy 21, or Down's syndrome (DS), is the most common genetic cause of intellectual disability. Altered neurotransmission in the brains of DS patients leads to hippocampus-dependent learning and memory deficiency. Although genetic mouse models have provided important insights into the genes and mechanisms responsible for DS-specific changes, the molecular mechanisms leading to memory deficits are not clear. We investigated whether the segmental trisomy model of DS, Ts[Rb(12.1716)]2Cje (Ts2), exhibits hippocampal glutamatergic transmission abnormalities and whether these alterations cause behavioral deficits. Behavioral assays demonstrated that Ts2 mice display a deficit in nest building behavior, a measure of hippocampus-dependent nonlearned behavior, as well as dysfunctional hippocampus-dependent spatial memory tested in the object-placement and the Y-maze spontaneous alternation tasks. Magnetic resonance spectra measured in the hippocampi revealed a significantly lower glutamate concentration in Ts2 as compared with normal disomic (2N) littermates. The glutamate deficit accompanied hippocampal NMDA receptor1 (NMDA-R1) mRNA and protein expression level downregulation in Ts2 compared with 2N mice. In concert with these alterations, paired-pulse analyses suggested enhanced synaptic inhibition and/or lack of facilitation in the dentate gyrus of Ts2 compared with 2N mice. Ts2 mice also exhibited disrupted synaptic plasticity in slice recordings of the hippocampal CA1 region. Collectively, these findings imply that deficits in glutamate and NMDA-R1 may be responsible for impairments in synaptic plasticity in the hippocampus associated with behavioral dysfunctions in Ts2 mice. Thus, these findings suggest that glutamatergic deficits have a significant role in causing intellectual disabilities in DS.
Collapse
|
26
|
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 2014; 135:25-33. [PMID: 24907698 DOI: 10.1016/j.physbeh.2014.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/23/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
Transgenic animal models of Alzheimer's disease (AD) are widely used to investigate mechanisms of pathophysiology and cognitive dysfunctions. A model with a very early development of parenchymal plaque load at the age of 2months is the 5xFAD mouse (Tg6799, Oakley et al. 2006). These 5xFAD mice over-express both human amyloid precursor protein (APP) and human presenilin 1 (PS1). Mice from this line have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β (Aβ). The aim of this study was the behavioral and functional investigations of 5xFAD males because in most studies females of this strain were characterized. In comparison to literature of transgenic 5xFAD females, transgenic 5xFAD males showed decreased anxiety in the elevated plus maze, reduced locomotion and exploration in the open field and disturbances in learning performance in the Morris water maze starting at 9months of age. Electroencephalogram (EEG) recordings on 6month old transgenic mice revealed a decrease of delta, theta, alpha, beta and gamma frequency bands whereas the subdelta frequency was increased. EEG recordings during sleep showed a reduction of rapid eye movement sleep in relation to the amount of total sleep. Thus, 5xFAD males develop early functional disturbances and subsequently behavioral deficits and therefore they are a good mouse model for studying Alzheimer's disease.
Collapse
Affiliation(s)
- F Schneider
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - K Baldauf
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.
| | - W Wetzel
- Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| | - K G Reymann
- German Centre for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany.
| |
Collapse
|
27
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|
28
|
Zhou F, Xu Y, Hou XY. MLK3-MKK3/6-P38MAPK cascades following N-methyl-D-aspartate receptor activation contributes to amyloid-β peptide-induced apoptosis in SH-SY5Y cells. J Neurosci Res 2014; 92:808-17. [DOI: 10.1002/jnr.23354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 11/20/2013] [Accepted: 12/01/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Fang Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation; Research Center for Biochemistry and Molecular Biology; Xuzhou Medical College; Jiangsu China
- School of Nursing; Xuzhou Medical College; Jiangsu China
| | - Yan Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation; Research Center for Biochemistry and Molecular Biology; Xuzhou Medical College; Jiangsu China
| | - Xiao-Yu Hou
- Jiangsu Key Laboratory of Brain Disease Bioinformation; Research Center for Biochemistry and Molecular Biology; Xuzhou Medical College; Jiangsu China
| |
Collapse
|
29
|
Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ1–42-mediated memory deficits in rats. Exp Gerontol 2013; 48:786-94. [DOI: 10.1016/j.exger.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/10/2023]
|
30
|
Abstract
NMDA receptors (NMDARs) are required for experience-driven plasticity during formative periods of brain development and are critical for neurotransmission throughout postnatal life. Most NMDAR functions have been ascribed to postsynaptic sites of action, but there is now an appreciation that presynaptic NMDARs (preNMDARs) can modulate neurotransmitter release in many brain regions, including the neocortex. Despite these advances, the cellular mechanisms by which preNMDARs can affect neurotransmitter release are largely unknown. Here we interrogated preNMDAR functions pharmacologically to determine how these receptors promote spontaneous neurotransmitter release in mouse primary visual cortex. Our results provide three new insights into the mechanisms by which preNMDARs can function. First, preNMDARs can enhance spontaneous neurotransmitter release tonically with minimal extracellular Ca(2+) or with major sources of intracellular Ca(2+) blocked. Second, lowering extracellular Na(+) levels reduces the contribution of preNMDARs to spontaneous transmitter release significantly. Third, preNMDAR enhance transmitter release in part through protein kinase C signaling. These data demonstrate that preNMDARs can act through novel pathways to promote neurotransmitter release in the absence of action potentials.
Collapse
|
31
|
Yan L, Li L, Han W, Pan B, Xue X, Mei B. Age-related neuropsychiatric symptoms in presenilins conditional double knockout mice. Brain Res Bull 2013; 97:104-11. [PMID: 23792007 DOI: 10.1016/j.brainresbull.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 06/02/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and causes impairments of memory, cognition and behavior. Remarkably, most AD patients exhibit personality changes that often precede other early clinical manifestations. Conditional presenilin1 (PS1) and presenilin2 (PS2) double knockout (DKO) mice have age-related forebrain atrophy, tau hyperphosphorylation, synaptic dysfunction, cognitive deficits and increased inflammatory responses in both the periphery and the brain. Whether these mice have age-related emotional changes have not yet been investigated. In the present study, we used 2-, 6- and 11-month-old DKO and littermate control (CON) mice to examine their age-related emotional conditions. Our results indicate that DKO mice have observable age-related neuropsychiatric symptoms, such as anxiety, irritability, depression, apathy, aggressivity, anhedonia and aberrant motor behavior when compared with other AD-like mouse models. In summary, our results not only indicate that DKO mice may be a valuable model for probing age-related AD diagnoses but also suggest a new pathogenesis of neurodegenerative diseases that is worth further investigation.
Collapse
Affiliation(s)
- Li Yan
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics, Ministry of Education, East China Normal University, Shanghai 200062, China
| | | | | | | | | | | |
Collapse
|
32
|
Impairment of nesting behaviour in 3xTg-AD mice. Behav Brain Res 2013; 247:153-7. [PMID: 23523959 DOI: 10.1016/j.bbr.2013.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 11/21/2022]
Abstract
Deterioration in executive functions and daily life activities (DLA) are early signs of Alzheimer's disease (AD) that signal the need for caregiver attention. We have addressed this issue in the 3xTg-AD mice model for AD and studied nesting behaviour as a natural DLA of parental structures as well as at early- (6 month-old) and advanced-stages (12 month-old) of the disease in isolated animals. The results show genetic, gender and age-dependent impairment of nesting behaviour but also aware about the relevance of factors such as the temporal course of nest construction and the nesting material. Paper towel consistently showed the impairment of nesting behavior in 3xTg-AD mice since early stages of the disease and in both social conditions. Their nest construction was slow temporal pattern and of poor quality, especially in females and advanced stages of the disease where the deficits were shown from the first day. In all cases, cotton elicited an intense behaviour that lead to perfect nesting during the first 48 h. Genotype, gender and age differences were found in the onset of nesting behaviour, with a time delay in the 3xTg-AD mice, particularly in females. The reported impairment of nesting behaviour in 3xTg-AD provides another behavioral tool to assess the benefits of preventive and/or therapeutic strategies, as well as the potential action of risk factors of AD, in this animal model.
Collapse
|
33
|
Filali M, Lalonde R. The effects of subchronic d-serine on left–right discrimination learning, social interaction, and exploratory activity in APPswe/PS1 mice. Eur J Pharmacol 2013; 701:152-8. [DOI: 10.1016/j.ejphar.2012.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/12/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
34
|
Danysz W, Parsons CG. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol 2013; 167:324-52. [PMID: 22646481 DOI: 10.1111/j.1476-5381.2012.02057.x] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
β-amyloid (Aβ) is widely accepted to be one of the major pathomechanisms underlying Alzheimer's disease (AD), although there is presently lively debate regarding the relative roles of particular species/forms of this peptide. Most recent evidence indicates that soluble oligomers rather than plaques are the major cause of synaptic dysfunction and ultimately neurodegeneration. Soluble oligomeric Aβ has been shown to interact with several proteins, for example glutamatergic receptors of the NMDA type and proteins responsible for maintaining glutamate homeostasis such as uptake and release. As NMDA receptors are critically involved in neuronal plasticity including learning and memory, we felt that it would be valuable to provide an up to date review of the evidence connecting Aβ to these receptors and related neuronal plasticity. Strong support for the clinical relevance of such interactions is provided by the NMDA receptor antagonist memantine. This substance is the only NMDA receptor antagonist used clinically in the treatment of AD and therefore offers an excellent tool to facilitate translational extrapolations from in vitro studies through in vivo animal experiments to its ultimate clinical utility.
Collapse
Affiliation(s)
- Wojciech Danysz
- Merz Pharmaceuticals GmbH, Eckenheimer Landstraße, Frankfurt am Main, Germany
| | | |
Collapse
|
35
|
Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer's disease. Ageing Res Rev 2013; 12:116-40. [PMID: 22982398 DOI: 10.1016/j.arr.2012.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders, bringing about huge medical and social burden in the elderly worldwide. Many aspects of its pathogenesis have remained unclear and no effective treatment exists for it. Within the past 20 years, various mice models harboring AD-related human mutations have been produced. These models imitate diverse AD-related pathologies and have been used for basic and therapeutic investigations in AD. In this regard, there are a wide variety of preclinical trials of potential therapeutic modalities using AD mice models which are of paramount importance for future clinical trials and applications. This review summarizes more than 140 substances and treatment modalities being used in transgenic AD mice models from 2001 to 2011. We also discuss advantages and disadvantages of each model to be used in therapeutic development for AD.
Collapse
|
36
|
Herbal Extracts Combination (WNK) Prevents Decline in Spatial Learning and Memory in APP/PS1 Mice through Improvement of Hippocampal Aβ Plaque Formation, Histopathology, and Ultrastructure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:478190. [PMID: 22811746 PMCID: PMC3395307 DOI: 10.1155/2012/478190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/12/2022]
Abstract
To investigate the cognitive enhancement effect of WNK, an extracts combination of P. ginseng, G. biloba, and C. sativus L. and possible mechanisms, 5-month-old APP/PS1 transgenic mice were used in this study. After 3 months of administration, all mice received Morris water maze (MWM) training and a probe test. Mouse brain sections were detected by immunohistochemistry, HE staining, and transmission electron microscopy. MWM results showed significant difference between transgenic mice and nontransgenic littermates (P < 0.05, P < 0.01). WNK-treated mice exhibited enhanced maze performance over the training progression, especially better spatial memory retention in probe test compared to transgenic mice (P < 0.05, P < 0.01) and better spatial learning and memory at the fourth day of MWM test compared to EGB761- (G. biloba extract-) treated ones (P < 0.05). Hippocampal Aβ plaque burden significantly differed between APP/PS1 and littermate mice (P < 0.001), while decreased Aβ plaque appeared in WNK- or EGB761-treated transgenic brains (P < 0.05). Neurodegenerative changes were evident from light microscopic and ultrastructural observations in transgenic brains, which were improved by WNK or EGB761 treatment. These data indicate WNK can reduce the decline in spatial cognition, which might be due to its effects on reducing Aβ plaque formation and ameliorating histopathology and ultrastructure in hippocampus of APP/PS1 mouse brain.
Collapse
|
37
|
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy. Neurobiol Dis 2012; 47:1-12. [PMID: 22426397 DOI: 10.1016/j.nbd.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease.
Collapse
|
38
|
Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2011; 2012:319836. [PMID: 22203915 PMCID: PMC3238410 DOI: 10.1155/2012/319836] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD)--widespread synaptic and neuronal loss and the pathological accumulation of amyloid-beta peptide (Aβ) in senile plaques, as well as hyperphosphorylated tau in neurofibrillary tangles--have been known for many decades, but the links between AD pathology and dementia and effective therapeutic strategies remain elusive. Transgenic mice have been developed based on rare familial forms of AD and frontotemporal dementia, allowing investigators to test in detail the structural, functional, and behavioral consequences of AD-associated pathology. Here, we review work on transgenic AD models that investigate the degeneration of dendritic spine structure, synaptic function, and cognition. Together, these data support a model of AD pathogenesis in which soluble Aβ initiates synaptic dysfunction and loss, as well as pathological changes in tau, which contribute to both synaptic and neuronal loss. These changes in synapse structure and function as well as frank synapse and neuronal loss contribute to the neural system dysfunction which causes cognitive deficits. Understanding the underpinnings of dementia in AD will be essential to develop and evaluate therapeutic approaches for this widespread and devastating disease.
Collapse
|
39
|
Ehrnhoefer DE, Wong BKY, Hayden MR. Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat Rev Drug Discov 2011; 10:853-67. [PMID: 22015920 DOI: 10.1038/nrd3556] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, exemplified by Alzheimer's disease and Huntington's disease, are characterized by progressive neuropsychiatric dysfunction and loss of specific neuronal subtypes. Although there are differences in the exact sites of pathology, and the clinical profiles of these two conditions only partially overlap, considerable similarities in disease mechanisms and pathogenic pathways can be observed. These shared mechanisms raise the possibility of exploiting common therapeutic targets for drug development. As Huntington's disease has a monogenic cause, it is possible to accurately identify individuals who carry the Huntington's disease mutation but do not yet manifest symptoms. These individuals could act as a model for Alzheimer's disease to test therapeutic interventions that target shared pathogenic pathways.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | |
Collapse
|
40
|
Filali M, Lalonde R, Rivest S. Anomalies in social behaviors and exploratory activities in an APPswe/PS1 mouse model of Alzheimer's disease. Physiol Behav 2011; 104:880-5. [PMID: 21640739 DOI: 10.1016/j.physbeh.2011.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease is characterized by deficits in social communication, associated with generalized apathy or agitation, as well as social memory. To assess social behaviors in 6-month-old male APPswe/PS1 bigenics relative to non-transgenic controls, the 3-chamber test was used, together with open-field and elevated plus-maze tests of exploration. APPswe/PS1 mice were less willing to engage in social interaction than wild-type, avoiding an unfamiliar stimulus mouse, probably not due to generalized apathy because in both tests of exploratory activity the mutants were hyperactive. This study reveals reduced "sociability" combined with hyperactivity in an APPswe/PS1 mouse model of Alzheimer dementia.
Collapse
Affiliation(s)
- Mohammed Filali
- Neurobehavioral Phenotyping Platform, Laboratory of Endocrinology and Genomics, CHUQ Research Center, Department of Molecular Medicine, Laval University, Québec, Canada.
| | | | | |
Collapse
|
41
|
O'Reilly JA, Lynch M. Rosiglitazone improves spatial memory and decreases insoluble Aβ(1-42) in APP/PS1 mice. J Neuroimmune Pharmacol 2011; 7:140-4. [PMID: 21617889 DOI: 10.1007/s11481-011-9282-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Julie-Ann O'Reilly
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|