1
|
Smit T, Deshayes NAC, Borchelt DR, Kamphuis W, Middeldorp J, Hol EM. Reactive astrocytes as treatment targets in Alzheimer's disease-Systematic review of studies using the APPswePS1dE9 mouse model. Glia 2021; 69:1852-1881. [PMID: 33634529 PMCID: PMC8247905 DOI: 10.1002/glia.23981] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Astrocytes regulate synaptic communication and are essential for proper brain functioning. In Alzheimer's disease (AD) astrocytes become reactive, which is characterized by an increased expression of intermediate filament proteins and cellular hypertrophy. Reactive astrocytes are found in close association with amyloid-beta (Aβ) deposits. Synaptic communication and neuronal network function could be directly modulated by reactive astrocytes, potentially contributing to cognitive decline in AD. In this review, we focus on reactive astrocytes as treatment targets in AD in the APPswePS1dE9 AD mouse model, a widely used model to study amyloidosis and gliosis. We first give an overview of the model; that is, how it was generated, which cells express the transgenes, and the effect of its genetic background on Aβ pathology. Subsequently, to determine whether modifying reactive astrocytes in AD could influence pathogenesis and cognition, we review studies using this mouse model in which interventions were directly targeted at reactive astrocytes or had an indirect effect on reactive astrocytes. Overall, studies specifically targeting astrocytes to reduce astrogliosis showed beneficial effects on cognition, which indicates that targeting astrocytes should be included in developing novel therapies for AD.
Collapse
Affiliation(s)
- Tamar Smit
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Swammerdam Institute for Life SciencesCenter for Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - Natasja A. C. Deshayes
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Swammerdam Institute for Life SciencesCenter for Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - David R. Borchelt
- Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, Department of NeuroscienceUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Willem Kamphuis
- Netherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Jinte Middeldorp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
- Department of ImmunobiologyBiomedical Primate Research CentreRijswijkThe Netherlands
| | - Elly M. Hol
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain Center, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Lin SY, Ma J, An JX, Qian XY, Wang Y, Cope DK, Williams JP. Ozone Inhibits APP/Aβ Production and Improves Cognition in an APP/PS1 Transgenic Mouse Model. Neuroscience 2019; 418:110-121. [PMID: 31349006 DOI: 10.1016/j.neuroscience.2019.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder without effective treatment. Accumulating evidence demonstrates the production and deposition of amyloid-β peptides (Aβ) in the pathological mechanism of this disease. In our study, we investigated the effect of an ozone intraperitoneal injection on AD pathology in APP/PS1 transgenic mouse model. The male mice (5-months-old) received either ozone intraperitoneal injection (at 30 μg/ml or 50 μg/ml) or abdominocentesis administration daily for 25 days, and they were evaluated in the Morris water maze and the open field test for improvements in spatial learning-memory and working memory and anxious. Prefrontal cortex and hippocampus amyloid-β precursor protein (APP), along with other relevant biomarkers for AD, were measured through ELISA, western blot and immunohistochemistry. Results showed that ozone ameliorated the behavioral and pathological deterioration of APP/PS1 transgenic mice, and reduced the level of APP, which supports the therapeutic potential of administration of ozone in APP/PS1 mice.
Collapse
Affiliation(s)
- Si-Yu Lin
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Jun Ma
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Jian-Xiong An
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China.
| | - Xiao-Yan Qian
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Yong Wang
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012, China
| | - Doris K Cope
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Coder B, Wang W, Wang L, Wu Z, Zhuge Q, Su DM. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging. Oncotarget 2018; 8:7116-7137. [PMID: 27738345 PMCID: PMC5351694 DOI: 10.18632/oncotarget.12572] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”.
Collapse
Affiliation(s)
- Brandon Coder
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Weikan Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Liefeng Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Biotechnology, Gannan Medical University, Ganzhou, P. R. China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Dong-Ming Su
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
4
|
Fei HX, Zhang YB, Liu T, Zhang XJ, Wu SL. Neuroprotective effect of formononetin in ameliorating learning and memory impairment in mouse model of Alzheimer's disease. Biosci Biotechnol Biochem 2017; 82:57-64. [PMID: 29191087 DOI: 10.1080/09168451.2017.1399788] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among elderly population. Deranged β-amyloid (Aβ) trafficking across the blood-brain barrier is known to be a critical element in the pathogenesis of AD. In the vascular endothelial cells of hippocampus, Aβ transport is mainly mediated by low-density lipoprotein-associated protein 1 (LRP1) and the receptor for advanced glycation end (RAGE) products; therefore, LRP1 and RAGE endothelial cells are potential therapeutic targets for AD. In this study, we explored the effects of Formononetin (FMN) on learning and memory improvement in APP/PS1 mice and the related mechanisms. We found that FMN significantly improved learning and memory ability by suppressing Aβ production from APP processing, RAGE-dependent inflammatory signaling and promoted LRP1-dependent cerebral Aβ clearance pathway. Moreover, FMN treatment alleviated ultrastructural changes in hippocampal vascular endothelial cells. In conclusion, we believe that FMN may be an efficacious and promising treatment for AD.
Collapse
Affiliation(s)
- Hong-Xin Fei
- a Department of Basic Pathology , Qiqihar Medical University , Qiqihar , China
| | - Ying-Bo Zhang
- b Pathology College , Qiqihar Medical University , Qiqihar , China
| | - Ting Liu
- b Pathology College , Qiqihar Medical University , Qiqihar , China
| | - Xiao-Jie Zhang
- b Pathology College , Qiqihar Medical University , Qiqihar , China
| | - Shu-Liang Wu
- c Department of Anatomy , Harbin Medical University , Harbin , China
| |
Collapse
|
5
|
Pickart L, Vasquez-Soltero JM, Margolina A. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline. Brain Sci 2017; 7:E20. [PMID: 28212278 PMCID: PMC5332963 DOI: 10.3390/brainsci7020020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine) is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue), increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK's effects on gene expression relevant to the nervous system health and function.
Collapse
Affiliation(s)
- Loren Pickart
- Research & Development Department, Skin Biology, 4122 Factoria Boulevard SE Suite No. 200 Bellevue, WA 98006, USA.
| | | | - Anna Margolina
- Research & Development Department, Skin Biology, 4122 Factoria Boulevard SE Suite No. 200 Bellevue, WA 98006, USA.
| |
Collapse
|
6
|
Li YH, Wang XS, Chen XL, Jin Y, Chen HB, Jia XQ, Zhang YF, Wu ZZ. Neuroprotective effect of the Chinese medicine Tiantai No. 1 and its molecular mechanism in the senescence-accelerated mouse prone 8. Neural Regen Res 2017; 12:301-306. [PMID: 28400814 PMCID: PMC5361516 DOI: 10.4103/1673-5374.200813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tiantai No. 1, a Chinese medicine predominantly composed of powdered Rhizoma Gastrodiae, Radix Ginseng, and Ginkgo leaf at a ratio of 2:1:2 and dissolved in pure water, is neuroprotective in animal models of various cognitive disorders, but its molecular mechanism remains unclear. We administered Tiantai No. 1 intragastrically to senescence-accelerated mouse prone 8 (SAMP8) mice (a model of Alzheimer's disease) at doses of 50, 100 or 150 mg/kg per day for 8 weeks and evaluated their behavior in the Morris water maze and expression of Alzheimer's disease-related proteins in the brain. Tiantai No. 1 shortened the escape latency in the water maze training trials, and increased swimming time in the target quadrant during the spatial probe test, indicating that Tiantai No. 1 improved learning and memory in SAMP8 mice. Immunohistochemistry revealed that Tiantai No. 1 restored the proliferation potential of Ki67-positive cells in the hippocampus. In addition, mice that had received Tiantai No. 1 had fewer astrocytes, and less accumulation of amyloid-beta and phosphorylated tau. These results suggest that Tiantai No. 1 is neuroprotective in the SAMP8 mouse model of Alzheimer's disease and acts by restoring neuronal number and proliferation potential in the hippocampus, decreasing astrocyte infiltration, and reducing the accumulation of amyloid-beta and phosphorylated tau.
Collapse
Affiliation(s)
- Ying-Hong Li
- First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong Province, China
| | - Xu-Sheng Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao-Lin Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yu Jin
- First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong Province, China
| | - Hong-Bo Chen
- Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Beijing, China
| | - Xiu-Qin Jia
- First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong Province, China
| | - Yong-Feng Zhang
- First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong Province, China
| | - Zheng-Zhi Wu
- First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Gu J, Bao Y, Chen J, Huang C, Zhang X, Jiang R, Liu Q, Liu Y, Xu X, Shi W. The Expression of NP847 and Sox2 after TBI and Its Influence on NSCs. Front Cell Neurosci 2016; 10:282. [PMID: 28066182 PMCID: PMC5177638 DOI: 10.3389/fncel.2016.00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022] Open
Abstract
The proliferation and differentiation of neural stem cells (NSCs) is important for neural regeneration after cerebral injury. Here, for the first time, we show that phosphorylated (p)-ser847-nNOS (NP847), rather than nNOS, may play a major role in NSC proliferation after traumatic brain injury (TBI). Western blot results demonstrated that the expression of NP847 and Sox2 in the hippocampus is up-regulated after TBI, and they both peak 3 days after brain injury. In addition, an immunofluorescence experiment indicated that NP847 and Sox2 partly co-localize in the nuclei of NSCs after TBI. Further immunoprecipitation experiments found that NP847 and Sox2 can directly interact with each other in NSCs. Moreover, in an OGD model of NSCs, NP847 expression is decreased, which is followed by the down-regulation of Sox2. Interestingly, in this study, we did not observe changes in the expression of nNOS in the OGD model. Further research data suggest that the NP847-Sox2 complex may play a major role in NSCs through the Shh/Gli signaling pathway in a CaMKII-dependent manner after brain injury.
Collapse
Affiliation(s)
- Jun Gu
- Department of Neurosurgery, Affiliated Hospital of Nantong UniversityNantong, China; Department of Neurosurgery, Yancheng Third People's HospitalYancheng, China
| | - Yifeng Bao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University Nantong, China
| | - Jian Chen
- Department of Neurosurgery, Affiliated Hospital of Nantong University Nantong, China
| | - Chuanjun Huang
- Department of Neurosurgery, The First People's Hospital of Wujiang Soochow, China
| | - Xinghua Zhang
- Department of Anatomy and Neurobiology, Nantong University Nantong, China
| | - Rui Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University Nantong, China
| | - Qianqian Liu
- Department of Neurosurgery, Affiliated Hospital of Nantong University Nantong, China
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University Nantong, China
| | - Xide Xu
- Department of Neurosurgery, Affiliated Hospital of Nantong University Nantong, China
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University Nantong, China
| |
Collapse
|
8
|
Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer's disease. J Neurosci 2013; 33:13505-17. [PMID: 23946409 DOI: 10.1523/jneurosci.0918-13.2013] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via upregulation of BDNF in both Aβ-treated hippocampal neurons and cultured APP/PS1 mouse hippocampal neurons. Photoactivation of transcription factor CRE-binding protein (CREB) increased both BDNF mRNA and protein expression, since knockdown CREB blocked the effects of LLLT. Furthermore, CREB-regulated transcription was in an ERK-dependent manner. Inhibition of ERK attenuated the DNA-binding efficiency of CREB to BDNF promoter. In addition, dendrite growth was improved after LLLT, characterized by upregulation of Rac1 activity and PSD-95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT by activation of ERK/CREB pathway can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of AD.
Collapse
|
9
|
Mitran SI, Catalin B, Sfredel V, Balseanu TA. Neuroregeneration and dementia: new treatment options. J Mol Psychiatry 2013; 1:12. [PMID: 25408905 PMCID: PMC4223882 DOI: 10.1186/2049-9256-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023] Open
Abstract
In the last years, physiological aging became a general concept that includes all the changes that occur in organism with old age. It is obvious now, that in developing and developed countries, new health problems concerning older population appear. One of these major concerns is probably dementia. Sooner or later, all forms of dementia lead to learning deficit, memory loss, low attention span, impairment of speech and poor problem solving skills. Normal ageing is a physiological process that also involves a lot of neurological disorders with the same type of symptoms and effects that many researchers are trying to minimize in demented patients. In this review we try to highlight some of the newest aspects of therapeutic strategies that can improve natural neuroregeneration.
Collapse
Affiliation(s)
- Smaranda Ioana Mitran
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Bogdan Catalin
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Veronica Sfredel
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania
| | - Tudor-Adrian Balseanu
- Department of Functional Sciences, University of Medicine and Pharmacy, Craiova, Romania ; Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, Craiova, Romania ; Physiology Department, University of Medicine and Pharmacy, No 2 Petru Rares street, Craiova, Romania
| |
Collapse
|