1
|
Yang L, Lin Z, Mu R, Wu W, Zhi H, Liu X, Yang H, Liu L. Neurons enhance blood-brain barrier function via upregulating claudin-5 and VE-cadherin expression due to glial cell line-derived neurotrophic factor secretion. eLife 2024; 13:RP96161. [PMID: 39475379 PMCID: PMC11524583 DOI: 10.7554/elife.96161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Blood-brain barrier (BBB) prevents neurotoxins from entering central nervous system. We aimed to establish and characterize an in vitro triple co-culture BBB model consisting of brain endothelial cells hCMEC/D3, astrocytoma U251 cells, and neuroblastoma SH-SY5Y cells. Co-culture of SH-SY5Y and U251 cells markedly enhanced claudin-5 and VE-cadherin expression in hCMEC/D3 cells, accompanied by increased transendothelial electrical resistance and decreased permeability. Conditioned medium (CM) from SH-SY5Y cells (S-CM), U251 cells (U-CM), and co-culture of SH-SY5Y and U251 cells (US-CM) also promoted claudin-5 and VE-cadherin expression. Glial cell line-derived neurotrophic factor (GDNF) levels in S-CM and US-CM were significantly higher than CMs from hCMEC/D3 and U-CM. Both GDNF and US-CM upregulated claudin-5 and VE-cadherin expression, which were attenuated by anti-GDNF antibody and GDNF signaling inhibitors. GDNF increased claudin-5 expression via the PI3K/AKT/FOXO1 and MAPK/ERK pathways. Meanwhile, GDNF promoted VE-cadherin expression by activating PI3K/AKT/ETS1 and MAPK/ERK/ETS1 signaling. The roles of GDNF in BBB integrity were validated using brain-specific Gdnf silencing mice. The developed triple co-culture BBB model was successfully applied to predict BBB permeability. In conclusion, neurons enhance BBB integrity by upregulating claudin-5 and VE-cadherin expression through GDNF secretion and established triple co-culture BBB model may be used to predict drugs' BBB permeability.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Zijin Lin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Ruijing Mu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Wenhan Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hao Zhi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Xiaodong Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Hanyu Yang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Li Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical UniversityNanjingChina
| |
Collapse
|
2
|
Arias HR, Targowska-Duda KM, García-Colunga J, Ortells MO. Is the Antidepressant Activity of Selective Serotonin Reuptake Inhibitors Mediated by Nicotinic Acetylcholine Receptors? Molecules 2021; 26:molecules26082149. [PMID: 33917953 PMCID: PMC8068400 DOI: 10.3390/molecules26082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/05/2022] Open
Abstract
It is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population. However, SSRIs are not efficient for smoking cessation therapy. In patients with major depressive disorder, there is a lower availability of functional nAChRs, although their amount is not altered, which is possibly caused by higher endogenous ACh levels, which consequently induce nAChR desensitization. Other neurotransmitter systems have also emerged as possible targets for SSRIs. Studies on dorsal raphe nucleus serotoninergic neurons support the concept that SSRI-induced nAChR inhibition decreases the glutamatergic hyperstimulation observed in stress conditions, which compensates the excessive 5-HT overflow in these neurons and, consequently, ameliorates depression symptoms. At the molecular level, SSRIs inhibit different nAChR subtypes by noncompetitive mechanisms, including ion channel blockade and induction of receptor desensitization, whereas α9α10 nAChRs, which are peripherally expressed and not directly involved in depression, are inhibited by competitive mechanisms. According to the functional and structural results, SSRIs bind within the nAChR ion channel at high-affinity sites that are spread out between serine and valine rings. In conclusion, SSRI-induced inhibition of a variety of nAChRs expressed in different neurotransmitter systems widens the complexity by which these antidepressants may act clinically.
Collapse
Affiliation(s)
- Hugo R. Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK 74464, USA
- Correspondence: ; Tel.: +1-918-525-6324; Fax: +1-918-280-2515
| | | | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico;
| | - Marcelo O. Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, Morón 1708, Argentina;
| |
Collapse
|
3
|
Laikowski MM, Reisdorfer F, Moura S. NAChR α4β2 Subtype and their Relation with Nicotine Addiction, Cognition, Depression and Hyperactivity Disorder. Curr Med Chem 2019; 26:3792-3811. [PMID: 29637850 DOI: 10.2174/0929867325666180410105135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/27/2017] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Neuronal α4β2 nAChRs are receptors involved in the role of neurotransmitters regulation and release, and this ionic channel participates in biological process of memory, learning and attention. This work aims to review the structure and functioning of the α4β2 nAChR emphasizing its role in the treatment of associated diseases like nicotine addiction and underlying pathologies such as cognition, depression and attention-deficit hyperactivity disorder. METHODS The authors realized extensive bibliographic research using the descriptors "Nicotine Receptor α4β2" and "cognition", "depression", "attention-deficit hyperactivity disorder", besides cross-references of the selected articles and after analysis of references in the specific literature. RESULTS As results, it was that found 179 relevant articles presenting the main molecules with affinity to nAChR α4β2 related to the cited diseases. The α4β2 nAChR subtype is a remarkable therapeutic target since this is the most abundant receptor in the central nervous system. CONCLUSION In summary, this review presents perspectives on the pharmacology and therapeutic targeting of α4β2 nAChRs for the treatment of cognition and diseases like nicotine dependence, depression and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Manuela M Laikowski
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fávero Reisdorfer
- Laboratory of Drug Development and Quality Control, University Federal of Pampa, Brazil
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
4
|
Rollema H, Hurst RS. The contribution of agonist and antagonist activities of α4β2* nAChR ligands to smoking cessation efficacy: a quantitative analysis of literature data. Psychopharmacology (Berl) 2018; 235:2479-2505. [PMID: 29980822 DOI: 10.1007/s00213-018-4921-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/29/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE AND OBJECTIVE Two mechanisms underlie smoking cessation efficacies of α4β2* nicotinic acetylcholine receptor (nAChR) agonists: a "nicotine-like" agonist activity reduces craving by substituting for nicotine during a quit attempt, and a "nicotine-blocking" antagonist activity attenuates reinforcement by competing with inhaled nicotine during a relapse. To evaluate the contribution of each mechanism to clinical efficacy, we estimated the degree of agonist and antagonist activities of nicotine replacement therapy (NRT), varenicline, cytisine, and the discontinued nAChR agonists dianicline, ABT-418, ABT-089, CP-601927, and CP-601932, relative to the functional effects of nicotine from smoking. METHODS Functional activities that occur in vivo with clinical doses were predicted from literature data on binding and functional potencies at the target α4β2 nAChR, as well as at α6β2* nAChRs, and from estimates of free drug exposures in human brain. Agonist activity is comprised of nAChR activation and desensitization, which were expressed as percentages of desensitization and activation by nicotine from smoking. Antagonist activity was expressed as the reduction in nAChR occupancy by nicotine during smoking in the presence of an agonist. RESULTS Comparisons with odds ratios at end of treatment suggest that extensive α4β2 and α6β2* nAChR desensitization combined with α6β2* nAChR activation at similar levels as nicotine from smoking is associated with clinical efficacy (NRT, varenicline, cytisine, ABT-418). Effective competition with inhaled nicotine for α4β2 and α6β2* nAChRs further improves clinical efficacy (varenicline). Other discontinued nAChR agonists have lower agonist and antagonist activities at α4β2 nAChRs and are inactive or less efficacious than NRT (dianicline, ABT-089, CP-601927, CP-601932). CONCLUSION Three pharmacological effects appear to be key factors underlying smoking cessation efficacy: the degree of activation of α6β2* nAChRs, desensitization of α4β2 and α6β2* nAChRs (agonist activity), and the reduction of nicotine occupancy at α4β2 and α6β2* nAChRs (antagonist activity). No single activity is dominant, and the level of smoking cessation efficacy depends on the profile of these activities achieved at clinical doses. While adequate agonist activity alone seems sufficient for a clinical effect (e.g., NRT, cytisine), clinical efficacy is improved with substantial competitive antagonism of α4β2 nAChRs, i.e., if the drug has a dual agonist-antagonist mechanism of action (e.g., varenicline).
Collapse
Affiliation(s)
- Hans Rollema
- Rollema Biomedical Consulting, 20 Holdridge Court, Mystic, CT, 06355, USA.
| | - Raymond S Hurst
- Hurst Neuropharmacology Consulting, 30 Brook Trail Road, Wayland, MA, 01778, USA
- Concert Pharmaceuticals, Inc., 99 Hayden Avenue, Suite 500, Lexington, MA, 02421, USA
| |
Collapse
|
5
|
Nanclares C, Gameiro-Ros I, Méndez-López I, Martínez-Ramírez C, Padín-Nogueira JF, Colmena I, Baraibar AM, Gandía L, García AG. Dual Antidepressant Duloxetine Blocks Nicotinic Receptor Currents, Calcium Signals and Exocytosis in Chromaffin Cells Stimulated with Acetylcholine. J Pharmacol Exp Ther 2018; 367:28-39. [PMID: 30006476 DOI: 10.1124/jpet.118.250969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023] Open
Abstract
The inhibition of nicotinic acetylcholine receptors (nAChRs) has been proposed as a potential strategy to develop new antidepressant drugs. This is based on the observation that antidepressants that selectively block noradrenaline (NA) or serotonin (5-HT) reuptake also inhibit nAChRs. Dual antidepressants blocking both NA and 5-HT reuptake were proposed to shorten the delay in exerting their clinical effects; whether duloxetine, a prototype of dual antidepressants, also blocks nAChRs is unknown. Here we explored this question in bovine chromaffin cells (BCCs) that express native α3, α5, and α7 nAChRs and in cell lines expressing human α7, α3β4, or α4β2 nAChRs. We have found that duloxetine fully blocked the acetylcholine (ACh)-elicited nicotinic currents in BCCs with an IC50 of 0.86 µM. Such blockade seemed to be noncompetitive, voltage dependent, and partially use dependent. The ACh-elicited membrane depolarization, the elevation of cytosolic calcium ([Ca2+]c), and catecholamine release in BCCs were also blocked by duloxetine. This blockade developed slowly, and the recovery of secretion was also slow and gradual. Duloxetine did not affect Na+ or Ca2+ channel currents neither the high-K+-elicited [Ca2+]c transients and secretion. Of interest was that in cell lines expressing human α7, α3β4, and α4β2 nAChRs, duloxetine blocked nicotinic currents with IC50 values of 0.1, 0.56, and 0.85 µM, respectively. Thus, in blocking α7 receptors, which are abundantly expressed in the brain, duloxetine exhibited approximately 10-fold to 100- fold higher potency with respect to reported IC50 values for various antidepressant drugs. This may contribute to the antidepressant effect of duloxetine.
Collapse
Affiliation(s)
- Carmen Nanclares
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Isabel Gameiro-Ros
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Iago Méndez-López
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Carmen Martínez-Ramírez
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - J Fernando Padín-Nogueira
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Inés Colmena
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Andrés M Baraibar
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Luis Gandía
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| | - Antonio G García
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina (C.N., I.G.-R., I.M.-L., C.M.-R., J.F.P.-N., I.C., A.M.B., L.G., A.G.G.) and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa (A.G.G.), Universidad Autónoma de Madrid, Madrid, Spain; and Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha (UCLM), Ciudad Real, Spain (J.F.P.-N.)
| |
Collapse
|
6
|
Hernández-Abrego A, Vázquez-Gómez E, García-Colunga J. Effects of the antidepressant mirtazapine and zinc on nicotinic acetylcholine receptors. Neurosci Lett 2017; 665:246-251. [PMID: 29225093 DOI: 10.1016/j.neulet.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) and zinc are associated with regulation of mood and related disorders. In addition, several antidepressants inhibit muscle and neuronal nAChRs and zinc potentiates inhibitory actions of them. Moreover, mirtazapine (a noradrenergic, serotonergic and histaminergic antidepressant) inhibits muscarinic AChRs and its effects on nAChRs are unknown. Therefore, we studied the modulation of muscle α1β1γd nAChRs expressed in oocytes and native α7-containing nAChRs in hippocampal interneurons by mirtazapine and/or zinc, using voltage-clamp techniques. The currents elicited by ACh in oocytes (at -60 mV) were similarly inhibited by mirtazapine in the absence and presence of 100 μM zinc (IC50 ∼15 μM); however, the ACh-induced currents were stronger inhibited with 20 and 50 μM mirtazapine in the presence of zinc. Furthermore, the potentiation of ACh-induced current by zinc in the presence of 5 μM mirtazapine was 1.48 ± 0.06, and with 50 μM mirtazapine zinc potentiation did not occur. Interestingly, in stratum radiatum interneurons (at -70 mV), 20 μM mirtazapine showed less inhibition of the current elicited by choline (Ch) than at 10 μM (0.81 ± 0.02 and 0.74 ± 0.02 of the Ch-induced current, respectively). Finally, the inhibitory effects of mirtazapine depended on membrane potential: 0.81 ± 0.02 and 0.56 ± 0.05 of the control Ch-induced current at -70 and -20 mV, respectively. These results indicate that mirtazapine interacts with muscle and neuronal nAChRs, possibly into the ion channel; that zinc may increase the sensitivity of nAChRs to mirtazapine; and that mirtazapine decreases the sensitivity of nAChRs to zinc.
Collapse
Affiliation(s)
- Andy Hernández-Abrego
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Elizabeth Vázquez-Gómez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, México.
| |
Collapse
|
7
|
Brindley RL, Bauer MB, Hartley ND, Horning KJ, Currie KP. Sigma-1 receptor ligands inhibit catecholamine secretion from adrenal chromaffin cells due to block of nicotinic acetylcholine receptors. J Neurochem 2017; 143:171-182. [PMID: 28815595 PMCID: PMC5630514 DOI: 10.1111/jnc.14149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/03/2017] [Accepted: 08/10/2017] [Indexed: 01/07/2023]
Abstract
Adrenal chromaffin cells (ACCs) are the neuroendocrine arm of the sympathetic nervous system and key mediators of the physiological stress response. Acetylcholine (ACh) released from preganglionic splanchnic nerves activates nicotinic acetylcholine receptors (nAChRs) on chromaffin cells causing membrane depolarization, opening voltage-gated Ca2+ channels (VGCC), and exocytosis of catecholamines and neuropeptides. The serotonin transporter is expressed in ACCs and interacts with 5-HT1A receptors to control secretion. In addition to blocking the serotonin transporter, some selective serotonin reuptake inhibitors (SSRIs) are also agonists at sigma-1 receptors which function as intracellular chaperone proteins and can translocate to the plasma membrane to modulate ion channels. Therefore, we investigated whether SSRIs and other sigma-1 receptor ligands can modulate stimulus-secretion coupling in ACCs. Escitalopram and fluvoxamine (100 nM to 1 μM) reversibly inhibited nAChR currents. The sigma-1 receptor antagonists NE-100 and BD-1047 also blocked nAChR currents (≈ 50% block at 100 nM) as did PRE-084, a sigma-1 receptor agonist. Block of nAChR currents by fluvoxamine and NE-100 was not additive suggesting a common site of action. VGCC currents were unaffected by the drugs. Neither the increase in cytosolic [Ca2+ ] nor the resulting catecholamine secretion evoked by direct membrane depolarization to bypass nAChRs was altered by fluvoxamine or NE-100. However, both Ca2+ entry and catecholamine secretion evoked by the cholinergic agonist carbachol were significantly reduced by fluvoxamine or NE-100. Together, our data suggest that sigma-1 receptors do not acutely regulate catecholamine secretion. Rather, SSRIs and other sigma-1 receptor ligands inhibit secretion evoked by cholinergic stimulation because of direct block of Ca2+ entry via nAChRs.
Collapse
Affiliation(s)
| | | | - Nolan D. Hartley
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kyle J. Horning
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kevin P.M. Currie
- Department of Anesthesiology, Department of Pharmacology, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Millan MJ, Rivet JM, Gobert A. The frontal cortex as a network hub controlling mood and cognition: Probing its neurochemical substrates for improved therapy of psychiatric and neurological disorders. J Psychopharmacol 2016; 30:1099-1128. [PMID: 27756833 DOI: 10.1177/0269881116672342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly-interconnected and neurochemically-rich frontal cortex plays a crucial role in the regulation of mood and cognition, domains disrupted in depression and other central nervous system disorders, and it is an important site of action for their therapeutic control. For improving our understanding of the function and dysfunction of the frontal cortex, and for identifying improved treatments, quantification of extracellular pools of neuromodulators by microdialysis in freely-moving rodents has proven indispensable. This approach has revealed a complex mesh of autoreceptor and heteroceptor interactions amongst monoaminergic pathways, and led from selective 5-HT reuptake inhibitors to novel classes of multi-target drugs for treating depression like the mixed α2-adrenoceptor/5-HT reuptake inhibitor, S35966, and the clinically-launched vortioxetine and vilazodone. Moreover, integration of non-monoaminergic actions resulted in the discovery and development of the innovative melatonin receptor agonist/5-HT2C receptor antagonist, Agomelatine. Melatonin levels, like those of corticosterone and the "social hormone", oxytocin, can now be quantified by microdialysis over the full 24 h daily cycle. Further, the introduction of procedures for measuring extracellular histamine and acetylcholine has provided insights into strategies for improving cognition by, for example, blockade of 5-HT6 and/or dopamine D3 receptors. The challenge of concurrently determining extracellular levels of GABA, glutamate, d-serine, glycine, kynurenate and other amino acids, and of clarifying their interactions with monoamines, has also been resolved. This has proven important for characterizing the actions of glycine reuptake inhibitors that indirectly augment transmission at N-methyl-d-aspartate receptors, and of "glutamatergic antidepressants" like ketamine, mGluR5 antagonists and positive modulators of AMPA receptors (including S47445). Most recently, quantification of the neurotoxic proteins Aβ42 and Tau has extended microdialysis studies to the pathogenesis of neurodegenerative disorders, and another frontier currently being broached is microRNAs. The present article discusses the above themes, focusses on recent advances, highlights opportunities for clinical "translation", and suggests avenues for further progress.
Collapse
Affiliation(s)
- Mark J Millan
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Jean-Michel Rivet
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| | - Alain Gobert
- Pole for Therapeutic Innovation in CNS disorders, IDR Servier, Croissy-sur-Seine, France
| |
Collapse
|
9
|
Roni MA, Rahman S. Effects of lobeline and reboxetine, fluoxetine, or bupropion combination on depression-like behaviors in mice. Pharmacol Biochem Behav 2015. [DOI: https://doi.org/10.1016/j.pbb.2015.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
[Psychopharmacology of anxiety and depression: Historical aspects, current treatments and perspectives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 74:93-118. [PMID: 26472602 DOI: 10.1016/j.pharma.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/08/2023]
Abstract
Pharmacological treatment of acute anxiety still relies on benzodiazepines, while chronic anxiety disorders and depression are treated with different antidepressants, according to specific indications. The monoaminergic axis is represented by two families which are being developed: (i) serotonin-norepinephrine-dopamine reuptake inhibitors (SNDRI), also called triple reuptake inhibitors (TRI), for the treatment of depression (amitifadine), (ii) multimodal antidepressants for depression and anxiety disorders (generalized anxiety disorder mainly) (tedatioxetine, vortioxetine and vilazodone). Third-generation antipsychotics (aripiprazole, lurasidone, brexpiprazole, cariprazine) appear relevant in the treatment of resistant depression and some anxiety disorders. Among the modulators of the glutamatergic axis, promising compounds include: (i) ionotropic regulators of NMDA receptors: esketamine, AVP-923 and AVP-786, CERC-301, rapastinel (Glyx-13), NRX-1074 developed for depression, rapastinel and bitopertine developed for obsessive compulsive disorder, (ii) metabotropic glutamate receptors modulators: decoglurant and basimglurant developed for depression and mavoglurant developed for obsessive compulsive disorder.
Collapse
|
11
|
Roni MA, Rahman S. Effects of lobeline and reboxetine, fluoxetine, or bupropion combination on depression-like behaviors in mice. Pharmacol Biochem Behav 2015; 139:1-6. [PMID: 26455278 DOI: 10.1016/j.pbb.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022]
Abstract
Evidence suggests that lobeline, a nicotinic acetylcholine receptor ligand, has antidepressant-like properties in mice. The present study investigated the possible additive or synergistic effects of lobeline in combination with commonly used antidepressants, such as reboxetine, fluoxetine, or bupropion, using the tail suspension test (TST) and the forced swim test (FST) in C57BL/6J mice. Reboxetine (5 or 10 mg/kg, i.p.), fluoxetine (5 or 10 mg/kg, i.p.), or bupropion (2 or 4 mg/kg, i.p.) were administered 30 min before TST or FST. A fixed dose of lobeline (1 mg/kg, i.p.) was injected 15 min prior to tests. Co-administration of lobeline and reboxetine, fluoxetine, or bupropion significantly reduced immobility time in the TST and FST in comparison to the antidepressants used alone. The results suggest that lobeline enhanced the effects of reboxetine, fluoxetine, or bupropion in mice. Therefore, lobeline or similar nicotinic receptor ligand may have therapeutic potential as an adjunct for the treatment of major depression.
Collapse
Affiliation(s)
- Monzurul Amin Roni
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
12
|
Woehrling EK, Parri HR, Tse EHY, Hill EJ, Maidment ID, Fox GC, Coleman MD. A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems. PLoS One 2015; 10:e0118786. [PMID: 25738989 PMCID: PMC4349811 DOI: 10.1371/journal.pone.0118786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.
Collapse
Affiliation(s)
- Elizabeth K. Woehrling
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - H. Rheinallt Parri
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Erin H. Y. Tse
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Eric J. Hill
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - Ian D. Maidment
- Aston Research Centre into Healthy Ageing (ARCHA), Aston University, Birmingham, B4 7ET, United Kingdom
| | - G. Christopher Fox
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Michael D. Coleman
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
14
|
Shaffer CL, Osgood SM, Mancuso JY, Doran AC. Diphenhydramine has similar interspecies net active influx at the blood-brain barrier. J Pharm Sci 2014; 103:1557-62. [PMID: 24633923 DOI: 10.1002/jps.23927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 01/27/2023]
Abstract
In rats, oxycodone, diphenhydramine, and [4-chloro-5-fluoro-2-(3-methoxy-2-methyl-phenoxy)-benzyl]-methylamine (CE-157119) undergo net active influx at the blood-brain barrier (BBB) based on significantly greater interstitial fluid compound concentrations (CISF ) than unbound plasma compound concentrations (Cp,u ). Oxycodone and diphenhydramine have CISF :Cp,u of 3.0 and 5.5, respectively, while CE-157119 has an unbound brain compound concentration (Cb,u ):Cp,u of 3.90; Cb,u is a high-confidence CISF surrogate. However, only CE-157119 has published dog and nonhuman primate (nhp) neuropharmacokinetics, which show similar Cb,u :Cp,u (4.61 and 2.04, respectively) as rats. Thus, diphenhydramine underwent identical interspecies neuropharmacokinetics studies to determine if its net active BBB influx in rats replicated in dogs and/or nhp. The single-dose-derived rat Cb,u :Cp,u (3.90) was consistent with prior steady-state-derived CISF :Cp,u and similar to those in dogs (4.88) and nhp (4.51-5.00). All large animal interneurocompartmental ratios were ≤1.8-fold different than their rat values, implying that diphenhydramine has constant and substantial Cb,u -favoring disequilibria in these mammals. Accordingly, the applied Cb,u -forecasting methodology accurately predicted [estimated mean (95% confidence interval) of 0.84 (0.68, 1.05)] Cb,u from each measured Cp,u in large animals. The collective datasets suggest these Cb,u -preferring asymmetries are mediated by a species-independent BBB active uptake system whose identification, full characterization, and structure-activity relationships should be prioritized for potential exploitation.
Collapse
Affiliation(s)
- Christopher L Shaffer
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Pfizer Worldwide Research and Development, Groton Laboratories, Pfizer Inc., Groton, Connecticut, 06340
| | | | | | | |
Collapse
|
15
|
Yu LF, Brek Eaton J, Zhang HK, Sabath E, Hanania T, Li GN, van Breemen RB, Whiteaker P, Liu Q, Wu J, Chang YC, Lukas RJ, Brunner D, Kozikowski AP. The potent and selective α4β2*/α6*-nicotinic acetylcholine receptor partial agonist 2-[5-[5-((S)Azetidin-2-ylmethoxy)-3-pyridinyl]-3-isoxazolyl]ethanol demonstrates antidepressive-like behavior in animal models and a favorable ADME-tox profile. Pharmacol Res Perspect 2014; 2:e00026. [PMID: 25505580 PMCID: PMC4184702 DOI: 10.1002/prp2.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/11/2022] Open
Abstract
Preclinical and clinical studies demonstrated that the inhibition of cholinergic supersensitivity through nicotinic antagonists and partial agonists can be used successfully to treat depressed patients, especially those who are poor responders to selective serotonin reuptake inhibitors (SSRIs). In our effort to develop novel antidepressant drugs, LF-3-88 was identified as a potent nicotinic acetylcholine receptor (nAChR) partial agonist with subnanomolar to nanomolar affinities for β2-containing nAChRs (α2β2, α3β2, α4β2, and α4β2*) and superior selectivity away from α3β4 - (K i > 10(4) nmol/L) and α7-nAChRs (K i > 10(4) nmol/L) as well as 51 other central nervous system (CNS)-related neurotransmitter receptors and transporters. Functional activities at different nAChR subtypes were characterized utilizing (86)Rb(+) ion efflux assays, two-electrode voltage-clamp (TEVC) recording in oocytes, and whole-cell current recording measurements. In mouse models, administration of LF-3-88 resulted in antidepressive-like behavioral signatures 15 min post injection in the SmartCube® test (5 and 10 mg/kg, i.p.; about 45-min session), decreased immobility in the forced swim test (1-3 mg/kg, i.p.; 1-10 mg/kg, p.o.; 30 min pretreatment, 6-min trial), and decreased latency to approach food in the novelty-suppressed feeding test after 29 days chronic administration once daily (5 mg/kg but not 10 mg/kg, p.o.; 15-min trial). In addition, LF-3-88 exhibited a favorable profile in pharmacokinetic/ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) assays. This compound was also shown to cause no mortality in wild-type Balb/CJ mice when tested at 300 mg/kg. These results further support the potential of potent and selective nicotinic partial agonists for use in the treatment of depression.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 833 South Wood Street, Chicago, Illinois, 60612 ; Institute of Drug Design and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University 3663 North Zhongshan Road, Shanghai, 200062, China
| | - J Brek Eaton
- Division of Neurobiology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Han-Kun Zhang
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 833 South Wood Street, Chicago, Illinois, 60612 ; Institute of Biomedical Sciences and School of Life Sciences, East China Normal University 500 Dongchuan Road, Shanghai, 200241, China
| | - Emily Sabath
- PsychoGenics, Inc. 765 Old Saw Mill River Road, Tarrytown, New York, 10591
| | - Taleen Hanania
- PsychoGenics, Inc. 765 Old Saw Mill River Road, Tarrytown, New York, 10591
| | - Guan-Nan Li
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 833 South Wood Street, Chicago, Illinois, 60612
| | - Richard B van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 833 South Wood Street, Chicago, Illinois, 60612
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Qiang Liu
- Division of Neurobiology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013 ; Division of Neurology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Jie Wu
- Division of Neurology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Yong-Chang Chang
- Division of Neurobiology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute 350 West Thomas Road, Phoenix, Arizona, 85013
| | - Dani Brunner
- PsychoGenics, Inc. 765 Old Saw Mill River Road, Tarrytown, New York, 10591 ; Department of Psychiatry, Columbia University, NYSPI 1051 Riverside Drive, New York, New York, 10032
| | - Alan P Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago 833 South Wood Street, Chicago, Illinois, 60612
| |
Collapse
|