1
|
Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons alters motor and cognitive function. Mol Psychiatry 2021; 26:6427-6450. [PMID: 33879865 PMCID: PMC8526653 DOI: 10.1038/s41380-021-01099-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.
Collapse
|
2
|
Frączek K, Ferraiolo M, Hermans E, Bujalska-Zadrozny M, Kasarello K, Erdei A, Kulik K, Kowalczyk A, Wojciechowski P, Sulejczak D, Sosnowski P, Granica S, Benyhe S, Kaczynska K, Nagraba L, Stolarczyk A, Cudnoch-Jedrzejewska A, Kleczkowska P. Novel opioid-neurotensin-based hybrid peptide with spinal long-lasting antinociceptive activity and a propensity to delay tolerance development. Acta Pharm Sin B 2020; 10:1440-1452. [PMID: 32963942 PMCID: PMC7488486 DOI: 10.1016/j.apsb.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
The behavioral responses exerted by spinal administration of the opioid-neurotensin hybrid peptide, PK23, were studied in adult male rats. The antinociceptive effect upon exposure to a thermal stimulus, as well as tolerance development, was assessed in an acute pain model. The PK23 chimera at a dose of 10 nmol/rat produced a potent pain-relieving effect, especially after its intrathecal administration. Compared with intrathecal morphine, this novel compound was found to possess a favourable side effect profile characterized by a reduced scratch reflex, delayed development of analgesic tolerance or an absence of motor impairments when given in the same manner, though some animals died following barrel rotation as a result of its i.c.v. administration (in particular at doses higher than 10 nmol/rat). Nonetheless, these results suggest the potential use of hybrid compounds encompassing both opioid and neurotensin structural fragments in pain management. This highlights the enormous potential of synthetic neurotensin analogues as promising future analgesics.
Collapse
|
3
|
Mercatelli D, Bezard E, Eleopra R, Zaveri NT, Morari M. Managing Parkinson's disease: moving ON with NOP. Br J Pharmacol 2020; 177:28-47. [PMID: 31648371 PMCID: PMC6976791 DOI: 10.1111/bph.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
The opioid-like neuropeptide nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP receptor) contribute to Parkinson's disease (PD) and motor complications associated with levodopa therapy. The N/OFQ-NOP receptor system is expressed in cortical and subcortical motor areas and, notably, in dopaminergic neurons of the substantia nigra compacta. Dopamine depletion, as in rodent models of PD results in up-regulation of N/OFQ transmission in the substantia nigra and down-regulation of N/OFQ transmission in the striatum. Consistent with this, NOP receptor antagonists relieve motor deficits in PD models by reinstating the physiological balance between excitatory and inhibitory inputs impinging on nigro-thalamic GABAergic neurons. NOP receptor antagonists also counteract the degeneration of nigrostriatal dopaminergic neurons, possibly by attenuating the excitotoxicity or modulating the immune response. Conversely, NOP receptor agonists attenuate levodopa-induced dyskinesia by attenuating the hyperactivation of striatal D1 receptor signalling in neurons of the direct striatonigral pathway. The N/OFQ-NOP receptor system might represent a novel target in the therapy of PD.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, UMR 5293Université de BordeauxBordeauxFrance
- Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, UMR 5293BordeauxFrance
| | - Roberto Eleopra
- Neurology Unit 1Fondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Nurulain T. Zaveri
- Astraea Therapeutics, Medicinal Chemistry DivisionMountain ViewCaliforniaUSA
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of Ferrara and National Institute of NeuroscienceFerraraItaly
| |
Collapse
|
4
|
Mercatelli D, Pisanò CA, Novello S, Morari M. NOP Receptor Ligands and Parkinson's Disease. Handb Exp Pharmacol 2019; 254:213-232. [PMID: 30689087 DOI: 10.1007/164_2018_199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) and its NOP receptor are highly expressed in motor areas of the rodent, nonhuman, and human primate brain, such as primary motor cortex, thalamus, globus pallidus, striatum, and substantia nigra. Endogenous N/OFQ negatively regulates motor behavior and dopamine transmission through NOP receptors expressed by dopaminergic neurons of the substantia nigra compacta. Consistent with the existence of an N/OFQ tone over dopaminergic transmission, blockade of NOP receptor antagonists increases striatal dopamine release. In this chapter, we will review the evidence linking the N/OFQ-NOP receptor system to Parkinson's disease (PD). We will first discuss data showing that the central N/OFQ-NOP receptor system undergoes plastic changes in different basal ganglia nuclei following dopamine depletion. Then we will show that NOP receptor antagonists relieve motor deficits in different rodent and nonhuman primate models of PD. Mechanistically, NOP receptor blockade in substantia nigra reticulata results in rebalancing of the inhibitory GABAergic and excitatory glutamatergic inputs impinging on nigro-thalamic GABAergic neurons, leading to thalamic disinhibition. We will also present data showing that, in addition to motor symptoms, N/OFQ also plays a role in the parkinsonian neurodegeneration. In fact, NOP receptor antagonists possess neuroprotective/neurorescue properties in in vitro and in vivo models of PD.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Khan MS, Boileau I, Kolla N, Mizrahi R. A systematic review of the role of the nociceptin receptor system in stress, cognition, and reward: relevance to schizophrenia. Transl Psychiatry 2018; 8:38. [PMID: 29391391 PMCID: PMC5804030 DOI: 10.1038/s41398-017-0080-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a debilitating neuropsychiatric illness that is characterized by positive, negative, and cognitive symptoms. Research over the past two decades suggests that the nociceptin receptor system may be involved in domains affected in schizophrenia, based on evidence aligning it with hallmark features of the disorder. First, aberrant glutamatergic and striatal dopaminergic function are associated with psychotic symptoms, and the nociceptin receptor system has been shown to regulate dopamine and glutamate transmission. Second, stress is a critical risk factor for first break and relapse in schizophrenia, and evidence suggests that the nociceptin receptor system is also directly involved in stress modulation. Third, cognitive deficits are prevalent in schizophrenia, and the nociceptin receptor system has significant impact on learning and working memory. Last, reward processing is disrupted in schizophrenia, and nociceptin signaling has been shown to regulate reward cue salience. These findings provide the foundation for the involvement of the nociceptin receptor system in the pathophysiology of schizophrenia and outline the need for future research into this system.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Nathan Kolla
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
6
|
Arcuri L, Novello S, Frassineti M, Mercatelli D, Pisanò CA, Morella I, Fasano S, Journigan BV, Meyer ME, Polgar WE, Brambilla R, Zaveri NT, Morari M. Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br J Pharmacol 2018; 175:782-796. [PMID: 29232769 DOI: 10.1111/bph.14123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/21/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE We previously showed that nociceptin/orphanin FQ opioid peptide (NOP) receptor agonists attenuate the expression of levodopa-induced dyskinesia in animal models of Parkinson's disease. We now investigate the efficacy of two novel, potent and chemically distinct NOP receptor agonists, AT-390 and AT-403, to improve Parkinsonian disabilities and attenuate dyskinesia development and expression. EXPERIMENTAL APPROACH Binding affinity and functional efficacy of AT-390 and AT-403 at the opioid receptors were determined in radioligand displacement assays and in GTPγS binding assays respectively, conducted in CHO cells. Their anti-Parkinsonian activity was evaluated in 6-hydroxydopamine hemi-lesioned rats whereas the anti-dyskinetic properties were assessed in 6-hydroxydopamine hemi-lesioned rats chronically treated with levodopa. The ability of AT-403 to inhibit the D1 receptor-induced phosphorylation of striatal ERK was investigated. KEY RESULTS AT-390 and AT-403 selectively improved akinesia at low doses and disrupted global motor activity at higher doses. AT-403 palliated dyskinesia expression without causing sedation in a narrow therapeutic window, whereas AT-390 delayed the appearance of abnormal involuntary movements and increased their duration at doses causing sedation. AT-403 did not prevent the priming to levodopa, although it significantly inhibited dyskinesia on the first day of administration. AT-403 reduced the ERK phosphorylation induced by SKF38393 in vitro and by levodopa in vivo. CONCLUSIONS AND IMPLICATIONS NOP receptor stimulation can provide significant albeit mild anti-dyskinetic effect at doses not causing sedation. The therapeutic window, however, varies across compounds. AT-403 could be a potent and selective tool to investigate the role of NOP receptors in vivo.
Collapse
Affiliation(s)
- Ludovico Arcuri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Martina Frassineti
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Ilaria Morella
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | - Stefania Fasano
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | | | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.,School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, Russo I, Berti G, Mabrouk OS, Kennedy RT, Shimshek DR, Varani K, Bubacco L, Greggio E, Morari M. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun 2017; 5:22. [PMID: 28292328 PMCID: PMC5351259 DOI: 10.1186/s40478-017-0426-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson’s disease. Here, we investigated whether the G2019S LRRK2 mutation causes morphological and/or functional changes at nigro-striatal dopamine neurons. Density of striatal dopaminergic terminals, nigral cell counts, tyrosine hydroxylase protein levels as well as exocytotic dopamine release measured in striatal synaptosomes, or striatal extracellular dopamine levels monitored by in vivo microdialysis were similar between ≥12-month-old G2019S knock-in mice and wild-type controls. In vivo striatal dopamine release was insensitive to the LRRK2 inhibitor Nov-LRRK2-11, and was elevated by the membrane dopamine transporter blocker GBR-12783. However, G2019S knock-in mice showed a blunted neurochemical and motor activation response to GBR-12783 compared to wild-type controls. Western blot and dopamine uptake analysis revealed an increase in dopamine transporter levels and activity in the striatum of 12-month-old G2019S KI mice. This phenotype correlated with a reduction in vesicular monoamine transporter 2 levels and an enhancement of vesicular dopamine uptake, which was consistent with greater resistance to reserpine-induced hypolocomotion. These changes were not observed in 3-month-old mice. Finally, Western blot analysis revealed no genotype difference in striatal levels of endogenous α-synuclein or α-synuclein bound to DOPAL (a toxic metabolite of dopamine). However, Serine129-phosphorylated α-synuclein levels were higher in 12-month-old G2019S knock-in mice. Immunohistochemistry confirmed this finding, also showing no genotype difference in 3-month-old mice. We conclude that the G2019S mutation causes progressive dysfunctions of dopamine transporters, along with Serine129-phosphorylated α-synuclein overload, at striatal dopaminergic terminals, which are not associated with dopamine homeostasis dysregulation or neuron loss but might contribute to intrinsic dopaminergic terminal vulnerability. We propose G2019S knock-in mice as a presymptomatic Parkinson’s disease model, useful to investigate the pathogenic interaction among genetics, aging, and internal or environmental factors leading to the disease.
Collapse
|
8
|
Saroja SR, Aher YD, Kalaba P, Aher NY, Zehl M, Korz V, Subramaniyan S, Miklosi AG, Zanon L, Neuhaus W, Höger H, Langer T, Urban E, Leban J, Lubec G. A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3. Behav Brain Res 2016; 312:127-37. [DOI: 10.1016/j.bbr.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/11/2023]
|
9
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
10
|
Arcuri L, Viaro R, Bido S, Longo F, Calcagno M, Fernagut PO, Zaveri NT, Calò G, Bezard E, Morari M. Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson's disease. Neurobiol Dis 2016; 89:55-64. [PMID: 26804029 DOI: 10.1016/j.nbd.2016.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
To investigate whether the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) contributes to the death of dopamine neurons in Parkinson's disease, we undertook a genetic and a pharmacological approach using NOP receptor knockout (NOP(-/-)) mice, and the selective and potent small molecule NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). Stereological unbiased methods were used to estimate the total number of dopamine neurons in the substantia nigra of i) NOP(-/-) mice acutely treated with the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP), ii) naïve mice subacutely treated with MPTP, alone or in combination with SB-612111, iii) rats injected with a recombinant adeno-associated viral (AAV) vector overexpressing human mutant p.A53T α-synuclein, treated with vehicle or SB-612111. NOP(-/-) mice showed a 50% greater amount of nigral dopamine neurons spared in response to acute MPTP compared to controls, which was associated with a milder motor impairment. SB-612111, given 4 days after MPTP treatment to mimic the clinical condition, prevented the loss of nigral dopamine neurons and striatal dopaminergic terminals caused by subacute MPTP. SB-612111, administered a week after the AAV injections in a clinically-driven protocol, also increased by 50% both the number of spared nigral dopamine neurons and striatal dopamine terminals, and prevented accompanying motor deficits induced by α-synuclein. We conclude that endogenous N/OFQ contributes to dopamine neuron loss in pathogenic and etiologic models of Parkinson's disease through NOP receptor-mediated mechanisms. NOP receptor antagonists might prove effective as disease-modifying agents in Parkinson's disease, through the rescue of degenerating nigral dopamine neurons and/or the protection of the healthy ones.
Collapse
Affiliation(s)
- Ludovico Arcuri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - Simone Bido
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Francesco Longo
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Mariangela Calcagno
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Nurulain T Zaveri
- Astraea Therapeutics, 320 Logue Avenue, Mountain View, CA 94040, USA
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Neuroscience Center and National Institute of Neuroscience, University of Ferrara, via Fossato di Mortara 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
11
|
Kosmowska B, Wardas J, Głowacka U, Ananthan S, Ossowska K. Pramipexole at a Low Dose Induces Beneficial Effect in the Harmaline-induced Model of Essential Tremor in Rats. CNS Neurosci Ther 2015; 22:53-62. [PMID: 26459182 DOI: 10.1111/cns.12467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/18/2023] Open
Abstract
AIMS The aim of the study was to examine the effects of preferential agonists of dopamine D3 receptors: pramipexole and 7-OH-DPAT on the harmaline-induced tremor in rats (a model of essential tremor, ET). To study receptor mechanisms of these drugs, rats were pretreated with dopamine D3 receptor antagonists--SB-277011-A and SR-21502, an antagonist of presynaptic D2/D3 receptors--amisulpride, or a nonselective antagonist of D2-like receptors, haloperidol, at a postsynaptic dose. METHODS For tremor measurement, fully automated force plate actimeters were used and data were analyzed using fast Fourier transform. RESULTS Harmaline (15 mg/kg ip)-triggered tremor was manifested by an increase in the power within 9-15 Hz band (AP2). Pramipexole administered at a low (0.1 mg/kg sc), but not higher doses (0.3 and 1 mg/kg sc), and 7-OH-DPAT (0.1, 0.3, and 1 mg/kg sc) reversed the harmaline-increased AP2. None of the examined dopamine antagonists: SB-277011-A (10 mg/kg ip), SR-21502 (15 mg/kg ip), haloperidol (0.5 mg/kg ip), or amisulpride (1 mg/kg ip) influenced the above effect of dopamine agonists. CONCLUSION The present study indicates that pramipexole reduces the harmaline-induced tremor, which may suggest its beneficial effects in ET patients. However, mechanisms underlying its action are still unclear and need further examination.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Jadwiga Wardas
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Urszula Głowacka
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Krystyna Ossowska
- Department of Neuro-Psychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
12
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Beccano-Kelly DA, Volta M, Munsie LN, Paschall SA, Tatarnikov I, Co K, Chou P, Cao LP, Bergeron S, Mitchell E, Han H, Melrose HL, Tapia L, Raymond LA, Farrer MJ, Milnerwood AJ. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum Mol Genet 2014; 24:1336-49. [PMID: 25343991 DOI: 10.1093/hmg/ddu543] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction.
Collapse
Affiliation(s)
| | - Mattia Volta
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Lise N Munsie
- Centre for Applied Neurogenetics, Brain Research Centre
| | | | | | - Kimberley Co
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Patrick Chou
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Li-Ping Cao
- Centre for Applied Neurogenetics, Brain Research Centre
| | | | - Emma Mitchell
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Heather Han
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lucia Tapia
- Centre for Applied Neurogenetics, Brain Research Centre
| | - Lynn A Raymond
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, Canada V6T 2B5
| | - Matthew J Farrer
- Centre for Applied Neurogenetics, Brain Research Centre, Department of Medical Genetics
| | - Austen J Milnerwood
- Centre for Applied Neurogenetics, Division of Neurology, Brain Research Centre,
| |
Collapse
|